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1. Introduction

There is much interest in the regularizing effects of noise on the
longtime dynamics. One often speaks informally of adding a balanc-
ing noise and dissipation to a dynamical system with many invariant
measures and then studying the zero noise/dissipation limit as a way
of selecting the “physically relevant” invariant measure.

There are a number of settings where such a procedure is fairly well
understood. In the case of a Hamiltonian or gradient system with suf-
ficiently non-degenerate noise, Wentzell-Freidlin theory gives a rather
complete description of the effective limiting dynamics [FW12] in terms
of a limiting “slow” system derived through a quasi-potential and de-
terministic averaging. In the gradient case the stochastic invariant
measures concentrate on the attracting structures of the dynamics. In
the Hamiltonian setting, Wentzell-Freidlin theory considers the slow
dynamics of the conserved quantity (the Hamiltonian) when the sys-
tem is subject to noise. It is the zero noise limit of these dynamics
which decides which mixture of the Hamiltonian invariant measures is
selected in the zero noise limit.

In the case of system with an underlying hyperbolic structure, such
as Axiom A, it known that the zero noise limit of random perturbations
selects a conical SRB/”physical measure”[Sin68, Sin72, Rue82, Kif74].
This relies fundamentally on the expansion/contraction properties of
the underlying deterministic dynamical system. See [You02] for a nice
discussion of these issues. The Axiom A assumption ensures that the
deterministic dynamics has a rich attractor which attracts a set of
positive Lebesgue measure.

One area where the idea of the relevant invariant measure being se-
lected through a zero noise limits is prevalent is in the study of stochas-
tically forced and damped PDEs. Two important examples are the
stochastic Navier-Stokes equations and the stochastic KdV equation.
Both of these equations have been studies in a sequence of works by
Kuskin and his co-authors[Kuk04, Kuk07a, Kuk07b, KP08, Kuk10b].
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In all these works, tightness is established by balancing the noise and
dissipation as the zero noise limit is taken. Any limiting invariant
measure is shown to satisfy appropriate limiting equation. Typically
a number of properties are inherited from the pre-limiting invariant
measure.

The hope is that the study of these limiting measures will prove in-
sight into important equations for the original, unperturbed equations.
In the case of the Navier-Stokes equations one would be interested
in understanding questions such as the existence of energy cascades
and turbulence. Setting aside the question of whether the regularity
of the solutions in [Kuk04] is appropriate for turbulence, it is inter-
esting to understand if the noise selects a unique limit and what are
the obstructions to such uniqueness as they give information about
the structure of the deterministic phase space. In all of the works
[Kuk04, Kuk07a, Kuk07b, KP08, Kuk10b] the question of uniqueness
of the limit is not addressed and seems out of reach.

The equation for the evolution a 2D incompressible fluid’s vorticity
q(x, t) (a scalar) on the 2-torus subject to stochastic agitation can be
written as

q̇(x, t) = ν∆q(x, t) +B(qt, qt) +
√
ν
∑
k∈Z2

σke
ik·xẆ

(k)
t

where ν > 0 is the viscosity, ∆ is the Laplacian, σk are constants

chosen to enforce the reality of q, {W (k)
t : k ∈ Z2} are a collection of

standard one-dimensional Wiener processes and B(q, q) is a quadratic
non-linearity such that 〈B(q, q), q〉L2 = 0. The scaling of ν is chosen
to keep the spatial L2 norm of order one in the ν → 0 limit and is the
only scaling on a fixed torus which will result in a non-trivial sequence
of tight processes. On a fixed interval, the formal ν = 0 limit of this
is equation is the Euler equation which conserves its Hamiltonian (the
energy or L2 norm) but also has an infinite collection of other conserved
quantities since the vorticity is simply transported about space. This
means that a priori there will be many conserved quantities whose slow
evolution must by analysed.

Inspired by models in [Lor63, MTVE02] and the Euler equation itself,
we construct a model problem in the form of a ODE in R3 such that the
non-linearity is quadratic and conserves the norm of the solution as in
analogy with the Euler non-linearity. We will also see that our model
system in fact possesses two conserved quantities (the most it could
have with out becoming trivial). In many ways our analysis follows
a the familiar pattern of [FW12] in that we change time to consider
the evolution of the conserved quantities from the unforced system on
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a long time interval which grows as the noise is taken to zero. This
produces a limiting system which captures the effect of the noise. Using
this dynamics were are able to show that a unique limiting measure is
selected. However multiple conserved quantities are not usually treated
in Wentzell-Freidlin theory and the complications of having more then
one are non-trivial in our case. They lead to a surprising dependence
of the nonlinearity on the structure of the noise.

In many examples, it is tempting to cite the fact that pre-limiting in-
variant measures are non degenerate in that they charge all open sets to
suggest that any limiting measure also does so. One interesting feature
of our study is that the qualitative structure of the limiting measure
varies drastically depending on the structure of the noise despite the
fact that in all cases the pre-limit measure will always charge all open
balls. If isotropic noise is used we will see that the limiting measure
is supported only on the z-axis and has a density with respect to its
one dimensional Lebesgue measure. For other choices it will be con-
centrated on only two points, while with still another choice of forcing
structure it will have a density with respect to Lebesgue measure on
R3 but have support contained in {(x, y, z) : |x| ≤ |y|} and for still a
difference choice in {(x, y, z) : |x| ≥ |y|}.

Thus by choosing noise with different structures, the support of the
limiting invariant measure can be either one-dimensional, two dimen-
sional, or three-dimensional. We will see that the this is not completely
surprising once we understand the symmetries of the problems and
which noises break which symmetries. However, even in light of this it
is still quite surprising that in the case when the measure charges an
open subset of R3 that it does not charge all of R3 as does all of the
pre-limiting measures. The fact that “walls” develop in phase space
which segment the phase into chambers, some which trap the dynam-
ics and others which eventually expel it. In this example, the walls
of the chambers are made up of the heteroclinic connections. Since
the period of the orbits diverge logarithmically as they approach the
heteroclinic connections, this might not be completely surprising that
they play a special role.

2. Model System

As an excercise in studying the zero noise/dissipation limit of conser-
vative systems, we have chosen study the following three dimensional
system:

ξ̇t = B(ξt, ξt)(2.1)
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with ξ0 = (X0, Y0, Z0) ∈ R3 where if ξ = (x, y, z) ∈ R3 and ξ̂ = (x̂, ŷ, ẑ)
then B is symmetric bi-linear form defined by

B(ξ, ξ̂)
def
=

1

2

 yẑ + ŷz
xẑ + x̂z
−2xŷ − 2x̂y

 .(2.2)

We will write ϕt for the flow map induced by (2.1), i.e. ξt = ϕt(ξ0).
We will constantly write (Xt, Yt, Zt) for ξt when we wish to speak of
the components of ξt.

Since

B(ξ, ξ) · ξ = 0(2.3)

we see that |ξt|2 = X2
t +Y 2

t +Z2
t is constant along trajectories of (2.1).

Similarly one sees that X2
t − Y 2

t is also conserved by the dynamics of
(2.1). Since, any linear combination is also conserved, we are free to
consider 2X2

t +Z2
t and 2Y 2

t +Z2
t which are more symmetric. Since we

will typically use the second pair, we introduce the

Φ: (x, y, z) 7→ (u, v) = (2x2 + z2, 2y2 + z2) .(2.4)

A moments reflection shows that the existence of these two conserved
quantities implies that all of the orbits of (2.1) are bounded and most
are closed orbits, topologically equivalent to a circle. All orbits live
on the surface of a sphere whose radius is dictated by the values of
the conserved quantities. More precisely, given the initial condition
ξ0 ∈ R3 the orbit {ξt : t ≥ 0} is contained in the set

Γ =
{
ξ : Φ(ξ) = Φ(ξ0)

}
(2.5)

To any initial point ξ0 = (X0, Y0, Z0) contianed in a closed orbits, we
can associate a measure defined by the following limit

µξ0(dx× dy × dz)
def
= lim

t→∞

1

t

∫ t

0

δξs(dx× dy × dz)ds .

Any such defined measure is an invariant measure for the dynamics
given by (2.1). Hence we see that (2.1) has infinitely many invariant
measures. It is reasonable to expect the addition of sufficient driving
noise and balancing dissipation, wil result in a system with a unique in-
variant measure. Our goal is to study the limit as the noise/dissipation
are scaled to zero. We are specifically interested in if this procedure
selects a unique convex combination of the measures for the underlying
deterministic system (2.1).
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More concretely for ε > 0, we will explore the following stochastic
differential system

ξ̇εt = B(ξεt , ξ
ε
t )− εξεt +

√
εσẆt,(2.6)

with ξε0 = (X0, Y0, Z0) ∈ R3 and where Wt = (W
(1)
t ,W

(2)
t ,W

(3)
t ),

{W (i)
t i = 1, 2, 3} is a collection of i.i.d. standard Brownian motions, and

σ ∈ R3 ×R3 with (σ)ij = δi=jσi. As above, we will write (Xε
t , Y

ε
t , Z

ε
t )

when we wish to discuss the coordinates of ξεt .
For each ε > 0, the three dimensional hypoelliptic diffusion process is

positive recurrent and ergodic, its unique invariant probability measure
µε is absolutely continuous with respect to Lebesgue measure, with
density which charges all open sets.

Our aim is to study the limit of µε, as ε→ 0. We first note that as
ε → 0, the process (Xε

t , Y
ε
t , Z

ε
t ) converges to the solution of (2.1) on

any finite time interval.
From (2.3) we see that |ξ|2 = X2

t + Y 2
t + Z2

t is constant along tra-
jectories of (2.1). Similarly one sees that X2

t − Y 2
t is also conserved

by the dynamics of (2.1). Since, any linear combination is also con-
served, we are free to consider 2X2

t +Z2
t and 2Y 2

t +Z2
t which are more

symmetric. Since we will typically use the second pair, we introduce
the Φ: (x, y, z) 7→ (u, v) defined by u = 2x2 + z2 and v = 2y2 + z2.
A moments reflection shows that the existence of these two conserved
quantities implies that all of the orbits of (2.1) are bounded and most
are closed orbits, topologically equivalent to a circle. All orbits live on
the surface of a sphere whose radius is dictated by the values of the
conserved quantities. To any initial point (X0, Y0, Z0) on one of the
closed orbits, we can associate a measure defined by the following limit

lim
t→∞

1

t

∫ t

0

δ(Xs,Ys,Zs)ds .

