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Abstract. We consider a deterministic system with two conserved quantities

and infinity many invariant measures. However the systems possess a unique
invariant measure when enough stochastic forcing and balancing dissipation

are added. We then show that as the forcing and dissipation are removed a

unique limit of the deterministic system is selected. The exact structure of the
limiting measure depends on the specifics of the stochastic forcing.

Dedicated to the memory of José Real

1. Introduction. There is much interest in the regularizing effects of noise on the
longtime dynamics. One often speaks informally of adding a balancing noise and
dissipation to a dynamical system with many invariant measures and then study-
ing the zero noise/dissipation limit as a way of selecting the “physically relevant”
invariant measure.

There are a number of settings where such a procedure is fairly well understood.
In the case of a Hamiltonian or gradient system with sufficiently non-degenerate
noise, Wentzell-Freidlin theory gives a rather complete description of the effective
limiting dynamics [3] in terms of a limiting “slow” system derived through a quasi-
potential and deterministic averaging. In the gradient case the stochastic invariant
measures concentrate on the attracting structures of the dynamics. In the Hamilton-
ian setting, Wentzell-Freidlin theory considers the slow dynamics of the conserved
quantity (the Hamiltonian) when the system is subject to noise. It is the zero noise
limit of these dynamics which decides which mixture of the Hamiltonian invariant
measures is selected in the zero noise limit.

In the case of system with an underlying hyperbolic structure, such as Axiom
A, it is known that the zero noise limit of random perturbations selects a canonical
SRB/”physical measure”[17, 18, 16, 7]. This relies fundamentally on the expan-
sion/contraction properties of the underlying deterministic dynamical system. See
[23] for a nice discussion of these issues. The Axiom A assumption ensures that the
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deterministic dynamics has a rich attractor which attracts a set of positive Lebesgue
measure.

One area where the idea of the relevant invariant measure being selected through
a zero noise limit is prevalent is in the study of stochastically forced and damped
PDEs. Two important examples are the stochastic Navier-Stokes equations and the
stochastic KdV equation. Both of these equations have been studied in a sequence
of works by Kuksin and his co-authors [9, 10, 11, 8, 12]. In all these works, tightness
is established by balancing the noise and dissipation as the zero noise limit is taken.
Any limiting invariant measure is shown to satisfy an appropriate limiting equa-
tion. Typically a number of properties are inherited from the pre-limiting invariant
measure.

The hope is that the study of these limiting measures will give some insight
into important questions for the original, unperturbed equations. In the case of
the Navier-Stokes equations one would be interested in understanding questions
such as the existence of energy cascades and turbulence. Setting aside the question
of whether the regularity of the solutions in [9] is appropriate for turbulence, it
is interesting to understand if the noise selects a unique limit and what are the
obstructions to such uniqueness as they give information about the structure of
the deterministic phase space. In all of the works [9, 10, 11, 8, 12] the question of
uniqueness of the limit is not addressed and seems out of reach.

The equation for the evolution a 2D incompressible fluid’s vorticity q(x, t) (a
scalar) on the 2-torus subject to stochastic excitation can be written as

q̇(x, t) = ν∆q(x, t) +B
(
q(x, t), q(x, t)

)
+
√
ν
∑
k∈Z2

σke
ik·xẆ

(k)
t

where ν > 0 is the viscosity, ∆ is the Laplacian, σk are constants to be chosen,

{W (k)
t : k ∈ Z2} are a collection of standard one-dimensional Wiener processes and

B(q, q) is a quadratic non-linearity such that 〈B(q, q), q〉L2 = 0. The scaling of ν
is chosen to keep the spatial L2 norm of order one in the ν → 0 limit and is the
only scaling on a fixed torus which will result in a non-trivial sequence of tight
processes. On a fixed interval, the formal ν = 0 limit of this is equation is the
Euler equation which conserves its Hamiltonian (the energy or L2 norm) but also
has an infinite collection of other conserved quantities since the vorticity is simply
transported about space. This means that a priori there will be many conserved
quantities whose slow evolution must be analyzed.

