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Abstract

In this work, we consider a continuous–time branching process with interaction where
the birth and death rates are non linear functions of the population size. We prove
that after a proper renormalization our model converges to a generalized continuous
state branching process solution of the SDE

Zx
t =x+

∫ t

0

f(Zx
r )dr +

√
2c

∫ t

0

∫ Zx
r

0

W (dr, du) +

∫ t

0

∫ 1

0

∫ Zx
r−

0

z M(ds, dz, du)

+

∫ t

0

∫ ∞

1

∫ Zx
r−

0

z M(ds, dz, du),

where W is a space-time white noise on (0,∞)2 and M(ds, dz, du) = M(ds, dz, du)−
dsµ(dz)du, with M being a Poisson random measure on (0,∞)3 independent of W,

with mean measure dsµ(dz)du, where (1 ∧ z2)µ(dz) is a finite measure on (0,∞).
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1 Introduction

Consider a population evolving in continuous time with m ancestors at time t = 0,

in which to each individual is attached a random vector describing her lifetime and
her number of offsprings. We assume that those random vectors are independent and
identically distributed. The rate of reproduction is governed by a finite measure ν
on Z+ = {0, 1, 2, ...}, satisfying ν(1) = 0. More precisely, each individual lives for an
exponential time with parameter ν(Z+), and is replaced by a random number of children
according to the probability ν(Z+)

−1
ν. For each individual we superimpose additional

birth and death rates due to interactions with others at a certain rate which depends upon
the other individuals in the population. More precisely, given a function f : R+ → R,

which satisfies assumption (H2) below, whenever the total size of the population is k,
the total additional birth rate due to interactions is

∑k
i=1(f(i) − f(i − 1))+, while the

total additional death rate due to interactions is
∑k
i=1(f(i)− f(i− 1))−.
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Approximation of a generalized CSBP with interaction

In this work, we prove that, when properly renormalized, the above continuous time
branching process with interaction converges to the solution of the SDE

Zxt = x+

∫ t

0

f(Zxr )dr +
√
2c

∫ t

0

∫ Zx
r

0

W (dr, du) +

∫ t

0

∫ 1

0

∫ Zx
r−

0

z M(ds, dz, du)

+

∫ t

0

∫ ∞

1

∫ Zx
r−

0

z M(ds, dz, du), (1.1)

where W is a space-time white noise on R+ × R+, M(dr, dz, du) is a Poisson random
measure with mean measure dsµ(dz)du independent of W , c ≥ 0 and µ is a σ-finite
measure on (0,∞) which satisfies

Assumption (H1)
∫∞
0

(1∧ z2)µ(dz) <∞, andM is the compensated measure ofM . Our
assumption concerning the function f will be

Assumption (H2) f ∈ C(R+;R), f(0) = 0, and there exists a constant β > 0 such that

f(x+ y)− f(x) ≤ βy ∀x, y ≥ 0.

Note that the assumption (H2) implies that f(x) ≤ βx, for all x ≥ 0.

Under the assumptions (H1) and (H2), the existence and uniqueness of a strong
solution of (1.1) is proved in [5]. We thus generalize the convergence result in [3], see
also [12], where the limit was a continuous process.

We will need to consider the CSBP Y x solution of the SDE

Y xt =x+ β

∫ t

0

Y xr dr +
√
2c

∫ t

0

∫ Y x
r

0

W (dr, du) +

∫ t

0

∫ 1

0

∫ Y x
r−

0

z M(ds, dz, du)

+

∫ t

0

∫ ∞

1

∫ Y x
r−

0

z M(ds, dz, du), (1.2)

whose branching mechanism is given by

ψ(λ) = −βλ+ cλ2 +

∫ ∞

0

(e−λz − 1 + λz1{z≤1})µ(dr). (1.3)

In this work, we assume that Y x does not explode, which is equivalent to (see [8])

Assumption (H3)
∫
0+

dλ
|ψ(λ)| = +∞.

The paper is organised as follows. We first define a discrete model jointly for all
initial population sizes. This imposes a non symmetric competition rule between the
individuals, which we will describe in section 2 below. We do a suitable renormalization
of the parameters of the discrete model in section 3, and we prove the convergence of
the renormalized model in the large population limit in section 4.

Note that due to our weak assumption (H1), Zx does not have a finite moment of
order 1. This induces difficulties for checking tightness of the approximation. We use
comparison with two branching processes.

2 Discrete model of population with interaction

2.1 The model

We consider a continuous time Z+-valued population process {Xm
t , t ≥ 0}, which

starts at time zero from Xm
0 = m ancestors who are arranged from left to right, and

evolves in continuous time. The left/right order is passed on to their offsprings. Moreover,
at each death/birth event all newborn are arranged in an arbitrary left-right order. Those
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rules apply inside each genealogical tree, so that distinct branches of the tree never
cross. This means that the forest of genealogical trees of the population is a planar
forest of trees, where the ancestor of the population X1

t is placed on the far left, the
ancestor of X2

t −X1
t immediately on her right, etc... This defines in a non-ambiguous

way an order from left to right within the population alive at each time t. We decree
that each individual feels the interaction with the others placed on her left but not with
those on her right. In order to simplify our formulas, we suppose moreover that the first
individual in the left/right order gives birth to ` offspring at rate ν(`) + f+(1)1{`=2} and
dies at rate ν(0) + f−(1).