Any such defined measure is an invariant measure for the dynamics
given by (2.1). Hence we see that (2.1) has infinitely many invariant
measures.

The principle result of this article is that there exists a probability
measure µ which is absolutely continuous with respect to Lebesgue
measure and so that µε converges weakly as µ as ε→ 0.

3. Main Results

For ε ≥ 0, we define the Markov semigroup P ε
t associated with (2.6)

by

(P ε
t φ)(ξ) = Eξφ(ξεt )
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for bounded φ : R3 → R.

Remark 3.1. When ε = 0, then (Ptφ)(ξ) = φ(ξt) since the dynamics
is deterministic.

Theorem 3.2. Provided that at least two of the σi > 0, for i = 1, 2, 3,
are strictly positive then for each ε > 0, P ε

t has a unique invariant
measure µε which has a C∞ density which is everywhere positive.

Theorem 3.3. If either σ1 = σ2 > 0, or σ1 > σ2 > σ3 = 0, or
σ2 > σ1 > σ3 = 0, then there exists a measure µ which is invariant for
the dynamics generated by (2.1), namely µPt = µ for all t > 0, such
that µε ⇒ µ as ε→ 0.

Theorem 3.4. Furthermore the following descriptions of µ hold:

(1) If σ1 = σ2 = σ > 0 and σ3 = 0 then then

µ = 1
2
δ(0,0,σ) + 1

2
δ(0,0,−σ)

(2) If σ1 = σ2 = σ > 0 and σ3 > 0 then

µ =

∫ ∞
0

[
1
2
δ(0,0,s) + 1

2
δ(0,0,−s)

]
ρ(s)ds

and

ρ(s) = K|s|σ2
1/σ

2
3 exp

(
− s2

2σ2
3

)
where K is the normalisation constant.

(3) If σ1 > σ2 > σ3 = 0 then µ has a density with respect to
Lesbegue measure on R3 which possesses a C∞ density in the
interior of the set

{(x, y, z) : |x| ≥ |y|}
only isolated zeros inside this set and strictly zero outside this
set.

(4) If σ2 > σ1 > σ3 = 0 then the situation is identical to the
preceding case but the statements hold with resect to the set

{(x, y, z) : |x| ≤ |y|}

4. Finite Time Convergence on original timescale

Lemma 4.1. There exist positive constant c so that if ξ0 = ξε0 ∈ R3

then for all ε > 0

E|ξεt − ξt|2 ≤ ε
|σ|2 + ε|ξ0|

c|ξ0|
ec|ξ0|t
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Corollary 4.2. For any t ≥ 0, P ε
t converges weakly to Pt as ε→ 0. In

other words, for any bounded and continuous φ : R3 → R, P ε
t φ(ξ) →

Ptφ(ξ) for all ξ ∈ R3.

Proof of Lemma 4.1. Defining ρεt = ξεt − ξt we have that

dρεt = −ερεt − εξt + B(ρεt , ξt) + B(ξt, ρ
ε
t) + B(ρεt , ρ

ε
t) +
√
εσdWt .

We will make use of the following estimate which is straightforward to
prove: : there exists a c > 0 so that K > 0

2|B(ξ, ρ) · ρ|+ 2|B(ρ, ξ) · ρ|+ 2ε|ξ · η| ≤ ε2|ξ|+ c|ξ||η|2 .

Applying Itô’s formula to ρ 7→ |ρ|2 and this estimate produces

d

dt
E|ρεt |2 ≤ c|ξt|E|ρεt |2 + ε(|σ|2 + ε|ξt|)

Recalling that |ξt| = |ξ0| and applying Gronwall’s lemma produces the
quoted result. �

5. Existence and Uniqueness of Invariant Measures
with Noise

Similarly if we consider the evolution of the norm, we have the follow-
ing result which is useful in establishing the existence of the invariant
measure µε and the tightness of various objects.

Proposition 5.1. For any integer p ≥ 1 there exists C(p) > 0 so that
for all t ≥ 0, ε > 0,

E|ξεt |2p ≤ C(p)
[
1 + e−2εt

p∑
k=1

|ξ0|2k
]

Proof of Proposition 5.1. Defining |σ|2 =
∑

i σ
2
i , Itô’s formula implies

that

d|ξεt |2 = −2ε|ξεt |2dt+ |σ|2dt+ dM ε
t

for a martingale M ε
t with quadratic variation satisfying

d〈M ε〉t = (σ2
1(Xε

t )
2 + σ2

2(Y ε
t )2 + σ2

3(Zε
t )

2)dt ≤ σ2
max|ξεt |2dt

where σ2
max = max(σ2

1, σ
2
2, σ

2
3). The proof then follows from Lemma 5.3

which is given a proven below. �

Remark 5.2. One can actually easily prove uniform in time bounds
on E exp(κXt) for κ > 0 but sufficiently small. See [HM08] for a proof
using the exponential martingle estimate.
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Lemma 5.3. Let Xt be a semimartingle so that Xt ≥ 0,

dXt = (a− bXt)dt+ dMt

where a > 0, b > 0 and Mt is a continuous local martingale satisfying

d〈M〉t ≤ cXtdt

for some c > 0. Then for any integer p ≥ 1 there exist a constant C(p)
(depending besides p only on a, b and c) so that for any X0 ≥ 0 and
t ≥ 0

E
[
Xp
t

]
≤ C(p)

[
1 +

p∑
k=1

e−bktXk
0

]
Proof of Lemma 5.3. Fixing an N > 0 and defining the stopping time
τ = inf{t : Xt > N} observe that

EXt ≤ EXt∧τ ≤ at+X0 .

where the first inequality follows from Fatou’s lemma applied to the
limit N →∞. Using the assumption on the quadratic variation of Mt

we see that Mt is a L2-Martingale. Hence

EXt = e−btX0 +
a

b
(1− e−bt)(5.1)

Now applying Itô’s formula to Xp
t produces

dXp
t = pXp−1

t (a− bXt)dt+
p(p− 1)

2
Xp−2
t d〈M〉t + dM

(p)
t

where dM
(p)
t = pXp−1

t dMt. Using the same stoping time τ and the
same argument as before, we have

EXp
t ≤ EXp

t∧τ ≤ Xp
0 + (pa+ cp(p− 1))

∫ t

0

EXp−1
s ds

Hence inductively we have a bound on EXp
t for all integer p ≥ 1 which

implies that M
(p)
t is an L2-Martingle for all p ≥ 1. Hence we have

EXp
t ≤ e−bptXp

0 + (pa+
c

2
p(p− 1))

∫ t

0

e−bp(t−s)EXp−1
s ds .

Proceeding inductively using this estimate and (5.1) as the base case
produces the quoted result. �

Corollary 5.4. For each ε > 0, the Feller diffusion {ξεt : t ≥ 0}
possesses at least one invariant probability measure µε. Furthermore,
any invariant probability measure µε satisfies∫

R3

|ξ|pdµε(dξ) ≤ C(p)
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for any integer p ≥ 1 where C(p) is the constant form Lemma 5.1
(which is independent of ε). Hence the collection of probability mea-
sures which are invariant under the dynamics for some ε > 0 is tight.

Proof of Corollary 5.4. Since ξεt is a time–homogeneous Feller diffusion
process and from Proposition 5.1 for fixed ε > 0, the collection of ran-
dom vectors {ξεt , t > 0} is tight, the existence of an invariant measure
µε follows by the KrylovBogolyubov theorem.

Defining φN,p(ξ) = |ξ|2pφ(|ξ|/N) where φ is a smooth function such
that φ(x) = 1 for x ≤ 1, φ(x) = 0 for x ≥ 2, and φ decreases monoton-
ically on (1, 2), we see that∫

φN,p(ξ)µ
ε(dξ) =

∫
Eξ0φN,p(ξ

ε
t )µ

ε(dξ0)

≤ C(p)
[
1 + e−2εt

∫
φN,p(ξ)µ

ε(dξ)
]

≤ C(p)
[
1 + e−2εt(N + 1)2p

]
Taking t → ∞, followed by N → ∞, the result follows from Fatou’s
Lemma. Since these bounds are uniform in ε, tightness follows imme-
diately. �

The next result follows by hypoellipticity and the Stroock and Varad-
han support theorem.

Proposition 5.5. If at least two of the σ1, σ2 and σ3 are not zero
then for any ε > 0, there exists a transition density pεt(ξ, η) which is
jointly-smooth in (t, ξ, η) so that for all ξ ∈ R3 and Borel A ⊂ R3 one
has

P ε
t (ξ, A) =

∫
A

pεt(ξ, η) dη .

Additionally,
∫
B
pεt(ξ, η)dη > 0 for every ε > 0, t > 0, ξ ∈ R3, and any

ball B ⊂ R3.

Proof of Proposition 5.5 . When all of the σ are positive then the sys-
tem is uniformly elliptic and the results follow from the classical theory
of uniformly elliptic diffusions.

As long as only one σi = 0, hypoellipticity follows from the fact that
taking Lie brackets of the drift with any two coordinate directions in
succession produces the third. This ensures the existence of a smooth
density with respect to Lesbegue mesure [Str08, Hör94a, Hör94b]. Pos-
itivity will then follow by showing that the support of the transition
density is all of R3.
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We will consider the case σ3 = 0, σ1 > 0 and σ2 > 0. The other
cases follow identical reasoning. We will invoke the support theorem of
Stroock and Varadhan [SV72]. Indeed, consider the controlled system
associated to the SDE for (Xε

t , Y
ε
t , Z

ε
t ), which reads

(5.2)

dxε

dt
(t) = yε(t)zε(t)− εxε(t) +

√
εσ1f1(t)

dyε

dt
(t) = xε(t)zε(t)− εyε(t) +

√
εσ2f2(t)

dzε

dt
(t) = −2xε(t)yε(t)− εzε(t),

where {(f1(t), f2(t)), t ≥ 0} is the control at our disposal. Now by
choosing appropriately the control, we can drive the two components
(xε(t), yε(t)) in time as short as we like to any desired position, which
permits us to drive the last component zε(t) to any prescribed position
in any prescribed time. The result follows. �

We are now in a position to give the proof of Theorem 3.2.