Inspired by models in [13, 14] and the Euler equation itself, we construct a model
problem in the form of an ODE in R3 such that the non-linearity is quadratic and
conserves the norm of the solution as in analogy with the Euler non-linearity. We
will also see that our model system in fact possesses two conserved quantities (the
most it could have without becoming trivial). In many ways our analysis follows
the familiar pattern of [3] in that we change time to consider the evolution of the
conserved quantities from the unforced system on a long time interval which grows
as the noise is taken to zero. This produces a limiting system which captures the
effect of the noise. However multiple conserved quantities are not usually treated
in Wentzell-Freidlin theory and the complications of having more then one are
non-trivial in our case. In particular, the limiting system does not have a unique
solution. Nonetheless, we are able to show that a particular solution is selected by
the limiting procedure which in turn leads to a unique invariant measure for the
limiting system being selected.



INVARIANT MEASURE SELECTION BY NOISE 3

Since the limiting system does not have unique solutions there are many possible
invariant measures depending on which of the solutions are chosen. It is interesting
to note that identifying the limiting “averaged” solution is not sufficient to identify
the likely limit of the invariant measure. Analysis of the limiting solution in isolation
revel domain walls which separate different regions of phase space and along which
the diffusion degenerates giving rise to the possibility of solutions which could spend
arbitrary mounts of time on the domain boundaries. Only through the analysis of
pre-limiting systems do we discover that the systems selects the solutions which
spend zero time on the domain walls.

These domain walls are the planes {x = y} in R3 and correspond to hetero-
clinic cycles from the original deterministic system made up of homoclinic orbits
connecting the fix points. Hence it is not surprising that the limiting system sup-
ports solutions which could spend arbitrarily long times on these orbits. However,
it is interesting that the limiting procedure selects solutions which do not become
trapped near the heteroclinic orbits.

2. Model System. As an exercise in studying the zero noise/dissipation limit
of conservative systems, we have chosen to study the following three–dimensional
system:

ξ̇t = B(ξt, ξt) (1)

with ξ0 = (X0, Y0, Z0) ∈ R3 where if ξ = (x, y, z) ∈ R3 and ξ̂ = (x̂, ŷ, ẑ) then B is
the symmetric bi-linear form defined by

B(ξ, ξ̂)
def
=

1

2

 yẑ + ŷz
xẑ + x̂z
−2xŷ − 2x̂y

 . (2)

We will write ϕt for the flow map induced by (1), i.e. ξt = ϕt(ξ0). We will constantly
write (Xt, Yt, Zt) for ξt when we wish to speak of the components of ξt.

Since

B(ξ, ξ) · ξ = 0 (3)

we see that |ξt|2 = X2
t + Y 2

t + Z2
t is constant along trajectories of (1). Similarly

one sees that X2
t − Y 2

t is also conserved by the dynamics of (1). Since any linear
combination is also conserved, we are free to consider 2X2

t +Z2
t and 2Y 2

t +Z2
t , which

are more symmetric. Since we will typically use the second pair, we introduce the
map

Φ: (x, y, z) 7→ (u, v) = (2x2 + z2, 2y2 + z2) . (4)

A moments reflection shows that the existence of these two conserved quantities
implies that all of the orbits of (1) are bounded and most are closed orbits, topolog-
ically equivalent to a circle. All orbits live on the surface of a sphere whose radius is
dictated by the values of the conserved quantities. More precisely, given the initial
condition ξ0 ∈ R3 the orbit {ξt : t ≥ 0} is contained in the set

Γ =
{
ξ : Φ(ξ) = Φ(ξ0)

}
(5)
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To any initial point ξ0 = (X0, Y0, Z0) contained in a closed orbit, we can associate
a measure defined by the following limit

µξ0(dx, dy, dz)
def
= lim
t→∞

1

t

∫ t

0

δξs(dx, dy, dz)ds . (6)

We will show in Section 7.4 that this invariant measure depends only upon Φ(ξ0),
and a choice of a sign. Any such measure is an invariant measure for the dynamics
given by (1). Hence we see that (1) has infinitely many invariant measures. It
is reasonable to expect that the addition of sufficient driving noise and balancing
dissipation, will result in a system with a unique invariant measure. Our goal is to
study its limit as the noise/dissipation are scaled to zero. We are specifically inter-
ested in understanding whether this procedure selects a unique convex combination
of the measures for the underlying deterministic system (1).