{Xm
t , t ≥ 0} is a Z+-valued Markov process, which starts from Xm

0 = m. and evolves
as follows. If Xm

t = 0, then Xm
s = 0 for all s ≥ t. While at state k ≥ 1, the process

Xm
t jumps to

{
k + `− 1, at rate ν(`)k + 1{`=2}

∑k
j=1(f(j)− f(j − 1))+, for all ` ≥ 2;

k − 1, at rate ν(0)k +
∑k
j=1(f(j)− f(j − 1))−.

(2.1)
Hence the total interaction birth rates minus the total interaction death rates endured
by the population Xm

t at time t is

Xm
t∑

k=1

[(f(k)− f(k − 1))+ − (f(k)− f(k − 1))−] =

Xm
t∑

k=1

(f(k)− f(k − 1)) = f(Xm
t ).

2.2 Coupling over ancestral population size

The above description specifies the joint evolution of all {Xm
t , t ≥ 0}m≥1, or in

other words of the two-parameter process {Xm
t , t ≥ 0, m ≥ 1}. In the case of a linear

function f, for each fixed t > 0, {Xm
t , m ≥ 1} is an independent increments process.

Here {Xm
· , m ≥ 1} is a Markov chain with values in the space D([0,∞);Z+) of càdlàg

functions from [0,∞) into Z+, which starts from 0 at m = 0. Consequently, in order to
describe the law of the two-parameter process {Xm

t , t ≥ 0, m ≥ 1}, it suffices to describe
the conditional law of Xn

· , given X
n−1
· for each n ≥ 1. We now describe the conditional

law of Xn
· given Xm

· , for arbitrary 1 ≤ m < n. Let V m,nt = Xn
t −Xm

t , t ≥ 0. Conditionally
upon {Xj

· , j ≤ m}, and given that Xm
t = x(t), t ≥ 0, {V m,nt , t ≥ 0} is a Z+-valued time

inhomogeneous Markov process starting from V m,n0 = n −m, whose time-dependent
infinitesimal generator {Qk,j(t), k, j ∈ Z+} is such that its non zero off-diagonal terms
are given by

Qk,k+`−1(t) = kν(`) + 1{`=2}

k∑
i=1

(f(x(t) + i)− f(x(t) + i− 1))+, for all ` ≥ 2,

Qk,k−1(t) = kν(0) +

k∑
i=1

(f(x(t) + i)− f(x(t) + i− 1))−.

This description of the conditional law of {Xn
t − Xm

t , t ≥ 0}, given Xm
· , is prescribed

by what we have just said, and {Xm
· , m ≥ 1} is indeed a Markov chain. Note that V 0,n

t

evolves as Xn
t . Our nonlinear function f is very general. It can both model the Allee

effect and competition, in case it is increasing for moderate values of x, and decreasing
for large x.

3 A renormalized process

In this section, we first construct our continuous time branching process with in-
teraction. We then proceed to its renormalisation. Let N > 1 be an integer which will
eventually go to infinity.
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3.1 Preliminaries

Let us start with a construction, which will allow us to separate small jumps and big
jumps of the population process. Let us define ψ1 and ψ2 ∈ C([0,+∞)) by

ψ1(u) =

∫ 1

0

(e−uz − 1 + uz)µ(dz) and ψ2(u) =

∫ ∞

1

(e−uz − 1)µ(dz),

where µ satisfies (H1). In what follows, we set

h1,N (s) = s+
ψ1(N(1− s))

Nψ′
1(N)

and h2,N (s) = s− ψ2(N(1− s))

Nψ′
2(N)

, |s| 6 1.

For i = 1, 2, hi,N is a probability generating function, and we have

h1,N (s) =
∑
`≥0

π−,N (`)s` and h2,N (s) =
∑
`≥0

π+,N (`)s`, |s| 6 1,

where π−,N and π+,N are two probability measures on Z+. Let us define

d−,N = ψ′
1(N), d+,N = −ψ′

2(N) and dN = d−,N + d+,N .

For any ` ≥ 0, we define

πN (`) =
1

dN

[
d−,Nπ

−,N (`) + d+,Nπ
+,N (`)

]
. (3.1)

It is easy to check that for all N ≥ 1,∑
`≥0

πN (`) =
∑
`≥0

π−,N (`) =
∑
`≥0

`π−,N (`) =
∑
`≥0

π+,N (`) = 1. (3.2)

We denote by hN the probability generating function of πN . We have

hN (s) =
1

dN
[d−,Nh1,N (s) + d+,Nh2,N (s)] . (3.3)

In what follows, we will need the

Remark 3.1. For any λ > 0,

ψ1(λ) + ψ2(λ) =

∫ ∞

0

(e−λz − 1 + λz1{z≤1})µ(dz) = NdN

[
hN

(
1− λ

N

)
−
(
1− λ

N

)]
.