Proof of Theorem 3.2. Since by Proposition 5.5 , P ε
t has a smooth,

transition density any invariant measure must have a smooth density
which charges any ball B ⊂ R3. Recall the fact that in our setting
any two distinct ergodic invariant measure must have disjoint support
which is impossible since the measures have densities which are strictly
positive except possibly at isolated points. . Uniqueness of invariant
measure follows immediately from the fact that any invariant measure
can be decomposed into ergodic components [FKS87]. �

6. The fast dynamics

Since ξεt = (Xε
t , Y

ε
t , Z

ε
t ) converges to ξt = (Xt, Yt, Zt), in order to

study the limiting invariant measure one needs to consider the system
on ever increasing time intervals as ε → 0. One must pick pick a
time scale, depending on ε, so that the amount of randomness injected
into the system is sufficient to keep the system from settling onto a
deterministic trajectory as ε→ 0.

With this in mind consider the process ξεt in the fast scale t/ε, in

other words consider the process ξ̃εt = ξεt/ε which solves the SDE

˙̃
ξεt =

1

ε
B(ξ̃εt , ξ̃

ε
t )− ξ̃ε + σẆt,(6.1)

where we have used a slight abuse of notations, replacing the ε–dependent
standard Brownian motion W ε

t ,=
√
εWt/ε by Wt. In coordinates we

will write (X̃ε
t , Ỹ

ε
t , Z̃

ε
t ) = (Xε

t/ε, Y
ε
t/ε, Z

ε
t/ε).
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Let P̃ ε
t be the Markov semigroup associated to (6.1) and defined for

ψ : R3 → R by

(P̃ ε
t ψ)(ξ) = Eξψ(ξ̃εt ) .(6.2)

Associated with this right-action on functions we associated dual action
on measures. We will denote this by left action rather then the often

used (P̃ ε
t )∗ notation. Hence is µ is a measure on R3 and ψ a real-valued

function on R3 then

µP̃ ε
t ψ =

∫
R3

(P̃ ε
t ψ)(ξ)µ(dξ)

Of course, this time change does not change the set of invariant mea-
sures for the dynamics. Hence if we letM denote set of all probability
measures and Iε the set of all invariant probability measure for (2.6)
then

Iε =
{
µ ∈M : µP̃ ε

t = µ for all t ≥ 0
}

6.1. Fast evolution of conserved quantities. One indication that
this is the right time scale is that the conserved quantities (u, v) =
Φ(x, y, z) now continue to evolve randomly as ε → 0. More precisely,

defining the processes (U ε
t V

ε
t ) by (U ε

t , V
ε
t ) = Φ(X̃ε

t , Ỹ
ε
t , Z̃

ε
t ) and appli-

cation of Itô’s formula shows that

dU ε
t = [2σ2

1 + σ2
3 − 2U ε

t ]dt+ 4σ1X̃
ε
t dW

(1)
t + 2σ3Z̃

ε
t dW

(3)
t ,

dV ε
t = [2σ2

2 + σ2
3 − 2V ε

t ]dt+ 4σ2Ỹ
ε
t dW

(2)
t + 2σ3Z̃

ε
t dW

(3)
t .

(6.3)

We will show below that (U ε
t , V

ε
t ) converges weakly as a process to

(Ut, Vt) which solves

dUt = [2σ2
1 + σ2

3 − 2Ut]dt+ σ1

√
8
(
Ut − Γ(Ut, Vt)

)
dW

(1)
t

+ 2σ3
√

Γ(Ut, Vt)dW
(3)
t ,

dVt = [2σ2
2 + σ2

3 − 2Vt]dt+ σ2

√
8
(
Vt − Γ(Ut, Vt)

)
dW

(2)
t

+ 2σ3
√

Γ(Ut, Vt)dW
(3)
t .

(6.4)

where

Γ(u, v) = (u ∧ v)Λ
(u ∧ v
u ∨ v

)
.

The function Λ will be defined in a later section. However for our
present discussion, it will be sufficient to state a few important facts
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Proposition 6.1. Λ(r) is a continuous and strictly increasing function
on [0, 1] with Λ(0) = 1

2
and Λ(1) = 1. Furthermore as ε→ 0+,

Λ(ε) =
1

2
+

1

16
ε+

1

32
ε2 + o(ε2)

Λ(1− ε) = 1− 2

| ln(ε)|
+ o
( 1

| ln(ε)|

)
In addition, on any closed interval in [0, 1), Λ is uniformly Lipschitz.

6.2. Finite time behavor (Ut, Vt). Before stating and proving the
main theorem of this section, let us establish three Lemmata.

Lemma 6.2. Let {Xt, t ≥ 0} be a continuous R+–valued Ft–adapted
process which satisfies

dXt = (a− bXt)dt+
√
cXtdWt,

X0 = x,

where b, c > 0, {Wt, t ≥ 0} is a standard Ft–Brownian motion and
x > 0. If a ≥ c/2, then a. s. Xt > 0 for all t ≥ 0.

Proof of Lemma 6.2. We consider the SDE

dYt = c−1
(
aYt − bY 2

t

)
dt+ YtdWt,

Y0 = x,

whose solution satisfies clearly

Yt = x exp

([
a

c
− 1

2

]
t− b

c

∫ t

0

Ysds+Bt

)
,

and define At = 1
c

∫ t
0
Ysds, ηt = inf{s > 0, As > t} and Xt = Yηt . It is

not hard to see that there exists a standard Brownian motion, which
by an abuse of notation we denote again by W , which is such that

dXt = (a− bXt)dt+
√
cXtdWt,

X0 = x.

Since XAt = Yt and Yt > 0 for all t <∞, for Xt to hit zero in finite time,
it is necessary that A∞ <∞ and Y∞ = 0. But from the above formula
for Yt, we deduce that on the event {A∞ <∞}, lim supt→∞ Yt = +∞,
which implies that A∞ = +∞. �

We will need a slightly better result
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Lemma 6.3. Let {Xt, t ≥ 0} and {Yt, t ≥ 0} be continuous R+–
valued Ft–adapted processes which satisfy 0 ≤ Yt ≤ Xt for all t ≥ 0,
with Y0 > 0,

dXt = (a− bXt)dt+
√
cYtdWt,

X0 = x,

where b, c > 0, {Wt, t ≥ 0} is a standard Ft–Brownian motion and
x > 0. If a ≥ c/2, then a. s. Xt > 0 for all t ≥ 0.

Proof of Lemma 6.3. We define

Bt =

∫ t

0

Ys
Xs

ds, σt = inf{s > 0, Bs > t}, and Zt = Xσt .

There exists a standard Brownian motion, still denoted by W , such
that

dZt = (a− bZt)
Zt
Yσt

dt+
√
cZtdWt,

X0 = x.

Define two sequences of stopping times as follows. S0 = 0, and for
k ≥ 1,

Tk = inf
{
t > Sk−1, Zt <

a

2b

}
and Sk = inf

{
t > Tk, Zt >

a

b

}
.

On each interval [Tk, Sk], since Zt/Yσt ≥ 1, by a standard comparison
theorem for SDEs we can bound from below Zt by the solution of the
equation of the previous Lemma, starting from a/2b. Hence Zt never
hits zero. �

A similar argument allows us to prove

Lemma 6.4. Let Xt be a recurrent R+–valued process, solution of the
SDE

dXt = b(Xt)dt+
√
c(Xt)dWt,

X0 = x,

where x > 0, b : R+ → R is measurable and upper bounded, c :
R+ → R+ is locally Lipschitz on (0,+∞), c(x) > 0 if x > 0, and
c(x)/x→ +∞ as x→ 0. Then Xt hits zero in finite time a. s.

We now prove the existence an uniqueness of solutions for the (U, V )
equation.

Theorem 6.5. Assume that the initial condition (U0, V0) satisfies U0 >
0, V0 > 0. In both cases

(1) σ1 = σ2 6= 0 and σ3 ≥ 0,
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(2) σ1 > σ2 > σ3 = 0, or σ2 > σ1 > σ3 = 0,

equation (6.4) has a unique weak solution which lives in the set (0,+∞)×
(0,+∞)∪{(0, 0)} (in case (1)) and in (0,+∞)× (0,+∞) (in case (2))
for all positive times.

Note that we have strong existence and uniqueness in case (1).

Proof of Theorem 6.5. Existence of a weak solution follows from the
fact that the coefficients are continuous.

We first prove that in the two above cases, any solution (Ut, Vt) never
hits the two axis, except possibly at (0, 0) (the origin is possibly hit
only in the first case). The fact that (Ut, Vt) cannot hit (0, v) with
v > 0 follows clearly from the equation for Ut and Lemma 6.3, once we
have noted that whenever Ut < Vt, Ut − Γ(Ut, Vt) ≤ Ut/2, as follows
from Lemma 6.1.

The same proof shows that (Ut, Vt) cannot hit (u, 0) with u > 0. It
remains to show that (Ut, Vt) cannot hit (0, 0) in the second case. Let
a = σ−21 , b = σ−22 , Kt = aUt + bVt. There exists a standard Brownian
motion Wt such that

dKt = (4− 2Kt)dt+
√

8[Kt − (a+ b)Γ(Ut, Vt)]dWt.