More concretely for ε > 0, we will explore the following stochastic differential
system

ξ̇εt = B(ξεt , ξ
ε
t )− εξεt +

√
εσẆt, (7)

with ξε0 = (X0, Y0, Z0) ∈ R3,

σ =

σ1 0 0
0 σ2 0
0 0 0

 and Wt = (W
(1)
t ,W

(2)
t ),

where the two componentsW
(1)
t andW

(2)
t are mutually independent standard Brow-

nian motions. In all this paper, we assume that σ1 > 0 and σ2 > 0.
As above, we will write (Xε

t , Y
ε
t , Z

ε
t ) when we wish to discuss the coordinates of

ξεt .
For each ε > 0, the three–dimensional hypoelliptic diffusion process is positive

recurrent and ergodic, its unique invariant probability measure µε is absolutely
continuous with respect to Lebesgue measure, with a density which charges all
open sets.

Our aim is to study the limit of µε, as ε → 0. We first note that as ε → 0, the
process (Xε

t , Y
ε
t , Z

ε
t ) converges to the solution of (1) on any finite time interval.

The main result of this article is that there exists a probability measure µ which
is absolutely continuous with respect to Lebesgue measure and so that µε converges
weakly to µ as ε → 0. Of course, µ is a mixture of the ergodic invariant measures
appearing in (6), which we shall describe.

It is natural to ask what is the effect of adding noise also in the z-direction.
Unfortunately this leads to unexpected complications which at present we are not
able to handle.

3. Main Results. For ε ≥ 0, we define the Markov semigroup P εt associated with
(7) by

(P εt φ)(ξ) = Eξφ(ξεt )

for bounded φ : R3 → R.
The dynamics obtained by formally setting ε = 0 are deterministic. We will

write Pt rather than P 0
t for the corresponding Markov semigroup which is defined

by (Ptφ)(ξ) = φ(ξt).

Theorem 3.1. For each ε > 0, P εt has a unique invariant probability measure µε

which has a C∞ density which is everywhere positive.
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Theorem 3.2. There exists a probability measure µ such that µε ⇒ µ as ε → 0
and furthermore such that µ is invariant for the dynamics generated by (1) in that
µPt = µ for all t > 0. In addition, µ is absolutely continuous with respect to
Lebesgue measure on R3, with a density which is positive on the complement of
{x = y} ∪ {x = −y}.

The paper is organized as follows. Section 4 studies finite time convergence of
ξε as ε → 0. Section 5 studies existence and uniqueness of the invariant measure
for ξε. Namely, this section proves Theorem 3.1. Section 6 studies the deter-
ministic system on a faster time scale, more precisely it introduces the process
(Uεt , V

ε
t ) = Φ(Xε

t/ε, Y
ε
t/ε, Z

ε
t/ε). Assuming some results from Section 8, we uniquely

characterize the limit (Ut, Vt) of the process (Uεt , V
ε
t ) as ε → 0, and show that

that limit has a unique invariant probability measure. Section 7 studies very pre-
cisely the deterministic dynamics behind the ODE (1) obtained by formally setting
ε = 0 in (7). Section 8 establishes crucial results which were assumed to hold in
the discussion in Section 6, the main important and most delicate one being the
convergence of the quadratic variation of (Uε, V ε), which builds upon the analysis
in Section 7. Finally Section 9 is devoted to the proof of Theorem 3.2.

4. Finite Time Convergence on original timescale. In this section we show
that the dynamics of stochastic dynamics given by (7) converge to the deterministic
dynamics given by (1). Hence the limit as ε → 0 on this time scale does not help
in understanding the selection of any limiting invariant measure as ε→ 0.

Lemma 4.1. There exists a positive constant c so that if ξ0 = ξε0 ∈ R3 then for all
ε > 0

E|ξεt − ξt|2 ≤ ε
|σ|2 + ε|ξ0|

c|ξ0|
ec|ξ0|t.

Corollary 1. For any t ≥ 0, P εt converges weakly to Pt as ε→ 0. In other words,
for any bounded and continuous φ : R3 → R, P εt φ(ξ)→ Ptφ(ξ) for all ξ ∈ R3.