Consider g(s) = 1
2 (1 + s2), which is the generating function of the probability π =

1
2δ0 +

1
2δ2. We notice that ∑

`≥0

π(`) =
∑
`≥0

`π(`) = 1. (3.4)

We define one more probability on Z+. For any ` ≥ 0,

νN (`) =
1

2cN + dN
[dNπN (`) + 2cNπ(`)] . (3.5)

We denote by LN the probability generating function of νN . We have

LN (s) =
1

(2cN + dN )
[2cNg(s) + dNhN (s)] . (3.6)

From (3.1), we can rewrite (3.5) in the form

(2cN + dN )νN (`) = 2cNπ(`) + d−,Nπ
−,N (`) + d+,Nπ

+,N (`). (3.7)
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3.2 Renormalized discrete model

Now we proceed with the renormalization of the model defined by (2.1). For x
∈ R+ and N ∈ Z+, we choose m = [Nx], and ν(`) = (dN + 2cN)νN (`) for all ` ≥ 2,

ν(0) = (2cN + dN )νN (0), we multiply f by N and divide its argument by N . We attach
to each individual in the population a mass equal to 1/N. Then the total mass process
ZN,x, which starts from [Nx]

N at time t = 0, is a Markov process whose evolution can be
described as follows. ZN,x jumps from k/N

to

{
k+`−1
N at rate (2cN + dN )νN (`)k + N1{`=2}

∑k
i=1(f(

i
N )− f( i−1

N ))+, for all ` ≥ 2;

k−1
N at rate (2cN + dN )νN (0)k + N

∑k
i=1(f(

i
N )− f( i−1

N ))−.
(3.8)

Let M1,N (dr, dz, du), M2,N (dr, dz, du) and QN (dr, dz, du) be three independent Poisson
random measures on (0,∞)×Z+×(0,∞), with respective mean measures 2cNdrπ(dz)du,
d−,Ndrπ

−,N (dz)du and d+,Ndrπ+,N (dz)du.
Let us defineMN =M1,N +M2,N +QN . It is clear from (3.7) thatMN is a Poisson

random measure on (0,∞)×Z+× (0,∞), with mean measure (2cN +dN )dsνN (dz)du. Let
P1 and P2 be two standard Poisson processes, such thatMN , P1 and P2 are independent.
From (3.8), ZN,x can be expressed as

ZN,xt =
[Nx]

N
+

1

N

∫ t

0

∫
Z+

∫ NZN,x

r−

0

(z − 1)MN (dr, dz, du)

+
1

N
P1

(∫ t

0

{
N

NZN,x
r∑

i=1

(
f(

i

N
)− f(

i− 1

N
)
)+}

dr

)

− 1

N
P2

(∫ t

0

{
N

NZN,x
r∑

i=1

(
f(

i

N
)− f(

i− 1

N
)
)−}

dr

)
. (3.9)

We introduce the notations

M̄1,N (dr, dz, du) =M1,N (dr, dz, du)− 2cNdrπ(dz)du,

M̄2,N (dr, dz, du) =M2,N (dr, dz, du)− d−,Ndrπ
−,N (dz)du,

M1(t) = P1(t)− t, M2(t) = P2(t)− t.

For the rest of this subsection, we define the martingale

MN,x
t =

1

N

∫ t

0

∫
Z+

∫ NZN,x

r−

0

(z − 1)M̄1,N (dr, dz, du)

+
1

N

∫ t

0

∫
Z+

∫ NZN,x

r−

0

(z − 1)M̄2,N (dr, dz, du)

+
1

N
M1

(∫ t

0

{
N

NZN,x
r∑

i=1

(
f(

i

N
)− f(

i− 1

N
)
)+}

dr

)

− 1

N
M2

(∫ t

0

{
N

NZN,x
r∑

i=1

(
f(

i

N
)− f(

i− 1

N
)
)−}

dr

)
and

QN,x
t =

1

N

∫ t

0

∫
Z+

∫ NZN,x

r−

0

(z − 1)QN (dr, dz, du). (3.10)
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Since
∫
Z+

(z − 1)π(dz) =
∫
Z+

(z − 1)π−,N (dz) = 0, (3.9) can be rewritten as

ZN,xt =
[Nx]

N
+

∫ t

0

f(ZN,xr )dr +MN,x
t +QN,x

t . (3.11)

Since MN,x is purely discontinuous, its quadratic variation
[
MN,x

]
is the sum of the

squares of its jumps:[
MN,x

]
t
=

1

N2

[∫ t

0

∫
Z+

∫ ∞

0

(z − 1)21{u≤NZN,x

r−
}M

1,N (dr, dz, du)

+

∫ t

0

∫
Z+

∫ ∞

0

(z − 1)21{u≤NZN,x

r−
}M

2,N (dr, dz, du)

+ P1

(∫ t

0

{
N

NZN,x
r∑

i=1

(
f(

i

N
)− f(

i− 1

N
)
)+}

dr

)

+ P2

(∫ t

0

{
N

NZN,x
r∑

i=1

(
f(

i

N
)−f( i− 1

N
)
)−}

dr

)]
.

From this, (3.2), (3.4) and the identities
∫
Z+

z2π−,N (dz) = h′′1,N (1) + h′1,N (1) and∫
Z+

z2π(dz) = g′′(1) + g′(1), we deduce that the predictable quadratic variation 〈MN,x〉
of MN,x is given by

〈MN,x〉t =
∫ t

0

{(
2c+

∫ 1

0

z2µ(dz)

)
ZN,xr +

1

N
‖f‖N,0,ZN,x

r

}
dr, (3.12)

where for any v = k
N , v

′ = k′

N with k ≤ k′, k, k′ ∈ Z+, ‖f‖N,v,v′ =
∑k′

i=k+1 |f(
i
N )− f( i−1

N )|,
hence

‖f‖N,v,v′ =
k′∑

i=k+1

{
2

(
f(

i

N
)− f(

i− 1

N
)

)+

−
(
f(

i

N
)− f(

i− 1

N
)

)}
.