The result again follows from Lemma 6.3, since Γ(Ut, Vt) ≥ 0.
We now prove strong uniqueness in the first case. If U0 6= V0,

since the coefficients are locally Lipschitz away from the diagonal, the
solution is unique until the diagonal is hit, which happens soon or
later as a consequence of Lemma 6.4, since the process is recurrent
and non degenerate in each sector 0 < u < v and 0 < v < u, and
moreover the diffusion coefficient of the process Ut − Vt vanishes like√

[log(|Ut − Vt|/Ut ∨ Vt)]−1 near the diagonal. Once on the diagonal,

it is easily seen that the process stays there. If σ3 = 0, then the process
on the diagonal satisfies a linear ODE, while if σ3 > 0, the process on
the diagonal satisfies a one–dimensional SDE to which the well–known
strong uniqueness result of Yamada–Watanabe applies, see for example
Theorem IX.3.5 in [RY99].

We now consider the second case. Here the process again hits the
diagonal, but it will spend zero time there. Define

F (u, v) =

{
log
(

u∨v
|u−v|

)
, if u ∨ v > 0 and u 6= v,

0, otherwise,
,

Jt = F (Ut, Vt), At =
∫ t
0

1
Js
ds, ηt = inf{s > 0, As > t}, Ht = Uηt and

Kt = Vηt . There exists a two dimensional Wiener process, which we
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still denote by (W
(1)
t ,W

(2)
t ), such that

dHt = (2σ2
1 − 2Ht)F (Ht, Kt)dt+ σ1

√
8(Ht − Γ(Ht, Kt))F (Ht, Kt)dW

(1)
t ,

dKt = (2σ2
2 − 2Kt)F (Ht, Kt)dt+ σ2

√
8(Kt − Γ(Ht, Kt))F (Ht, Kt)dW

(2)
t .

It is easily verified that the diffusion matrix of this system is uniformly
elliptic and locally Lipschitz, while the drift term belongs to L6

loc(R+×
R+). Hence the strong uniqueness statement in Theorem 2.1 from
[GM01] applies. This translates into a weak uniqueness result for the
(U, V ) equation. �

Remark 6.6. We have not been able to prove that in the first case
the process does not hit the diagonal first at the origin, also we suspect
that it might be impossible. If the diagonal is hit first at the origin, the
process enters instantaneously the open set {(u, v), u = v > 0}, and
never hits the origin again.

Our method for proving uniqueness in the second case does not allow
us to consider the case σ1 6= σ2, σ3 > 0. Uniqueness of the solution in
this last case is an open problem.

6.3. Longtime behavior of (U, V ). We will let Qt denote the Markov
semigroup associated to (6.4) which can be defined by

(Qtφ)(u, v) = E(u,v)

[
φ(Ut, Vt)

]
(6.5)

for φ : R2
+ → R.

Unlike the pair (U ε
t , V

ε
t ), the pair (Ut, Vt) is a Markov process and

hence we can speak of invariant measure for the Markov semigroup Qt.
Observe that

d(Ut + Vt) =
[
a− 2(Ut + Vt)

]
dt+ dMt

where a > 0 and Mt is a continuous local Martingale satisfying

d〈M〉t ≤ c(Ut + Vt)dt

for some positive c. Hence the following result follows from Lemma 5.3.

Proposition 6.7. For any p ≥ 1, there exists a constant C(p) so that

sup
t≥0

E
[
Up
t + V p

t ] ≤ C(p)[1 + Up
0 + V p

0 ]

Theorem 6.8. The semigroup Qt generated by the dynamics of (Ut, Vt)
possess an invariant measure λ. In each of the following the cases λ is
the unique invariant measure and it has the stated characterization.

(1) If σ1 = σ2 = σ 6= 0 and σ3 = 0, then λ = δ(σ2,σ2)
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(2) σ1 = σ2 = σ 6= 0 and σ3 > 0, λ(du×dv) = G(u)δu(dv)du where
G is a probability density function. See Remark 6.9 below for
the form of G.

(3) If σ1 > σ2 > σ3 = 0, then λ(du × dv) = ρ(u, v) du dv where ρ
is a density which is smooth function in the interior of D≥ =
{(u, v) : u, v ∈ [0,∞), u ≥ v} with at most possibly isolated
zeros in the interior of D≥, and is zero outside of D≥.

(4) If σ2 > σ1 > σ3 = 0, then λ(du × dv) = ρ(v, u) du dv where ρ
is the function in the preceding case. Notice (u, v)→ ρ(v, u) is
supported on D≤ = {(u, v) : (v, u) ∈ D≥}.

Proof of Theorem 6.8. Most of the needed observations are contained
in the proof of Theorem 6.5. As noted there, in the first two cases
the trajectory hits u = v almost surely in finite time and then never
leaves the diagonal again. Hence in the first two cases any invariant
measure is supported on the diagonal {u = v, u > 0, v > 0}. In the
first case when σ3 = 0, the dynamics on the diagonal are deterministic
since Λ(u, u) = 1. The dynamics has a unique globally attracting fix
point at (u, v) = (σ2, σ2). Which proves the result in the first case.

In the second case, we are again trapped on diagonal in finite time.
Looking at (6.4) we see that the dynamics solve

dUt = [2σ2
1 + σ2

3 − 2Ut]dt+ 2σ3
√
UdW

(3)
t ,

Direct calculation with the generator shows that at this system has
an invariant measure with density given by G. Since G(u) > 0 for
u > 0 we know it is the unique invariant measure since any invariant
measure must have a density with respect to Lesbegue measure on
{u = v, u > 0}.

The last two cases are the same only with the role of u and v switched.
We will consider the case when σ1 > σ2. In this case as discussed in the
proof of Theorem 6.5, If U0 > V0 then the systems never crosses u = v
almost surely. If U0 ≤ V0 then the dynamics his u = v in finite time
and is instantaneously pushed in the u > v where is stays for the rest
of time almost surely. In the interior of {u > v > 0} the coefficients
are locally smooth, hence there is a positive probability in any finite
time of hitting any open subset of {(u, v) : u > v > 0}. The existence
of a transition density implies that any invariant measure has a density
with respect to Lesbegue. The positivity of hitting open sets ensure
that the invariant measure is unique. �
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Remark 6.9. Standard computations show that in case (2) the invari-
ant density G(u) equals, up to a normalizing constant,

uρ exp(−u/c), with ρ =
σ2
1

σ2
3

− 1

2
, and c = 2σ2

3.

7. The Deterministic Dynamics

We now in investigate more fully the deterministic dynamics given
in (2.1) and obtained by formally setting ε = 0 in (2.6). As already
mentioned, (2.1) has two conserved quantities (u, v) = Φ(ξ0) which are
constant on any given orbit. If ξ0 = (X0, Y0, Z0) then u = 2x2 + z2 and
v = 2y2 + z2 gives two independent equations. Since we are working in
three dimensions, the locus of the solutions, which contains the points
in the orbits, is a one dimensional curve. We undertake this study since
the 1

ε
B term in (6.1) implies that on the fast times scale the solution will

make increasingly many orbits about the deterministic orbits of (2.1)
before the stochastic or dissipative terms cause appreciable diffusion or
drift from the current deterministic orbit.

7.1. Structure of orbits. If u 6= v then the orbit is a simple periodic
orbit which it topologically equivalent to a circle. In this case, there
are two disjoint orbits which are solutions If u > v, one such orbit is
given by

Γ+
u,v =

{
(

√
u−z2
2
,±
√

v−z2
2
, z) : z ∈ [−

√
v,
√
v]
}

and another by

Γ−u,v =
{

(−
√

u−z2
2
,±
√

v−z2
2
, z) : z ∈ [−

√
v,
√
v]
}

Similarly if v > u then the corresponding orbits are given by

Γ+
u,v =

{
(±
√

u−z2
2
,

√
v−z2
2
, z) : z ∈ [−

√
u,
√
u]
}

Γ−u,v =
{

(±
√

u−z2
2
,−
√

v−z2
2
, z) : z ∈ [−

√
u,
√
u]
}

Whether u > v or v > u is enough information to localize a given
orbit to one of two orbits on sphere of radius

√
(u+ v)/2. The remain-

ing piece of information is contained in the sign of the function defined
by

sn(x, y, z) = sign
(
1|x|>|y|x+ 1|y|>|x|y

)
(7.1)
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x

y

z

Figure 1. Trajectories of the system on the sphere of
radius 1.The solid orbits correspond to v > u (same as
|y| > |x|). The dashed orbitscorrespond to v < u (same
as |y| < |x|). The dotted lines are hetroclinic connec-
tions which connect the fix points at the north and south
poles, (0, 0, 1) and (0, 0,−1) respectively. The difference
between the two collections of orbits of each type is the
choice of the sn defined in (7.1).

The value of sigma corresponds to the sign decorating the Γ±u,v. Hence
if one starts from the initial condition (x, y, z) such that the (u, v) com-
puted from these orbits satisfies u 6= v then the deterministic dynamics
will trace the set Γσu,v.

The exception to being topologically equivalent to a circle are the
lines of fixed points given by {(0, 0, z) : z ∈ R}, {(x, 0, 0) : x ∈ R},
and {(0, y, 0) : y ∈ R} and the heteroclinic orbits which connect them
which are contained in the locus of points where u = v. For a given
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such choice there are four heteroclinic orbits given by

H(1)
u =

{
(

√
u−z2
2
,

√
u−z2
2
, z) : z ∈ [−

√
u,
√
u]
}

H(2)
u =

{
(

√
u−z2
2
,−
√

u−z2
2
, z) : z ∈ [−

√
u,
√
u]
}

H(3)
u =

{
(−
√

u−z2
2
,−
√

u−z2
2
, z) : z ∈ [−

√
u,
√
u]
}

H(4)
u =

{
(−
√

u−z2
2
,

√
u−z2
2
, z) : z ∈ [−

√
u,
√
u]
}

These heteroclinic orbits split each sphere into four regions which
contain closed orbits of finite period. The following set limits hold

lim
v→u−

Γ+
u,v = lim

u→v+
Γ+
u,v = H(1)

u ∪H(2)
u

lim
v→u+

Γ+
u,v = lim

u→v−
Γ+
u,v = H(1)

u ∪H(4)
u

lim
v→u−

Γ−u,v = lim
u→v+

Γ−u,v = H(3)
u ∪H(4)

u

lim
v→u+

Γ−u,v = lim
u→v−

Γ−u,v = H(2)
u ∪H(3)

u

In contrast to the case when u 6= v, the orbits starting from a given
(x, y, z) point do not converge to one of these unions of heteroclinic
trajectories since any given orbit is restricted to a single heteroclinic
trajectory. This could be a point of concern, but we will see in the
next section it does not pose a problem which is an interesting and
important feature of this model.