Proof of Lemma 4.1. Defining ρεt = ξεt − ξt we have that

dρεt = −ερεt − εξt + B(ρεt , ξt) + B(ξt, ρ
ε
t ) + B(ρεt , ρ

ε
t ) +

√
εσdWt .

We will make use of the following estimate which is straightforward to prove : there
exists a c > 0 so that

2|B(ξ, ρ) · ρ|+ 2|B(ρ, ξ) · ρ|+ 2ε|ξ · ρ| ≤ ε2|ξ|+ c|ξ||ρ|2 .

Applying Itô’s formula to ρ 7→ |ρ|2 and this estimate produces

d

dt
E|ρεt |2 ≤ c|ξt|E|ρεt |2 + ε(|σ|2 + ε|ξt|)

Recalling that |ξt| = |ξ0| and applying Gronwall’s lemma produces the stated result.

5. Existence and Uniqueness of Invariant Measures
with Noise. Similarly if we consider the evolution of the norm, we have the fol-
lowing result which is useful in establishing the existence of the invariant measure
µε and the tightness of various objects.
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Proposition 1. For any integer p ≥ 1 there exists C(p) > 0 so that for all t ≥ 0,
ε > 0,

E|ξεt |2p ≤ C(p)
[
1 + e−2εt

p∑
k=1

|ξ0|2k
]

Proof of Proposition 1. Defining |σ|2 =
∑
i σ

2
i , Itô’s formula implies that

d|ξεt |2 = −2ε|ξεt |2dt+ |σ|2dt+ dMε
t

for a martingale Mε
t with quadratic variation satisfying

d〈Mε〉t = (σ2
1(Xε

t )2 + σ2
2(Y εt )2)dt ≤ σ2

max|ξεt |2dt

where σ2
max = σ2

1 ∨ σ2
2 . The proof then follows from Lemma 5.1 below.

Remark 1. One can actually easily prove uniform in time bounds on E exp(κXt)
for κ > 0 but sufficiently small. See [4] for a proof using the exponential martingale
estimate.

The following Lemma provides the key estimate to Proposition 1.

Lemma 5.1. Let Xt be a semimartingle so that Xt ≥ 0,

dXt = (a− bXt)dt+ dMt

where a > 0, b > 0 and Mt is a continuous local martingale satisfying

d〈M〉t ≤ cXtdt

for some c > 0. Then for any integer p ≥ 1 there exist a constant C(p) (depending
besides p only on a, b and c) so that for any X0 ≥ 0 and t ≥ 0

E
[
Xp
t

]
≤ C(p)

[
1 +

p∑
k=1

e−bktXk
0

]
Proof of Lemma 5.1. Fixing an N > 0 and defining the stopping time τ = inf{t :
Xt > N} observe that

EXt ≤ EXt∧τ ≤ at+X0 .

where the first inequality follows from Fatou’s lemma applied to the limit N →∞.
Using the assumption on the quadratic variation of Mt we now see that Mt is a
L2-martingale. Hence

EXt = e−btX0 +
a

b
(1− e−bt) (1)

Now applying Itô’s formula to Xp
t produces

dXp
t = pXp−1

t (a− bXt)dt+
p(p− 1)

2
Xp−2
t d〈M〉t + dM

(p)
t

where dM
(p)
t = pXp−1

t dMt. Using the same stopping time τ and the same argument
as before, we have

EXp
t ≤ EXp

t∧τ ≤ X
p
0 + (pa+ cp(p− 1))

∫ t

0

EXp−1
s ds
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Hence inductively we have a bound on EXp
t for all integer p ≥ 1 which implies that

M
(p)
t is an L2-martingale for all p ≥ 1. Hence we have

EXp
t ≤ e−bptX

p
0 + (pa+

c

2
p(p− 1))

∫ t

0

e−bp(t−s)EXp−1
s ds .

Proceeding inductively using this estimate and (1) as the base case produces the
stated result.