It now follows from Assumption (H2) that

‖f‖N,v,v′ ≤ 2β(v′ − v) + f(v)− f(v′). (3.13)

4 Convergence of ZN,x

The aim of this section is to prove the convergence in law as N → ∞ of the two
parameter process {ZN,xt , t ≥ 0, x ≥ 0} defined in subsection 3.2 towards the process
{Zxt , t ≥ 0, x ≥ 0} solution of the SDE (1.1). We note that the processes ZN,xt and Zxt
are Markov processes indexed by x, with values in the space of càdlàg functions of t :
D([0,∞);R+).

We now state our main result (here and later in this paper, ⇒ means convergence in
law).

Theorem 4.1. Suppose that Assumptions (H1), (H2) and (H3) are satisfied. Then for
all n ≥ 1, 0 < x1 < x2 < · · · < xn,

(ZN,x1
· , ZN,x2

· , · · ·, ZN,xn
· ) ⇒ (Zx1

· , Zx2
· , · · ·, Zxn

· )

in D([0,∞);Rn), as N → ∞, where {Zxt , t ≥ 0, x ≥ 0} is the unique solution of the SDE
(1.1).

In the direction x, we could only obtain the convergence in the sense of finite
dimensional distributions. Our result is sufficient to declare that the coupling of the
various initial conditions described by (1.1) is the natural one. For the proof of this
theorem, we first consider ZN,x for a fixed x > 0.
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4.1 Tightness of ZN,x

The main difficulty for proving tightness of the sequence ZN,x comes from the fact
that, as a result of our very weak assumption on the Lévy measure µ, the limiting process
Zx does not have a first moment (since the large jumps may not be integrable). Hence
we cannot hope for a uniform estimate of the first moment of ZN,x like in section 7.1 of
[12], and another method is necessary for establishing tightness. We have chosen to use
comparison of ZN,x (resp. Zx) with a branching process Y N,x (resp. with a CSBP Y x).

To prove the tightness criterion of ZN,x , we will proceed in several steps. Let Y N,x

be the Markov process which starts from [Nx]
N at time t = 0, and evolves as follows

Y N,x jumps from
k

N
to

{
k+`−1
N at rate {(2cN + dN )νN (`) + β1{`=2}}k, for all ` ≥ 2,

k−1
N at rate (2cN + dN )νN (0)k.

(4.1)
Y N,x is obtained from ZN,x by replacing f(z) by βz. Let XN,x = NY N,x and µN be the
finite measure on Z+:

µN (0) = (2cN + dN )νN (0), µN (1) = 0 and µN (`) = (2cN + dN )νN (`) + β1{`=2},

for every ` ≥ 2. Hence the dynamics of the continuous time Markov process XN,x is
entirely characterized by the measure µN . We have the following Proposition, which can
be found in Athreya-Ney [2] (4) page 106 and in Pardoux [12] Prop. 3 page 10.

Proposition 4.2. The generating function of the process XN,x is given by

E1

(
sX

N,x
t

)
= wNt (s), s ∈ [0, 1],

with

wNt (s) = s+

∫ t

0

ΦN (wNr (s))dr,

and the function ΦN is defined by

ΦN (s) =

∞∑
`=0

(s` − s)µN (`)

= (2cN + dN )(LN (s)− s) + β(s2 − s), s ∈ [0, 1],

where LN is the generating function given by (3.6).

The continuous time process {Y N,xt , t > 0} is a Markov process with values in the set
EN = {k/N, k > 1}. For λ > 0

E
(
e−λY

N,x
t

)
= E[Nx]

(
e−λX

N,x
t /N

)
= exp

(
[Nx] logwNt

(
e−λ/N

))
,

with wNt from Proposition 4.2. This suggests to define

uNt (λ) = N
(
1− wNt

(
e−λ/N

))
. (4.2)

The function uNt solves the equation

uNt (λ) +

∫ t

0

ψN (uNr (λ))dr = N
(
1− e−λ/N

)
, (4.3)

where ψN (u) = NΦN (1 − u
N ). Combining the definition of ΦN in Proposition 4.2 with

(3.3), (3.6) and (1.3), we get
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ψN (u) = ψ(u) + β
u2

N
, 0 ≤ u ≤ N. (4.4)

It is clear that Y x = (Y xt , t > 0) defined by (1.2), is a Markov process taking values
in [0,∞], where 0 and ∞ are two absorbing states, and satisfying the branching property.
Its Laplace transform satisfies

E [exp(−λY xt )] = exp {−xut(λ)} , for λ > 0,

for some non negative function ut which is the unique nonnegative solution of (see
Silverstein [13])

ut(λ) = λ−
∫ t

0

ψ(ur(λ))dr. (4.5)

We fix λ > 0. Since ψ and ψN are locally Lipschitz, −ψN (u) ≤ −ψ(u) and uN0 (λ) ≤
u0(λ), it follows from a well-known comparison theorem for one-dimensional ODEs that

uNt (λ) ≤ ut(λ), ∀ t ≥ 0.