7.2. Symmetries and their implications. Defining se : R3 → R3

by se(x, y, z) = (y, x, z) and s± : R3 → R3 by s±(x, y, z) = (−x,−y, z),
observe that if ξt is a solution to (2.1) then so is se(ξt) and s±(ξ). This
implies that Γ−u,v = s±(Γ+

u,v) and Γ+
u,v = se(Γ

+
v,u). This implies that if µ

is an invariant measure for Pt then necessarily µs−1e and µs−1± are also
invariant measure for Pt.

The situation for the stochastic dynamics given in (2.6) is the same
for s± but depends on the choice of σ1 and σ2 for se. In all cases s±(ξεt ) is
a solution (for a different Brownian motion) if ξεt is a solution. However
se(ξ

ε
t ) is again a solution if ξεt is only when σ1 = σ2. In any case, we

have the following observation which we desperate as a proposition for
future reference.

Proposition 7.1. Assume that at least two of {σ1, σ2, σ3} are strictly
positive. Let s : R3 → R3 be a map such that s(ξεt ) is a solution (for
possibly a different Brownian motion) whenever ξεt is a solution, then
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µε = µεs−1 where µε is the unique invariant measure of P ε
t guaranteed

by Theorem 3.2.

Proof of Proposition 7.1. As before it is clear that µεs−1 is again an
invariant measure, however we know that µε is the unique invariant
measure given the assumptions on the σ’s. Hence we conclude that
µεs−1 = µ. �

7.3. Averaging along trajectories. Given a function ψ : R3 → R,
we will define

(Aψ)(ξ) = lim
t→∞

1

t

∫ t

0

(ψ ◦ ϕs)(ξ)ds(7.2)

where ξ0 = ξ. Notice that Aψ is again a function from R3 → R and
that it is constant the connected components of the on level sets of
(u, v).

7.3.1. Averaging when u 6= v. Let (u, v) = Φ(ξ). If u 6= v then ξ lies
on a periodic orbit of finite period. Letting τ denote the period, one
has

(Aψ)(ξ) =
1

τ

∫ τ

0

(ψ ◦ ϕs)(ξ)ds

To obtain a more explicit representation for the averaging operation
we will switch to an angular variable θ. Given any positive u and v,
for θ ∈ [0, 2π] we parametrize z by z(θ) =

√
u ∧ v sin(θ). To define the

other coordinates we introduce the following auxiliary angles

φ1(θ) =

{
arcsin

(√
v
u

sin θ
)

u > v

θ u ≤ v
, φ2(θ) =

{
θ u ≥ v

arcsin
(√

u
v

sin θ
)

u < v
.

and set x(θ) =
√

u
2

cos(φ1(θ)), and y(θ) =
√

v
2

cos(φ2(θ)). Putting
everything together we have that the trace of the trajectory starting
at (
√

u
2
,
√

v
2
, 0) is given by

Γ+
u,v =

{
γu,v(θ) : θ ∈ [0, 2π]

}
where γu,v(θ)

def
=
(
x(θ), y(θ), z(θ)

)
. As already discussed depending on

weather u > v or v > u this represents a closed orbit on the sphere of
radius

√
(u+ v)/2 which rotates around respectively either the x-axis

in the positive x half space or the y-axis in the positive y half space.
The orbits in the negative half space are given by Γ−u,v = s±(Γ+

u,v).
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To define the occupation measure on these orbits we define a third
auxiliary angle

φu,v(θ) = arcsin
(√

u∧v
u∨v sin θ

)
=


φ1(θ) u > v

θ u = v

φ2(θ) u < v

For u 6= v, a probability measure on R3 by

ν+u,v(dx dy dz) =

∫ 2π

0

Ku,v

| cos(φu,v(θ))|
δγu,v(θ)(dx dy dz)dθ(7.3)

where K−1u,v =
∫ 2π

0
1

| cos(φu,v(θ))|dθ. We define ν−u,v(dx dy dz) = ν+u,vs
−1
± .

For u = v, we define ν±u,u(dx dy dz) = δ(0,0,±√u)(dx dy dz). Each of
these probability measures is supported on the corresponding set Γ+

u,v

or Γ−u,v. It is straightforward to see that for any ψ : R3 → R and

(x, y, z) ∈ R3 such that |x| 6= |y| one has

(Aψ)(ξ) =

∫
R3

ψ(η)νsu,v(dη)(7.4)

where ξ = (x, y, z), (u, v) = Φ(ξ) and s = sn(ξ) where sn was defined
in (7.1).

7.3.2. Averaging near the diagonal.

Proposition 7.2. Let ψ : R3 → R be a localy bounded function. If
δ = 1− (u∧ v)/(v ∨ u) then as |u− v| → 0 (and hence δ → 0) one has

(νψ)(u, v, σ) = 1
2
(ψ(0, 0,

√
u ∨ v) + ψ(0, 0,−

√
u ∨ v)) + o(1)(7.5)

If in addition for all u

Cu(ψ) =

∫ 2π

0

ψ(
√
u cos(θ),

√
u cos(θ),

√
u sin(θ))

| cos(θ)|
dθ <∞

then as v → v one has

(νψ)(u, v, σ) =

√
3Cu(ψ)

8

1

| ln(1− r)|
+ o
(
| ln(1− r)|−1

)
where r = u∧v

v∨u .
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Proof. We will begin by exploring the asymptotics of the constant Ku,v.
Making the change of variables β2 =

√
rα2, one has

Ku,v =

∫ 1

0

4√
(1− rα2)(1− α2)

dα =
1

r
1
4

∫ √r
0

1√
(1− r 1

2β2)(1− r− 1
2β2)

dβ

=
4

r
1
4

∫ √r
0

1

1− β2

1√
1− γ(r) β2

(1−β2)2

dβ

where γ(r) = r
1
2 + r−

1
2 − 2. Now since for all r ∈ (0, 1]

0 ≤ γ(r)
r2

(1− r2)2
≤ 1

4

and hence we have

4

r
1
4

arctanh
√
r ≤ Ku,v ≤

8√
3

1

r
1
4

arctanh
√
r(7.6)

for all r ∈ (0, 1]. Furthermore it is clear that

lim
|u−v|→0

Ku,v

| ln(1− r)|
=

4√
3

(7.7)

Now

(νψ)(u, v, σ) = Ku,v

∫ 2π

0

ψ(x(θ), y(θ), z(θ))

| cos(φ(θ))|
dθ(7.8)

As |u − v| → 0 this integral concentrates around two points θ equal
π/2 and 3π/2 since around these points | cos(φ(θ))| → 0 as |u − v| →
0. As these points (x(θ), y(θ), z(θ)) converges to (0, 0,

√
u ∨ v) and

(0, 0,−
√
u ∨ v) respectively. Around these points we have one behav-

ior and away from the another. Consider the following representative
portion of the integral which will converge to 1

2
ψ(0, 0,

√
u ∨ v):

Ku,v

∫ π

0

ψ(x(θ), y(θ), z(θ))

| cos(φ(θ))|
dθ = Ku,v

∫ π/2−δ

0

ψ(x(θ), y(θ), z(θ))

| cos(φ(θ))|
dθ

+Ku,v

∫ π/2+δ

π/2−δ

ψ(x(θ), y(θ), z(θ))

| cos(φ(θ))|
dθ +Ku,v

∫ π

π/2+δ

ψ(x(θ), y(θ), z(θ))

| cos(φ(θ))|
dθ

The remaining half of the integral in 7.8 will converge to 1
2
ψ(0, 0,−

√
u ∨ v)

in a completely analogous fashion. The first and third integral behave
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the same. We consider the first. If, as before, we set r = u∧v
v∨u then

Ku,v

∣∣∣ ∫ π/2−δ

0

ψ(x(θ),y(θ),z(θ))
| cos(φ(θ))| dθ

∣∣∣ ≤ Ku,v‖ψ‖∞
r
1
4

∫ r
1
4

0

1
1−β2

1√
1−γ(r) β2

(1−β2)2

dβ

≤ CKu,v‖ψ‖∞arctanh(r
1
4 )

By the asymptotics on Ku,v given in in (7.6), this goes to zero as r → 1.
Now as r → 1 one has

Ku,v

∫ π/2+δ

π/2−δ

ψ(x(θ), y(θ), z(θ))

| cos(φ(θ))|
dθ ≈ψ(0, 0,

√
u ∨ v)

4Ku,v√
3

∫ r
1
4

r
1
4

1
1−β2dβ

≈1
2
ψ(0, 0,

√
u ∨ v)

The last conclusion follows directly from the assumed finiteness of
Cu and the asymptotics of Ku,v as |u− v| → 0 given in (7.7). �

7.4. The Ergodic Invariant Measures. The set of ergodic invari-
ant measure is equivalent the set of extremal measures. The extremal
measures are those which can not be decomposed. Clearly this corre-
sponds to the collection of measures corresponding to the occupancy
measure of each periodic orbit along with the delta measures sitting on
each of the fix points (0, 0,

√
u) and (0, 0,−

√
u). These are precisely

the measures ν±u,v defined in Section 7.3.1. Since the union of these
orbits and fix points covers all of space except for the Heteroclinics
connections which can not support an invariant probability measure
(it would have to only be σ-finite). Hence we have identified all of the
ergodic probability measure.

We summarize this discussion in the following result.

Proposition 7.3. The set of ergodic invariant measure of (2.1) con-
sists precisely of

{ν+u,v, ν−u,v : u, v > 0} .