Corollary 2. For each ε > 0, the Feller diffusion {ξεt : t ≥ 0} possesses at least one
invariant probability measure µε. Furthermore, any invariant probability measure
µε satisfies ∫

R3

|ξ|pµε(dξ) ≤ C(p)

for any integer p ≥ 1 where C(p) is the constant from Lemma 1 (which is indepen-
dent of ε). Hence the collection of probability measures which are invariant under
the dynamics for any given ε > 0 is tight.

Proof of Corollary 2. Since ξεt is a time–homogeneous Feller diffusion process and
from Proposition 1 for fixed ε > 0, the collection of random vectors {ξεt , t > 0} is
tight, the existence of an invariant probability measure µε follows by the Krylov–
Bogolyubov theorem.

Defining φN,p(ξ) = |ξ|2pφ(|ξ|/N) where φ is a smooth function such that φ(x) = 1
for x ≤ 1, φ(x) = 0 for x ≥ 2, and φ decreases monotonically on (1, 2), we see that∫

φN,p(ξ)µ
ε(dξ) =

∫
Eξ0φN,p(ξ

ε
t )µ

ε(dξ0)

≤ C(p)
[
1 + e−2εt

∫
φN,p(ξ)µ

ε(dξ)
]

≤ C(p)
[
1 + e−2εt(N + 1)2p

]
Taking t→∞, followed by N →∞, the result follows from Fatou’s Lemma. Since
these bounds are uniform in ε, tightness follows immediately.

The next result follows by hypoellipticity and the Stroock and Varadhan support
theorem.

Proposition 2. For any ε > 0, there exists a transition density pεt (ξ, η) which is
jointly smooth in (t, ξ, η) so that for all ξ ∈ R3 and Borel A ⊂ R3 one has

P εt (ξ, A) =

∫
A

pεt (ξ, η) dη .

Additionally,
∫
B
pεt (ξ, η)dη > 0 for every ε > 0, t > 0, ξ ∈ R3, and any ball B ⊂ R3.

Proof of Proposition 2 . Hypoellipticity follows from the fact that taking Lie brack-
ets of the drift with ∂x and then ∂y (the two noise directions) produces the third and
missing direction ∂z. This ensures the existence of a smooth density with respect to
Lebesgue mesure [19, 5, 6]. Positivity will then follow by showing that the support
of the transition density is all of R3.
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We will invoke the support theorem of Stroock and Varadhan [20]. Indeed,
consider the controlled system associated to the SDE for (Xε

t , Y
ε
t , Z

ε
t ), which reads

dxε

dt
(t) = yε(t)zε(t)− εxε(t) +

√
εσ1f1(t)

dyε

dt
(t) = xε(t)zε(t)− εyε(t) +

√
εσ2f2(t)

dzε

dt
(t) = −2xε(t)yε(t)− εzε(t),

(2)

where {(f1(t), f2(t)), t ≥ 0} is the control at our disposal. Now by choosing appro-
priately the control, we can drive the two components (xε(t), yε(t)) in time as short
as we like to any desired position, which permits us to drive the last component
zε(t) to any prescribed position in any prescribed time. The result follows.

We are now in a position to give the proof of Theorem 3.1.

Proof of Theorem 3.1. Since by Proposition 2, P εt has a smooth transition density,
any invariant probability measure must have a smooth density which charges any
ball B ⊂ R3. Recall the fact that in our setting any two distinct ergodic invari-
ant probability measures must have disjoint supports which is impossible since the
measures have densities and charge any open set. Uniqueness of the invariant prob-
ability measure follows immediately from the fact that any invariant measure can
be decomposed into ergodic components [2].

6. The fast dynamics. Since by the results in Section 4 ξεt = (Xε
t , Y

ε
t , Z

ε
t ) con-

verges to ξt = (Xt, Yt, Zt), in order to study the limiting invariant probability mea-
sure one needs to consider the system on ever increasing time intervals as ε → 0.
One must pick a time scale, depending on ε, so that the amount of randomness
injected into the system is sufficient to keep the system from settling onto a deter-
ministic trajectory as ε→ 0.

With this in mind consider the process ξεt on the fast scale t/ε. In other words,

consider the process ξ̃εt = ξεt/ε which solves the SDE

˙̃
ξεt =

1

ε
B(ξ̃εt , ξ̃

ε
t )− ξ̃ε + σẆt . (1)

Here we have used a slight abuse of notations, replacing the ε–dependent standard

Brownian motion W ε
t =
√
εWt/ε by Wt. In coordinates we will write (X̃ε

t , Ỹ
ε
t , Z̃

ε
t ) =

(Xε
t/ε, Y

ε
t/ε, Z

ε
t/ε).