We also notice from (H3) that Y xt does not explode and the facts that t→ (ut(λ), u
N
t (λ))

is continuous and N → uNt (λ) is monotone increasing imply that there exist ū(λ), uN0(λ)

such that for 0 ≤ t ≤ T , N ≥ N0,

0 < uN0(λ) ≤ uNt (λ) ≤ ut(λ) ≤ ū(λ) < +∞. (4.6)

We have

Proposition 4.3. Let (t, λ) → ut(λ) be the unique locally bounded positive solution of
(4.5). For every λ > 0, as N → ∞, uNt (λ) → ut(λ) locally uniformly in t.

Proof. We take the difference between (4.3) and (4.5), and use (4.4) to deduce that for
0 ≤ t ≤ T ,∣∣ut(λ)− uNt (λ)

∣∣ 6 Kλ

∫ t

0

∣∣us(λ)− uNs (λ)
∣∣ds+ kN (λ) +

β

N

∫ t

0

(
uNs (λ)

)2
ds,

where kN (λ) = λ−N
(
1− e−λ/N

)
→ 0, as N → ∞, and Kλ is the Lipschitz constant for ψ

on [uN0(λ), ū(λ)]. From (4.6), the last term tends to 0, as N goes to infinity. We conclude
thanks to Gronwall’s lemma.

Now some simple algebra yields (recall that Y x is the CSBP given by (1.2))

Proposition 4.4. For all T > 0, x ≥ 0, for all λ ≥ 0, E
(
e−λY

N,x
T

)
→ E

(
e−λY

x
T

)
, hence

Y N,xT ⇒ Y xT , as N → ∞.

We next establish

Proposition 4.5. For all T, ε > 0, there exists kε > 0 such that

lim sup
N→∞

P

(
sup

0≤t≤T
Y N,xt > kε

)
≤ ε.

For the proof of this proposition we need an intermediate result. We define the
process Ȳ N,x in the same way as Y N,x with the measure µ replaced by µ̄ = µ1[0,1].Thus,
from (3.8), (3.11), (3.12) and (4.1), Ȳ N,x takes the form

Ȳ N,xt =
[Nx]

N
+ β

∫ t

0

Ȳ N,xr dr + M̄N,x
t , (4.7)

where ¯MN,x is a purely discontinuous martingale, whose predictable quadratic variation
reads
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Approximation of a generalized CSBP with interaction

〈M̄N,x〉t =
∫ t

0

{(
2c+

∫ 1

0

z2µ(dz) + β

)
Ȳ N,xr

}
dr. (4.8)

We have

Lemma 4.6. For all T > 0, x ≥ 0, there exists a constant C0 > 0 such that for all N ≥ 1,

sup
0≤t≤T

E
(
Ȳ N,xt

)
≤ C0.

Proof. Taking the expectation on both side of equation (4.7), we obtain

E
(
Ȳ N,xt

)
=

[Nx]

N
+ βE

(∫ t

0

Ȳ N,xr dr

)
.

It remains to use Gronwall’s Lemma to conclude with C0 = xeβT .

We next establish

Proposition 4.7. For all T > 0, x ≥ 0, there exists a constant C1 > 0 such that for all
N ≥ 1,

E

(
sup

0≤t≤T
Ȳ N,xt

)
≤ C1.

Proof. From (4.7),

sup
0≤t≤T

Ȳ N,xt ≤ [Nx]

N
+ β

∫ T

0

Ȳ N,xr dr + sup
0≤t≤T

∣∣∣M̄N,x
t

∣∣∣ .
From Cauchy-Schwartz, Doob’s inequality for the L2 norm, |y| ≤ 1 + y2 and (4.8),

E

(
sup

0≤t≤T
Ȳ N,xt

)
≤ [Nx]

N
+ 1 +

[
4

(
2c+

∫ 1

0

z2µ(dz) + β

)
+ β

]
E

∫ T

0

sup
0≤r′≤r

Ȳ N,xr′ dr .

It remains to use Gronwall’s Lemma to conclude.

Proof of Proposition 4.5. Combining Proposition 4.4 and the Portmanteau theorem, we
have

∀Mε > 0, lim sup
N→∞

P
(
Y N,xT ≥Mε

)
≤ P (Y xT ≥Mε) . (4.9)

Since from (H3) Y xT <∞ a.s, we can chooseMε such that

P (Y xT ≥Mε) ≤
ε

2
. (4.10)

However, we have

P

(
sup

0≤t≤T
Y N,xt > kε

)
≤ P

(
sup

0≤t≤T
Y N,xt > kε, Y

N,x
T < Mε

)
+ P

(
Y N,xT ≥Mε

)
≤ P

(
sup

0≤t≤T
Y N,xt > kε

∣∣∣ Y N,xT < Mε

)
+ P

(
Y N,xT ≥Mε

)
(4.11)

Now, switching from Y N,x to Ȳ N,x consists in removing some of the positive jumps of
Y N,x. So, the time reversed process K̄N,x

t = Ȳ N,xT−t behaves as K
N,x
t = Y N,xT−t , with some

negative jumps deleted. Consequently

P

(
sup

0≤t≤T
Y N,xt > kε

∣∣∣ Y N,xT < Mε

)
≤ P

(
sup

0≤t≤T
Ȳ N,xt > kε

∣∣∣ Ȳ N,xT < Mε

)

≤
E
(
sup0≤t≤T Ȳ

N,x
t

)
kεP

(
Ȳ N,xT < Mε

) . (4.12)
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Approximation of a generalized CSBP with interaction

The arguments leading to Proposition 4.4 yield that Ȳ N,xT ⇒ Ȳ xT , where Ȳ
x is the same

as Y x, but with µ replaced by µ̄. Using again the Portmanteau theorem and (4.10), we
obtain

lim inf
N→∞

P
(
Ȳ N,xT < Mε

)
≥ P

(
Ȳ xT < Mε

)
≥ P (Y xT < Mε)

≥ 1− ε

2
.