Given (u, v) ∈ R2
+, we define the probability measure νu,v on R3 by

νu,v(dξ) =
1

2
ν+u,v(dξ) +

1

2
ν−u,v(dξ)(7.9)

where ν±u,v(dξ) we defined in 7.3 and the text below it.
The following corollary of Proposition 7.3 will be central to the proof

of the convergence of µε to a unique limiting measure.
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Corollary 7.4. Any invariant measure m for (2.1) which satisfies
ms−1± = m can be represented as

m(dx dy dz) =

∫
[0,∞)2

νu,v(dx dy dz) γ(du dv)

for some probability measure γ on [0,∞)2. Furthermore the measure
γ is unique. Conversely, a measure which is invariant for (2.1) and
satisfies ms−1± = m is uniquely specified by the measure mΦ−1.

Proof of Corollary 7.4. There ergodic decomposition theorem [FKS87]
implies that there exists a unique pair of measure (γ+, γ−) so that the
total mass of γ+ + γ− is one and

m(dx dy dz) =

∫
[0,∞)2

ν+u,v(dx dy dz) γ+(du dv)

+

∫
[0,∞)2

ν−u,v(dx dy dz) γ−(du dv) .

Now since ms−1± = m, ν−u,v = ν+u,vs
−1
± and ν+u,v = ν−u,vs

−1
± , we have that

m(dx dy dz) =

∫
[0,∞)2

ν−u,v(dx dy dz) γ+(du dv)

+

∫
[0,∞)2

ν+u,v(dx dy dz) γ−(du dv) .

Since ν−u,v and ν+a,b are mutually singular for all for all choices of non-

negative u, v, a, and b, we see that γ+ = γ− and the total mass of both
is 1

2
. Setting γ = 2γ+ = 2γ− we see that γ is a probability measure

and that

m(dx dy dz) =

∫
[0,∞)2

[
1
2
ν+u,v(dx dy dz) + 1

2
ν−u,v(dx dy dz)

]
γ(du dv)

=

∫
[0,∞)2

νu,v(dx dy dz) γ(du dv)

This proves that any invariant m satisfying the symmetry assumption
can be represented as claimed. All that remains is to show is that γ is
unique. Let γ̃ be another probability measure so that

m(dx dy dz) =

∫
[0,∞)2

νu,v(dx dy dz) γ̃(du dv)

which implies that

m(dx dy dz) =

∫
[0,∞)2

[
1
2
ν+u,v(dx dy dz) + 1

2
ν−u,v(dx dy dz)

]
γ̃(du dv)



INVARIANT MEASURE SELECTION BY NOISE 25

which in turn implies that 1
2
γ̃ = γ+ since the ergodic decomposition is

unique. However, this implies γ̃ = γ as was desired. �

8. The Limiting Fast Semigroup

We begin with a small detour to think about the limiting dynamics.
it action on a test function can be understood to instantly assign to
each point on an orbit the average of the function around the orbit and
to each point on the heteroclinic connection the value of the function
at the limiting fix point on the z-axis.

Recalling the definition of νu,v from (7.9), for φ : R3 → R we define
νφ by

(νφ)(u, v) =

∫
φ(ξ)νu,v(dξ)

Recalling the definition of Φ which maps ξ to (u, v) from (2.4), note
that for any ρ : R2

+ → R,

ν(ρ ◦ Φ)(u, v) = ρ(u, v) .(8.1)

Recalling the definition of P̃ ε
t from (6.2), Qt from (6.5) and let λ be

the unique invariant measure of Qt guarantied by Theorem 6.8. For
φ : R3 → R we define

(P̃tφ)(ξ) = (Qtνφ) ◦ Φ(ξ)(8.2)

Remark 8.1. If φ is a test function such that φ ◦ s± = φ or m is an
initial measure on R3 such that m = ms−1± then is not hard to con-

vince oneself that mP̃ ε
t φ → mP̃ φ

t as ε → 0. If one neither starts with
initial data which has this symmetry nor a symmetric test function,
then things are more complicated. The orbit will average with respect
to only one of the two measure: ν+u,v or ν−u,v. For definiteness assume
that σ1 > σ2 > σ3 = 0, u > v and that we are on a the ν+u,v orbit.
We believe that when the (U, V )-dynamics hits the line U = V then
it is essentially spending all of its time at (0, 0,

√
u) and (0, 0,−

√
u).

(See Proposition 7.2.) With probability 1
2

it returns to a ν+u,v orbit and

with probability 1
2

it enters on to a ν−u,v orbit. Hence to describe the

P̃t semigroup in the non-symmetric setting, it seems we need to add a
sequence of independent Bernoulli random variables to make decision
of weather to be averaging with respect to the + or the − orbit. Since
we are primarily interested in the structure of the invariant measure
we have not tried to make the picture rigorous.
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Let λ be the unique invariant of Qt and define µ = λν. Observe that

µ is invariant under P̃t because for any bounded φ : R3 → R one has

µP̃tφ = λν(Qtνφ ◦ Φ) = λQtνφ = λ(νφ) = µφ .

Here the first equality is by definition, the second follows from (8.1), the
third from the invariance of λ under Qt and the last from the definition
of µ.

9. Convergence of (U ε, V ε) towards (U, V )

9.1. Tightness. Let us rewrite (6.3) in the form

(9.1)

{
dU ε

t = (Cu − 2U ε
t )dt+ dM ε

t

dV ε
t = (Cv − 2V ε

t )dt+ dN ε
t ,

where {M ε
t , t ≥ 0} and {N ε

t , t ≥ 0} are continuous local martingales
such that

(9.2)
d

dt
〈M ε〉t ≤ CU ε

t ,
d

dt
〈N ε〉t ≤ CV ε

t ,

where Cu, Cv and C are three positive constants.
We want to show

Proposition 9.1. Suppose that

sup
ε>0

E
[
(U ε

0 )2 + (V ε
0 )2
]
<∞ .

Then the collection of processes {(U ε
t , V

ε
t ), t ≥ 0}ε>0 is tight in C([0,+∞);R2).

In light of (9.1) and (9.2), the following needed first step follows from
Lemma 5.3.

Lemma 9.2. Under the condition of Proposition 9.1,

sup
ε>0

sup
t≥0

E
[
(U ε

t )2 + (V ε
t )2
]
<∞.

We can now proceed with the proof of tightness.

Proof of Proposition 9.1. We prove tightness of U ε only, V ε being treated
completely similarly. We have

U ε
t = U ε

0e
−2t + e−2t

∫ t

0

e2sdM ε
s .

Clearly the first term on the right is tight in C([0,∞)), since the col-
lection of R–valued r.v.’s U ε

0 is tight. We only need check tightness in

C([0,∞)) of the process W ε
t :=

∫ t
0
e2sdM ε

s . Since W ε
0 = 0, we need only

verify condition (ii) from Theorem 7.3 in Billingsley [Bil99], which fol-
lows from the condition of the Corollary of Theorem 7.4 again in [Bil99].



INVARIANT MEASURE SELECTION BY NOISE 27

In other words it suffices to check that for any T , η and η′ > 0, there
exists δ ∈ (0, 1) such that for all ε > 0, 0 ≤ t ≤ T − δ,

(9.3)
1

δ
P

(
sup

t≤s≤t+δ
|W ε

s −W ε
t | ≥ η

)
≤ η′.

Combining Chebycheff and Burkholder–Davis–Gundy inequalities, we
deduce that (we use below the result from Lemma 9.2)

P

(
sup

t≤s≤t+δ
|W ε

s −W ε
t | ≥ η

)
≤ η−4E

(
|〈W ε〉t+δ − 〈W ε〉t|2

)
≤ η−4e8TC2δ

∫ t+δ

t

E[(U ε
s + V ε

s )2]ds

≤ η−4C̄e8T δ2,

from which (9.3) follows if we choose δ = e−4Tη2
√
η′/C̄. �

9.2. Tighness of λε. Since (U ε
t , V

ε
t ) is not a Markov process it does

not have an invariant measure, However the projection λε = µεΦ−1

stationary measure have been defined using µε which is the unique
invariant measure of the Markov process ξεt . We now establish the
following tightness result:

Lemma 9.3. The sequence of measure {λε : ε > 0} is tight on the
space (0,∞)× (0,∞).

Remark 9.4. We emphasis that Lemma 9.3 is tightness in the open set
(0,∞)× (0,∞) which implies the measure does not accumulate neither
at the boundary at “infinity” nor at the boundary at zero. In other
words, for any ε > 0 there exists a r > 0 so that

inf
ε>0

λε([1
r
, r]× [1

r
, r]) > 1− ε

The following result which implies the tightness at infinity follows
immediately from the definition of λε, the definition of Φ and Corol-
lary 5.4.

Lemma 9.5. For any p ≥ 1, there exists a C(p) > 0 so that

sup
ε>0

∫
(up + vp)λε(du× dv) < C(p)

We now handle the boundary at zero.

Lemma 9.6. Let ζt be a Markov process and f and g two real-values
functions on the state space of ζt satisfying 0 ≤ g(ζt) ≤ f(ζt) for all
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t ≥ 0 almost surely and such that f(ζt) is a continuous semimartingale
satisfying

df(ζt) = (a− f(ζt))dt+ c
√
g(ζt)dWt

where a and c are positive constants and Wt a standard Wiener process.
If µ is any invariant measure of ζt with µ[ f 2 ] =

∫
f 2(ζ)dζ <∞, then

for any δ ∈ (0, 1).

µ{f ≤ δ} ≤
µ
[
f 2
]

a | log δ|
.(9.4)

Proof of Lemma 9.6. Defining

φ(x) =

{
1
x

x ≤ 1

1 x ≥ 1
, I(x) =

{
− log x x ≤ 1

x x ≥ 1
,

H(x) =

{
x− x log x x ≤ 1
1
2
x2 x ≥ 1

observe that I(x) =
∫ x
1
φ(z) dz and H(x) =

∫ x
0
I(z)dz and that φ, I

and H are well defined and positive on the intervals (0,∞),(0,∞) and
[0,∞) respectively. Taking ζ0 distributed according to µ, noticing that
since H(x) < 2x2 for x ≥ 0, and setting Xt = f(ζt) for notational
convenience, we have that

µ
[
Eζ0H(Xt)

]
= µ

[
Eζ0(H ◦ f)(ζt)

]
= µ

[
H ◦ f

]
<∞(9.5)

Now observe that

dH(Xt) = (a−Xt)I(Xt)dt+
1

2
c2g(ζt)φ(Xt)dt+ dMt

where Mt is the Martingale defined by dMt = c
√
g(ζt)I(Xt)dWt. Since

g(ζt)φ(Xt) ≥ 0, we conclude that

a

∫ t

0

Eζ0 [I(Xs)] ds ≤ Eζ0H(Xt)−H(X0) +

∫ t

0

Eζ0 XsI(Xs) ds .