Let P̃ εt be the Markov semigroup associated to (1) and defined for ψ : R3 → R
by

(P̃ εt ψ)(ξ) = Eξψ(ξ̃εt ) . (2)

Associated with this right-action on functions we have a dual action on measures.

We will denote this by left action rather then the often used (P̃ εt )∗ notation. Hence
if µ is a measure on R3 and ψ a real-valued function on R3 then

µP̃ εt ψ =

∫
R3

(P̃ εt ψ)(ξ)µ(dξ) .

Of course, this time change does not change the set of invariant measures for the

dynamics since the time change was not state dependent. Hence P̃ εt has the same
unique invariant probability measure µε as P εt .
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6.1. Fast evolution of conserved quantities. One indication that this is the
right time scale is that the conserved quantities (u, v) = Φ(x, y, z) now continue
to evolve randomly as ε → 0. More precisely, defining the processes (Uεt V

ε
t ) by

(Uεt , V
ε
t ) = Φ(X̃ε

t , Ỹ
ε
t , Z̃

ε
t ) and applying Itô’s formula shows that

dUεt = [2σ2
1 − 2Uεt ]dt+ 4σ1X̃

ε
t dW

(1)
t ,

dV εt = [2σ2
2 − 2V εt ]dt+ 4σ2Ỹ

ε
t dW

(2)
t .

(3)

We will show below in Section 8 that {(Uεt , V εt )}ε>0 is tight, and that any accumu-
lation point (Ut, Vt) solves the SDE

dUt = [2σ2
1 − 2Ut]dt+ σ1

√
8
(
Ut − Γ(Ut, Vt)

)
dW

(1)
t ,

dVt = [2σ2
2 − 2Vt]dt+ σ2

√
8
(
Vt − Γ(Ut, Vt)

)
dW

(2)
t ,

(4)

where

Γ(u, v) = (u ∧ v)Λ
(u ∧ v
u ∨ v

)
. (5)

The function Λ will be defined in Section 7.3.2. However for our present discussion,
it will be sufficient to state a few important facts whose proofs will be given later
in Section 7.3.2.

Proposition 3. Λ(r) is a continuous and strictly increasing function on [0, 1] with
Λ(0) = 1

2 and Λ(1) = 1. Furthermore as ε→ 0+,

Λ(ε) =
1

2
+

1

16
ε+

1

32
ε2 + o(ε2),

Λ(1− ε) = 1− 2

| ln(ε)|
+ o
( 1

| ln(ε)|

)
.

In addition, on any closed interval in [0, 1), Λ is uniformly Lipschitz.

6.2. Finite time behavior (Ut, Vt). Before stating and proving the main theorem
of this section, let us establish three Lemmata.

Lemma 6.1. Let {Xt, t ≥ 0} be a continuous R+–valued Ft–adapted process which
satisfies

dXt = (a− bXt)dt+
√
cXtdWt,

X0 = x,

where b, c > 0, {Wt, t ≥ 0} is a standard Brownian adapted to Ft. motion and
x > 0. If a ≥ c/2, then with probability one Xt > 0 for all t ≥ 0.

Proof of Lemma 6.1. We consider the SDE

dYt = c−1
(
aYt − bY 2

t

)
dt+ YtdWt,

Y0 = x,

whose solution satisfies clearly

Yt = x exp

([
a

c
− 1

2

]
t− b

c

∫ t

0

Ysds+Wt

)
,
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and define At = 1
c

∫ t
0
Ysds, ηt = inf{s > 0, As > t} and Xt = Yηt . It is not hard to

see that there exists a standard Brownian motion, which by an abuse of notation
we denote again by W , which is such that

dXt = (a− bXt)dt+
√
cXtdWt,

X0 = x.