Finally, combining this inequality with (4.11), (4.12) and Proposition 4.7, we deduce that

lim sup
N→∞

P

(
sup

0≤t≤T
Y N,xt > kε

)
≤ C1

kε(1− ε
2 )

+
ε

2
.

The result follows by choosing kε = 2C1/ε(1− ε/2).

Thanks to these results, we are in a position to establish the tightness of ZN,x.
Proposition 4.5 combined with the fact that sup0≤t≤T Z

N,x
t ≤ sup0≤t≤T Y

N,x
t stochastically

[see the definitions (3.8), (4.1) and Assumption (H2)] leads to

Corollary 4.8. For all T, ε > 0, there exists kε > 0 such that

lim sup
N→∞

P

(
sup

0≤t≤T
ZN,xt > kε

)
≤ ε

2
.

We want to check tightness of the sequence {ZN,x, N ≥ 1} using Aldous’ criterion.
Let {τN , N ≥ 1} be an arbitrary sequence of [0, T ]-valued stopping times. We deduce
from the above Corollary

Lemma 4.9. For any T > 0, and η, ε > 0, there exists δ > 0 such that

sup
N≥1

sup
0≤θ≤δ

P

(∣∣∣∣∣
∫ (τN+θ)∧T

τN

f(ZN,xr )dr

∣∣∣∣∣ ≥ η

)
≤ ε

2
.

Proof. Let J : R+ → R+ be the continuous increasing function defined by J(z) =

sup0≤r≤z |f(r)|.
Provided 0 ≤ θ ≤ δ, we have∣∣∣∣∣

∫ (τN+θ)∧T

τN

f(ZN,xr )dr

∣∣∣∣∣ ≤ θ sup
0≤t≤T

∣∣∣f(ZN,xt )
∣∣∣ , hence

sup
0≤θ≤δ

P

(∣∣∣∣∣
∫ (τN+θ)∧T

τN

f(ZN,xr )dr

∣∣∣∣∣ ≥ η

)
≤ P

(
sup

0≤t≤T
ZN,xt ≥ J−1

(η
δ

))
.

The result follows by using Corollary 4.8 and choosing δ < η/J(kε).

We need to check tightness of the sequence of processes QN,x. We have

Lemma 4.10. For any T > 0, and η, ε > 0, there exists θ0 > 0 such that

sup
N≥1

sup
0≤θ≤θ0

P
(∣∣∣QN,x

τN+θ −QN,x
τN

∣∣∣ ≥ η
)
≤ ε.

Proof. From (3.10), we notice that∣∣∣QN,x
τN+θ −QN,x

τN

∣∣∣ ≤ 1

N

∫ τN+θ

τN

∫
Z+

∫ NZN,x

r−

0

(z + 1)QN (dr, dz, du),
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Approximation of a generalized CSBP with interaction

recall QN (dr, dz, du) is a Poisson random measures on (0,∞)×Z+ × (0,∞), with mean
measure d+,Ndrπ+,N (dz)du, where d+,N and π+,N were defined in subsection 3.1. It is
easy to check that Nd+,N ≤ e−1µ[1,+∞). We have

P
(∣∣∣QN,x

τN+θ −QN,x
τN

∣∣∣ ≥ η
)

≤ P
(

sup
0≤t≤T

ZN,xt > kε

)
+ P

(∣∣∣QN,x
τN+θ −QN,x

τN

∣∣∣ ≥ η, sup
0≤t≤T

ZN,xt ≤ kε

)
≤ P

(
sup

0≤t≤T
ZN,xt > kε

)
+ P

(
QN ([τN , τN + θ]×Z+ × [0, Nkε]) > 0

)
≤ ε

2
+ 1− exp(−e−1µ[1,+∞)θkε).

The result follows by choosing θ0 ≤ e[log(1/(1− ε
2 ))]/[kεµ[1,+∞)].

From Lemma 4.9 and Lemma 4.10, we deduce that the second and fourth terms in
the right-hand side of (3.11) satisfy Aldous’ criterion in [1]. Corollary 4.8, (3.12) and
(3.13) imply that 〈MN,x〉 is both tight and continuous, hence C-tight in the terminology
of [10], and from Theorem VI 4.13 in [10], MN,x is tight. We have proved

Proposition 4.11. For any fixed x ≥ 0, the sequence of processes {ZN,x, N ≥ 1} is
tight in D([0,∞);R+).

4.2 Convergence of ZN,x for fixed x

For the rest of this section we set

K+(NZ
N,x
s ) =

NZN,x
s∑

i=1

(
f(

i

N
)−f( i− 1

N
)
)+

and K−(NZ
N,x
s ) =

NZN,x
s∑

i=1

(
f(

i

N
)−f( i− 1

N
)
)−
.