Now integrating over the initial conditions ζ0 (which were distributed
according to µ), we see that H terms are equal by the stationarity
embodied in (9.5) (and hence they cancel) and that

a µ[I ◦ f ] ≤ µ[f(I ◦ f)]

and

a µ
[
| log f |1{f ≤ 1}

]
≤ a µ[ I ◦ f ] ≤ µ[ f(I ◦ f) ]
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Finally, for any δ ∈ (0, 1)

a µ{f ≤ δ} = a µ
[
{| log f | ≥ | log δ|} ∩ {f ≤ 1}

]
≤
a µ
[
| log f |1{f ≤ 1}

]
| log δ|

≤
µ
[
f(I ◦ f)

]
| log δ|

�

The following Corollary is a direct consequence of the two last Lem-
mata

Corollary 9.7. There exists a constant C > 0 so that for any δ ∈ (0, 1)

sup
ε>0

λε{(u, v) : u+ v < δ} ≤ C

| log δ|

Proof of Lemma 9.3. The result follows immediately by combining Lemma 9.5
and Corollary 9.7. �

9.3. Convergence of Quadratic variation. Now that we know that
the collection {(U ε

t , V
ε
t ), t ≥ 0}ε>0 is tight, in view of Theorem 6.5, the

weak uniqueness result for (6.4), and comparing (6.3) and (6.4), the
weak convergence (U ε, V ε) ⇒ (U, V ) will follow from the convergence
of the quadratic variations of U ε and V ε to those of U and V , which
will be proved in the next Lemma.

For each M > 0, let

κεM := inf{t > 0, U ε
t ∨ V ε

t > M}.

Considering the three different cases of the behavior of (U, V ), it is
not hard to see that in all cases κM , defined exactly as κεM , but with
(U ε, V ε) replaced by (U, V ), is a.s. a continuous function of the (U, V )
trajectory, hence

κεM =⇒ κM as ε→ 0

will follow from (U ε, V ε)⇒ (U, V ).
In particular

lim inf
ε→0

P(κεM > t) ≥ P(κM > t).

Clearly for all t > 0,

P(κM > t)→ 1, as M →∞.

It will then follow that for any t > 0, the lim inf as ε→ 0 of P(κεM > t)
can be made arbitrarily close to 1, by choosing M large enough.
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Lemma 9.8. Let νε be any sequence of tight probability measures on R3

and let (X̃ε
t , Ỹ

ε
t , Z̃

ε
t ) be the solution to (6.1) with (X̃ε

0 , Ỹ
ε
0 , Z̃

ε
0) distributed

as νε. Then for any t > 0, as ε→ 0,∫ t

0

(X̃ε
s )

2ds⇒
∫ t

0

A(x2)(Us, Vs)ds and

∫ t

0

(Ỹ ε
s )2ds⇒

∫ t

0

A(y2)(Us, Vs)ds.

Proof. Since 2(X̃ε
s )

2 = U ε
s − (Z̃ε

s)
2 and 2(Ỹ ε

s )2 = V ε
s − (Z̃ε

s)
2, we only

need to show that
∫ t
0
(Z̃ε

s)
2ds ⇒

∫ t
0
A(z2)(Us, Vs)ds. It suffices in fact

to show that ∫ t∧κεM

0

(Z̃ε
s)

2ds =⇒
∫ t∧κM

0

A(z2)(Us, Vs)ds ,

for all M > 0.
t > 0 and M will be fixed throughout this proof. For any δ > 0, we

define Nδ = dt/δe, tn = nδ ∧ κεM for 0 ≤ n < Nδ and tNδ = t ∧ κεM .

Let now Z
(n)
s be the z component of the solution to the determinis-

tic dynamics (2.1) at time s which started at time tn from the point
(Xε

tn , Y
ε
tn , Z

ε
tn). Then clear∫ t∧κεM

0

(Z̃ε
s)

2ds = ε

Nδ−1∑
n=0

∫ tn+1/ε

tn/ε

(Zε
s)

2ds = Φε,δ + Ξε,δ(9.6)

where

Φε,δ = δ

Nδ−1∑
n=0

ε

δ

∫ tn+1/ε

tn/ε

(Z(n)
s )2ds

Ξε,δ = ε

Nδ−1∑
n=0

∫ tn+1/ε

tn/ε

[
(Zε

s)
2 − (Z(n)

s )2
]
ds.

To control the error term observe that

|Ξε,δ| ≤

√√√√ε

Nδ−1∑
n=0

∫ tn+1/ε

tn/ε

[
Zε
s + Z

(n)
s

]2
ds

√√√√ε

Nδ−1∑
n=0

∫ tn+1/ε

tn/ε

[
Zε
s − Z

(n)
s

]2
ds .

The first term in the product on the righthand side product is bounded
due to the stopping time κεM . Using Lemma 4.1, we see that E|Ξε,δ| is
bounded by a constant times the square root of

ε

Nδ−1∑
n=0

∫ tn+1/ε

tn/ε

E
[
Zε
s − Z(n)

s

]2
ds ≤ CMε

2d t
δ
e exp

[
CM

δ

ε

]
.

Hence if we choose

(9.7) δ = C−1M ε log(1/ε),
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then Ξε,δ → 0 in L1(Ω) as ε → 0. Having made this choice of δ, we
now suppress it from notation designating dependence on parameters.

We now further divide Φε (δ having been suppressed) depending

on where in phase space the starting point (X
(n)
tn/ε

, Y
(n)
tn/ε

, Z
(n)
tn/ε

) lies the

region where |U ε
tn − V

ε
tn| is small or not. To accomplish this, for any

ρ > 0, let χρ ∈ C(R; [0, 1]) be such that

χρ(x) =

{
0 , if |x| ≥ ρ,

1 , if |x| ≤ ρ/2

and define χ̄ρ = 1 − χρ. Consider the decomposition Φε = Aε,ρ + Bε,ρ

where

Aε,ρ =δ

Nδ−1∑
n=0

ε

δ
χρ(U

ε
tn − V

ε
tn)

∫ tn+1/ε

tn/ε

(Z(n)
s )2ds,

Bε,ρ =δ

Nδ−1∑
n=0

ε

δ
χ̄ρ(U

ε
tn − V

ε
tn)

∫ tn+1/ε

tn/ε

(Z(n)
s )2ds .

The reason for this decomposition is that why the time average of (Zn)2

over the time interval [tn+1, tn] is close to the function A(z2)(Utn , Vtn)
is different in the two regions. The terms which have |u− v| > ρ have
periods uniformly bounded from above and hence as (tn+1 − tn)/ε =
δ/ε → ∞ the number of periods contained in the interval over which
we are averaging also goes to infinity. On the other hand, as the points
approach the diagonal u = v the period grows to infinity. So for |u−v|
small enough the period might be much greater than the length of
the time interval (tn+1 − tn)/ε = δ/ε over which we are averaging.
Hence the reason for convergence for the Aε,ρ to the appropriate av-
erage values occurs by a different mechanism. Proposition 7.2 shows
that the A(z2)(u, v) → u = v as |u − v| → 0. To understand why
ε
δ

∫ tn+1/ε

tn/ε
(Z

(n)
s )2ds → Utn ∧ Vtn one needs to recall the discussion from

Section 7. The deterministic orbits when u = v consist of heteroclinic
orbits connecting the fix points at (0, 0,

√
u) and (0, 0,−

√
u). Since the

time to reach the fix points on these orbits in infinite, it is not surpris-
ing that for |u−v| small the periodic orbits spends most of its time near
(0, 0,±

√
u) ∼ (0, 0,±

√
v). This can also be seen in the fact that the

occupation measures given in (7.3) concentrates around θ ∼ π/2, 3π/2,
which corresponds to the fix points, if |u − v| ∼ 0. Importantly, even
when the time is not long enough to traverse the orbit completely, any
average will be concentrated near the fix points since the time to reach
the neighborhood of the fix point is small relative to the time it will
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take to leave that neighborhood once it has arrived. This idea will be
made quantitative below.

Hence we define

Âε,ρ = δ

Nδ−1∑
n=0

χρ(U
ε
tn − V

ε
tn) (U ε

tn ∧ V
ε
tn) and Θε,ρ = Aε,ρ − Âε,ρ

B̂ε,ρ = δ

Nδ−1∑
n=0

χ̄ρ(U
ε
tn − V

ε
tn)γε(U

ε
tn , V

ε
tn)A(z2)(U ε

tn , V
ε
tn) and Υε,ρ = Bε,ρ − B̂ε,ρ

where

γε(u, v) =

⌊
δ

ετ(u, v)

⌋
ετ(u, v)

δ
.

and τ(u, v) was the period of the deterministic orbit.
For all β > 0 and α > ρ, we define

τ̂β,ρ = min
{
τ(u, v) : |u− v| ≤ ρ, β ≤ u ∧ v ≤ u ∨ v ≤M

}
,

Ψα,ρ = 4
√
M

∫ 1−α

0

1

|1− a2|
da .

The utility of Ψ is the following which can be deduced from Section 7.3

sup
u,v≤M

Leb
(
{s > 0, |zs| 6∈ [(1− α)

√
u ∧ v,

√
u ∧ v]}

)
≤ Ψα,ρ .

Now

|Θε,ρ| ≤ t
[
M
(Ψα,ρ

δ/ε
+

Ψα,ρ

τ̂β,ρ

)
+ 2β

]
def
=Kε,ρ,α,β .