Since XAt = Yt and Yt > 0 for all t < ∞, for Xt to hit zero in finite time, it is
necessary that A∞ <∞ and Y∞ = 0. But from the above formula for Yt, we deduce
that if a ≥ c/2, on the event {A∞ <∞}, lim supt→∞ Yt = +∞, which implies that
A∞ = +∞.

We will need a slightly better result which generalizes the preceding Lemma.

Lemma 6.2. Let {Xt, t ≥ 0} and {Yt, t ≥ 0} be continuous R+–valued Ft–adapted
processes which satisfy 0 ≤ Yt ≤ Xt for all t ≥ 0, with Y0 > 0,

dXt = (a− bXt)dt+
√
cYtdWt,

X0 = x,

where b, c > 0, {Wt, t ≥ 0} is a standard Ft–Brownian motion and x > 0. If
a ≥ c/2, then a. s. Xt > 0 for all t ≥ 0.

Proof of Lemma 6.2. We define

Bt =

∫ t

0

Ys
Xs

ds, σt = inf{s > 0, Bs > t}, and Zt = Xσt .

There exists a standard Brownian motion, still denoted by W , such that

dZt = (a− bZt)
Zt
Yσt

dt+
√
cZtdWt,

X0 = x.

Define two sequences of stopping times as follows. S0 = 0, and for k ≥ 1,

Tk = inf
{
t > Sk−1, Zt <

a

2b

}
and Sk = inf

{
t > Tk, Zt >

a

b

}
.

On each interval [Tk, Sk], since Zt/Yσt ≥ 1, by a standard comparison theorem for
SDEs we can bound from below Zt by the solution of the equation of the previous
Lemma, starting from a/2b. Hence Zt never hits zero.

Using Lemma 6.2, we are now in a position to prove the following result.

Theorem 6.3. Assume that the initial condition (U0, V0) satisfies U0 > 0, V0 > 0.
Any solution of equation (4) lives in the set (0,+∞)×(0,+∞) for all positive times.

Proof. We first prove that any solution (Ut, Vt) never hits the two axis, except
possibly at (0, 0). The fact that (Ut, Vt) cannot hit (0, v) with v > 0 follows clearly
from the equation for Ut and Lemma 6.2, once we have noted that whenever Ut < Vt,
Ut − Γ(Ut, Vt) ≤ Ut/2, as follows from Proposition 3.

The same proof shows that (Ut, Vt) cannot hit (u, 0) with u > 0. It remains to
show that (Ut, Vt) cannot hit (0, 0). Let a = σ−21 , b = σ−22 , Kt = aUt + bVt. There
exists a standard Brownian motion Wt such that

dKt = (4− 2Kt)dt+
√

8[Kt − (a+ b)Γ(Ut, Vt)]dWt.

The result again follows from Lemma 6.2, since Γ(Ut, Vt) ≥ 0.
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We next establish a crucial property shared by all the possible accumulation
points of the collection {(Uε, V ε)}ε>0.

Theorem 6.4. If (U, V ) = limn→∞(Uεn , V εn), for some sequence εn → 0, then∫ t

0

1{Us=Vs}ds = 0 for all t > 0 almost surely .

Proof. For any M, δ > 0, let

ψM,δ(x) =

[
log

(
1

|x|

)
∧M

]
1[−δ,δ](x), ψδ(x) = log

(
1

|x|

)
1[−δ,δ](x).

We define ϕM,δ and ϕδ ∈ C1(R) ∩W 2,∞(R) by

ϕM,δ(0) = 0, ϕ′M,δ(0) = 0, ϕ′′M,δ = ψM,δ,

ϕδ(0) = 0, ϕ′δ(0) = 0, ϕ′′δ = ψδ.

Let Jεt = Uεt −V εt . It follows from Itô’s formula, which can be applied here although
ϕM,δ 6∈ C2(R), that for each M > 0, n ≥ 1,

8E

∫ t

0

[
σ2
1(X̃εn

s )2 + σ2
2(Ỹ εns )2

]
ψM,δ(J

εn
s )ds

≤ E

(
ϕM,δ(J

εn
t )− ϕM,δ(J

εn
0 )− 2

∫ t

0

(σ2
1 − σ2

2 − Jεns )ϕ′M,δ(J
εn
s )ds

)
.