(4.13)
The argument leading to (3.13) implies

Lemma 4.12. For any s > 0, we have

K+(NZ
N,x
s ) +K−(NZ

N,x
s ) ≤ 2βZN,xs − f(ZN,xs ).

It follows from (1.1) and Itô’s formula that, for λ ≥ 0, the following is a martingale

e−λZ
x
t − e−λZ

x
0 + λ

∫ t

0

e−λZ
x
r f(Zxr )dr − cλ2

∫ t

0

Zxr e
−λZx

r dr

−
∫ t

0

Zxr e
−λZx

r

{∫ ∞

0

(e−λz − 1 + λz1{z≤1})µ(dz)

}
dr. (4.14)

Thanks to these results, we can now establish the convergence of ZN,x.

Proposition 4.13. For any fixed x ≥ 0, ZN,x ⇒ Zx in D([0,∞);R+) as N → ∞, where
Zx is the unique solution of the SDE (1.1).

Proof. By Proposition 4.11, along a subsequence (denoted as the whole sequence)
{ZN,xt , t ≥ 0} converges weakly to a process {Zxt , t ≥ 0} for the Skorohod topology of
D([0,∞);R+). Let for λ ≥ 0, F (u) = e−λu, from (3.9), (4.13) and Itô’s formula, we deduce
that the following is a martingale

e−λZ
N,x
t − e−λZ

N,x
0 −

∫ t

0

ZN,xr e−λZ
N,x
r

{
NdN

∫
Z+

(
e
−λ

(
z−1
N

)
− 1

)
πN (dz)

}
dr

−
∫ t

0

ZN,xr e−λZ
N,x
r

{
2cN2

∫
Z+

(
e
−λ

(
z−1
N

)
− 1

)
π(dz)

}
dr − Γx(t,N),

(4.15)
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where we have used the decomposition (2cN + dN )νN = dNπN + 2cNπ, and

Γx(t,N) = N

∫ t

0

K+(NZ
N,x
r )e−λZ

N,x
r (e−

λ
N − 1)dr +N

∫ t

0

K−(NZ
N,x
r )e−λZ

N,x
r (e

λ
N − 1)dr.

Using Taylor’s formula and the fact that K+(NZ
N,x
s )−K−(NZ

N,x
s ) = f(ZN,xs ), we deduce

Γx(t,N) = −λ
∫ t

0

e−λZ
N,x
r f(ZN,xr )dr + 0

(
1

N

)∫ t

0

e−λZ
N,x
r [K+(NZ

N,x
r ) +K−(NZ

N,x
r )]dr.

However, we have that

NdN

∫
Z+

(
e
−λ

(
z−1
N

)
− 1

)
πN (dz) = NdNe

λ
N

∫
Z+

(
e−

λz
N − e−

λ
N

)
πN (dz)

= NdNe
λ
N

(
hN

(
e−

λ
N

)
− e−

λ
N

)
.

From an easy adaptation of the argument of the proof of Proposition 3.40 of Li [11], we
have that

lim
N→∞

NdN

[
hN

(
1− λ

N

)
−
(
1− λ

N

)]
= lim
N→∞

NdN

[
hN

(
e−

λ
N

)
− e−

λ
N

]
.

Combining this with Remark 3.1, we deduce that

lim
N→∞

NdN

∫
Z+

(
e
−λ

(
z−1
N

)
− 1

)
πN (dz) = ψ1(λ)+ψ2(λ) =

∫ ∞

0

(e−λz−1+λz1{z≤1})µ(dz).

However, we deduce from Taylor’s formula that

2cN2

∫
Z+

(
e
−λ

(
z−1
N

)
− 1

)
π(dz) = cλ2 + o

(
1

N

)
.

Now, by combining the above results with Lemma 4.12 and Proposition 4.11, we obtain
(4.14) by letting N → ∞ in (4.15). Let g ∈ C2

K(R+) (the space of C2 functions from
R+ into R with compact support) and h(x) = g(− log(x)). h ∈ C2([0, 1]). Let hn(x) =∑n
k=0

(
n

k

)
h(k/n)xk(1 − x)n−k be its Bernstein polynomial approximation, which con-

verges uniformly to h(x) on [0, 1]. Consequently gn(x) =
∑n
k=0

(
n

k

)
g(− log(k/n))e−kx(1−

e−x)n−k is a linear combination of exponential functions with negative exponents, which
converges to g(x) uniformly on R+ as n → ∞. A lengthy but elementary computation
shows that g′n(x) → g′(x) and g′′n(x) → g′′(x) pointwise. Consequently if L denotes the
generator of the Markov process Zx, we have that Lgn(x) → Lg(x). This being true for
any g ∈ C2

K(R+), it is easy to conclude that Zxt solves the martingale problem associated
to (1.1). The result follows.