On the other hand, since

Υε,ρ = ε

Nδ−1∑
n=0

χ̄ρ(U
ε
tn − V

ε
tn)

∫ tn+1
ε

tn
ε
+
[
δ
ετεn

]
τεn

(Z(n)
r )2dr ,

we have the inequality

|Υε,ρ| ≤M
ε

δ
δ

Nδ−1∑
n=0

χ̄ρ(U
ε
tn − V

ε
tn)τ(U ε

tn , V
ε
tn)

≤ ε

δ
M̄(ρ)

def
=Lε,ρ ,

where M̄(ρ) := supu,v≤M χ̄ρ(u, v)τ(u, v) <∞ if ρ > 0. Hence Lε,ρ → 0
as ε→ 0, for any ρ > 0.
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Now applying Lemma 9.9 below, we see that for all ρ > 0, as ε→ 0
one has

Âε,ρ + B̂ε,ρ =⇒ Âρ + B̂ρ
def
=

∫ t∧κM

0

χρ(Us − Vs) (Us ∧ Vs)ds

+

∫ t∧κM

0

χ̄ρ(Us − Vs)A(z2)(Us, Vs)ds

Now notice that as ρ→ 0, Âρ + B̂ρ converges to∫ t∧κM

0

1Us=Vs (Us ∧ Vs)ds+

∫ t∧κM

0

1Us 6=Vs A(z2)(Us, Vs)ds .

By Proposition 7.2, we see that 1Us=Vs (Us∧Vs) = 1Us=Vs A(z2)(Us, Vs)
since (x, y, z) 7→ z2 evaluated at (0, 0,

√
u ∧ v) is u ∧ v. (Of course

u∧ v = u = v since we are considering the case u = v.) In light of this,

we conclude that Âρ + B̂ρ converges to∫ t∧κM

0

A(z2)(Us, Vs)ds

as ρ→ 0.
Now let F ∈ C(R+,R+) be any increasing, bounded function. Then

F (Âε,ρ + B̂ε,ρ −Kε,ρ,α,β − Lε,δ) ≤ F (Aε,ρ +Bε,ρ) ≤

F (Âε,ρ + B̂ε,ρ +Kε,ρ,α,β + Lε,δ)

Observe that Aε,ρ + Bε,ρ = Φε and hence is independent of the choice
of ρ. Since F is bounded and as already noted Lε,ρ → 0 as ε → 0 for
any ρ > 0, we have that

EF (Âρ + B̂ρ −Kρ,α,β) ≤ lim
ε→0

EF (Φε)

≤ lim
ε→0

EF (Φε) ≤ EF (Âρ + B̂ρ +Kρ,α,β)

where

Kρ,α,β = lim
ε→0

Kε,ρ,α,β = t
[
M
(Ψα,ρ

τ̂β,ρ

)
+ 2β

]
.

Now since Kρ,α,β → 0 if ρ→ 0, followed by α → 0, followed by β → 0

we obtain that limε→0EF (Φε) exists and equals limρ→0EF (Âρ + B̂ρ).
It remains to exploit Lemma 9.10 below to deduce that

Φε ⇒
∫ t∧κM

0

A(z2)(Us, Vs)ds

as ε→ 0. �
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Lemma 9.9. Let Xn be a sequence of X–valued r. v.’s, and X be such
that Xn ⇒ X, where X is a separable Banach space. Let {Fn, n ≥ 1} be
a sequence in C(X ), which is such that as n→∞, Fn → F uniformly
on each compact subset of X . Then Fn(Xn)⇒ F (X), as n→∞.

Proof of Lemma 9.9. Choose ε > 0 arbitrary, and let K be a compact
subset of X such that P(Xn 6∈ K) ≤ ε, for all n ≥ 1. Now choose n
large enough such that |Fn(x) − F (x)| ≤ ε, for all x ∈ K. Choose an
arbitrary G ∈ Cb(R), such that supx |G(x)| ≤ 1. We have

|E[G ◦ Fn(Xn)]− E[G ◦ F (X)| ≤ |E[G ◦ Fn(Xn)−G ◦ F (Xn);Xn ∈ K]|
+ 2ε+ |E[G ◦ F (Xn)−G ◦ F (X)]|

The first term of the righthand side can be made arbitrarily small by
choosing ε small, uniformly in n, since G is uniformly continuous on
the union of the images of K by the Fn’s. The last term clearly goes
to zero as n→∞. �

Lemma 9.10. Let {Xn, n ≥ 1} and X denote real–valued random
variables, defined on a given probability space (Ω,F ,P). A sufficient
condition for Xn ⇒ X is that

E[F (Xn)]→ E[F (X)],

for any continuous, bounded and increasing function F .

Proof of Lemma 9.10. It is plain that the condition of the Lemma im-
plies that E[F (Xn)] → E[F (X)] for any F continuous, bounded with
bounded variations. Associating to each M > 0 a continuous function
FM from R into [0, 1], which is decreasing on R− and increasing on
R+, equal to zero on the interval [−M + 1,M − 1], and to one outside
the interval [−M,M ], we note that the condition of the Lemma implies
that

lim sup
n→∞

P(Xn > M) ≤ lim
n→∞

E[FM(Xn)]

= E[FM(X)].

Since the last right–hand side can be made arbitrarily small by choos-
ing M large enough, the last statement implies tightness of the se-
quence {Xn, n ≥ 1}. Consequently Xn ⇒ X will follow if E[F (Xn)]→
E[F (X)] for any F in a class of continuous and bounded functions
which separates probability measures, which clearly is the case under
the condition of the theorem. �
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10. Convergence of the invariant measures

Recall that for each ε > 0 µε denotes the unique invariant measure
of ξε, and that λ denotes the unique invariant measure of the diffusion
process (Ut, Vt) or equivalently of its semigroup Qt.

Theorem 10.1. If either one of the two assumptions of Theorem 6.5
is satisfied, then µε converges weakly to µ as ε tends to 0, where µ is
the unique invariant measure of the deterministic dynamics prescribed
by (2.1), which satisfies both µ = µs−1± , and µΦ−1 = λ.

Proof. The fact that any accumulation point of the collection {µε, ε >
0} satisfies µ = µs−1± follows from Proposition 7.1. Corollary 7.4 states
that at most one invariant measure of (2.1) satisfies both µ = µs−1± and
µΦ−1 = λ.

From Corollary 5.4 we know the collection {µε, ε > 0} is tight. Con-
sequently, there exists a sequence εn → 0 and a measure µ̃, such that
µεn ⇒ µ̃.

Fix an arbitrary t > 0. If we initialize ξεn with its invariant measure
µεn , then both marginal laws of the pair (ξεn0 , ξ

εn
t ) equal µεn . Since

(ξεn0 , ξ
εn
t ) ⇒ (ξ0, ξt), we deduce that if ξ0 ' µ̃, then ξt ' µ̃, and this is

true for all t > 0, hence µ̃ is invariant for ξ.
Next recall that for each ε > 0, we defined λε := µεΦ−1. Since

both marginal laws of the pair (ξεn0 , ξ
εn
t/ε) equal µεn , we conclude that

both marginal laws of the pair ((U εn
0 , V εn

0 ), (U εn
t , V

εn
t )) equal λεn . If we

define λ̃ = Φ−1µ̃, then since ((U ε
0 , V

ε
0 ), (U ε

t , V
ε
t )) ⇒ ((U0, V0), (Ut, Vt)),

Φ is continuous and from Lemma 9.3 we know that λ̃ is supported on
(0,+∞) × (0,+∞), we conclude that λεn ⇒ λ̃. Since the marginals

are equal for all t > 0, we conclude that λ̃ is an invariant measure for
Qt. Since from Theorem 6.8, Qt has the unique invariant measure λ,
we conclude that λ̃ = λ.

Hence µ̃ = µ, and µε ⇒ µ, as ε→ 0. �
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[Hör94b] Lars Hörmander. The analysis of linear partial differential operators.
IV, volume 275 of Grundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences]. Springer-Verlag,
Berlin, 1994. Fourier integral operators, Corrected reprint of the 1985
original.

[Kif74] Ju. I. Kifer. Some theorems on small random perturbations of dynamical
systems. Uspehi Mat. Nauk, 29(3(177)):205–206, 1974.

[KP08] Sergei B. Kuksin and Andrey L. Piatnitski. Khasminskii-Whitham av-
eraging for randomly perturbed KdV equation. J. Math. Pures Appl.
(9), 89(4):400–428, 2008.

[Kuk04] Sergei B. Kuksin. The Eulerian limit for 2D statistical hydrodynamics.
J. Statist. Phys., 115(1-2):469–492, 2004.

[Kuk07a] S. B. Kuksin. Eulerian limit for 2D Navier-Stokes equation and
damped/driven KdV equation as its model. Tr. Mat. Inst. Steklova,
259(Anal. i Osob. Ch. 2):134–142, 2007.

[Kuk07b] S. B. Kuksin. Eulerian limit for 2D Navier-Stokes equation and
damped/driven KdV equation as its model. Tr. Mat. Inst. Steklova,
259(Anal. i Osob. Ch. 2):134–142, 2007.

[Kuk10a] Sergei B. Kuksin. Damped-driven KdV and effective equations for long-
time behaviour of its solutions. Geom. Funct. Anal., 20(6):1431–1463,
2010.

[Kuk10b] Sergei B. Kuksin. Damped-driven KdV and effective equations for long-
time behaviour of its solutions. Geom. Funct. Anal., 20(6):1431–1463,
2010.

[Lor63] Edward N. Lorenz. Deterministic nonperiodic flow. Journal of the At-
mospheric Sciences, 20(2):130141, Mar 1963.

[MTVE02] Paul A. Milewski, Esteban G. Tabak, and Eric Vanden-Eijnden. Reso-
nant wave interaction with random forcing and dissipation. Studies in
Applied Mathematics, 108(1):123144, 2002.



INVARIANT MEASURE SELECTION BY NOISE 37

[Rue82] David Ruelle. Small random perturbations of dynamical systems
and the definition of attractors. Comm. Math. Phys., 82(1):137–151,
1981/82.

[RY99] Daniel Revuz and Marc Yor. Continuous martingales and Brownian mo-
tion, volume 293 of Grundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences]. Springer-Verlag,
Berlin, third edition, 1999.
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