4.3 Proof of Theorem 4.1

We shall prove the statement in the case n = 2 only. The general proof is very
similar. Recall (3.8). We now describe the law of the pair (ZN,x, ZN,y), for any 0 < x < y.
(ZN,x, ZN,y) jumps

from
( i
N
,
j

N

)
to


(
i+`−1
N , jN

)
at rate (2cN + dN )νN (`)i+N

∑i
k=1(f(

k
N )− f(k−1

N ))+(
i−1
N , jN

)
at rate (2cN + dN )νN (0)i+N

∑i
k=1(f(

k
N )− f(k−1

N ))−(
i
N ,

j+`−1
N

)
at rate (2cN + dN )νN (`)j +N

∑j
k=1(f(

i+k
N )− f( i+k−1

N ))+(
i
N ,

j−1
N

)
at rate (2cN + dN )νN (0)j +N

∑j
k=1(f(

i+k
N )− f( i+k−1

N ))−.
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Recall (3.5) and (3.7). The process V N,x,y = ZN,y − ZN,x can be expressed as follows

V N,x,yt =
[Ny]− [Nx]

N
+

1

N

∫ t

0

∫
Z+

∫ NV N,x,y

r−

0

(z − 1)M
′,1,N (dr, dz, du)

+
1

N

∫ t

0

∫
Z+

∫ NV N,x,y

r−

0

(z − 1)M
′,2,N (dr, dz, du)

+
1

N

∫ t

0

∫
Z+

∫ NV N,x,y

r−

0

(z − 1)Q
′,N (dr, dz, du)

+
1

N
P ′
1

(
N

∫ t

0

NV N,x,y
r∑
k=1

(
f(ZN,xr +

k

N
)− f(ZN,xr +

k − 1

N
)
)+
dr

)

− 1

N
P ′
2

(
N

∫ t

0

NV N,x,y
r∑
k=1

(
f(ZN,xr +

k

N
)− f(ZN,xr +

k − 1

N
)
)−
dr

)
, (4.16)

where M
′,1,N , M

′,2,N and Q
′,N are Poisson random measures on (0,∞) × Z+ × (0,∞),

with respective intensities 2cNdrπ(dz)du, d−,Ndrπ−,N (dz)du and d+,Ndrπ+,N (dz)du and
P ′
1 and P

′
2 are standard Poisson processes. Note thatM

′,1,N , M
′,2,N , Q

′,N , P ′
1 and P

′
2 are

mutually independent and are globally independent of {ZN,x
′

· , x′ ≤ x}. As previously,
note also thatM ′,1,N +M

′,2,N (d)
= M1,N +M2,N and Q′,N (d)

= QN . Consequently we have
the decomposition similar to (3.11)

V N,x,yt =
[Ny]− [Nx]

N
+

∫ t

0

[f(ZN,xr + V N,x,yr )− f(ZN,xr )]dr +MN,x,y
t +QN,x,y

t , (4.17)

where MN,x,y is a local martingale whose predictable quadratic variation 〈MN,x,y〉 is
given by

〈MN,x,y〉t =
∫ t

0

{(
2c+

∫ 1

0

z2µ(dz)

)
V N,x,yr +

1

N
‖f‖N,ZN,x

r ,V N,x,y
r +ZN,x

r

}
dr

and where QN,x,y is given

QN,x,y
t =

1

N

∫ t

0

∫
Z+

∫ NV N,x,y

r−

0

(z − 1)Q′,N (dr, dz, du).

Now from an easy adaptation of the arguments of the above results, we deduce the

Proposition 4.14. For any fixed 0 ≤ x < y, V N,x,y ⇒ V x,y as N → ∞ in D([0,∞);R+),
where V x,y is the unique solution of the following SDE

V x,yt = y − x+

∫ t

0

[f(Zxr + V x,ys )− f(Zxr )]dr +
√
2c

∫ t

0

∫ V x,y
r

0

W ′(dr, du)

+

∫ t

0

∫ 1

0

∫ V x,y

r−

0

zM
′
(dr, dz, du) +

∫ t

0

∫ ∞

1

∫ V x,y

r−

0

zM ′(dr, dz, du) (4.18)

We now conclude the proof of Theorem 4.1. Fix 0 < x < y. Along a subsequence
(denoted as the whole sequence), (ZN,x, V N,x,y) ⇒ (Zx, V x,y) in D([0,∞);R2

+). Consider
the two SDEs (1.1) and (4.18), with (W ′,M ′) and (W,M) independent. Then for all
λ, µ > 0, with ψ as in (1.3) but with β = 0, the following is a martingale

e−λZ
x
t −µV

x,y
t − e−λx−µ(y−x)+

∫ t

0

[λf(Zxr ) + µ{f(Zxr + V x,yr )− f(Zxr )}]e−λZ
x
r −µV

x,y
r dr

−
∫ t

0

{ψ(λ)Zxr + ψ(µ)V x,yr }e−λZ
x
r −µV

x,y
r dr.
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An extension of the proof of Proposition 4.13 shows that indeed the limit (Zxt , V
x,y
t ) of

the sequence (ZN,x, V N,x,y) solves that same martingale problem. From the well–known
properties of white noise and Poisson random measures, (4.18) can be rewritten as (with
the same (W,M) as in (1.1)).

V x,yt = y − x+

∫ t

0

[f(Zxr + V x,ys )− f(Zxr )]dr +
√
2c

∫ t

0

∫ Zx
r +V

x,y
r

Zx
r

W (dr, du)

+

∫ t

0

∫ 1

0

∫ Zx
r−+V x,y

r−

Zx
r−

zM(dr, dz, du) +

∫ t

0

∫ ∞

1

∫ Zx
r−+V x,y

r−

Zx
r−

zM(dr, dz, du)

The result follows from the above facts and ZN,yt = ZN,xt + V N,x,yt , Zyt = Zxt + V x,yt .
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