We now let M →∞. Since σ2
1(X̃εn

s )2 +σ2
2(Ỹ εns )2 > 0 (ds×dP)-almost everywhere,

we deduce that

8E

∫ t

0

[
σ2
1(X̃εn

s )2 + σ2
2(Ỹ εns )2

]
ψδ(J

εn
s )ds

≤ E

(
ϕδ(J

εn
t )− ϕδ(Jεn0 )− 2

∫ t

0

(σ2
1 − σ2

2 − Jεns )ϕ′δ(J
εn
s )ds

)
.

We now take the limit in the last inequality as n → ∞, and deduce from Fatou’s
Lemma that

E

∫ t

0

[
σ2
1(Us − Γ(Us, Vs)) + σ2

2(Vs − Γ(Us, Vs))
]
ψδ(Js)ds

≤ E

(
ϕδ(Jt)− ϕδ(J0)− 2

∫ t

0

(σ2
1 − σ2

2 − Js)ϕ′δ(Js)ds
)
.

It follows from Proposition 3 that to any c > 0, we can associate δ > 0 and a > 0
such that whenever u, v ≥ c > 0, and −δ ≤ k = u− v ≤ δ,

4
[
σ2
1(u− Γ(u, v)) + σ2

2(v − Γ(u, v))
]

log

(
1

|k|

)
≥ a > 0.

Consequently the above establishes that

aE

∫ t

0

1Us≥c,Vs≥c1(−δ,δ)(Js)ds

≤ E

(
ϕδ(Jt)− ϕδ(J0)− 2

∫ t

0

(σ2
1 − σ2

2 − Js)ϕ′δ(Js)ds
)
,
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and letting finally δ → 0, we deduce that

E

∫ t

0

1Us≥c,Vs≥c1{0}(Js)ds = 0.

Since we know that both Ut and Vt never reaches 0, and c > 0 is arbitrary, this
shows that Jt = Ut − Vt spends a.s. zero time at 0, i.e. that the process (Ut, Vt)
spends a.s. zero time on the diagonal.

Now that we know that (U, V ) spends no time on the diagonal, we can introduce
the following time change. Let for u, v > 0,

F (u, v) =

{
1− Λ

(
u∧v
u∨v
)
, if u∧v

u∨v ≥
1
2 ,

1− Λ
(
1
2

)
, if u∧v

u∨v <
1
2 .

(6)

Let us define the time change

At =

∫ t

0

F (Us, Vs)ds, ηt = inf{s > 0, As > t},

Ht = Uηt , and Kt = Vηt .

(7)

There exists a two–dimensional Wiener process, which we still denote by (W
(1)
t ,W

(2)
t ),

such that

dHt = 2
σ2
1 −Ht

F (Ht,Kt)
dt+ 2

√
2σ1

√
Ht −Ht ∧Kt

F (Ht,Kt)
+ (Ht ∧Kt)G(Ht,Kt) dW

(1)
t ,

dKt = 2
σ2
2 −Kt

F (Ht,Kt)
dt+ 2

√
2σ2

√
Kt −Ht ∧Kt

F (Ht,Kt)
+ (Ht ∧Kt)G(Ht,Kt) dW

(2)
t ,

(8)

where

G(Ht,Kt) =
1− Λ

(
Ht∧Kt
Ht∨Kt

)
F (Ht,Kt)

.

It is easily verified that the diffusion matrix of this system is locally uniformly elliptic
in (0,+∞) × (0,+∞) and continuous. However, the drift is unbounded near the
diagonal. We will now prove uniqueness of the weak solution of (8), using methods
and results from Portenko [15]. [15] constructs a weak solution to an equation like
(8) from the solution without drift, using Girsanov’s theorem, provided the drift is
in Lp(R2), with p > 4. His uniqueness theorem is proved under conditions which are
difficult to verify. The condition is tailored to make sure that Girsanov’s theorem
can be used to show that the law of the equation with drift is absolutely continuous
with respect to that of the equation without drift. We will do that by verifying the
condition of Lemma 1.1 from [15], which we now state

Lemma 6.5. Assume that {Zt, t ≥ 0} is a non–negative progressively measurable
process, adapted to the σ–algebra {Ft, t ≥ 0}. Suppose that there exists a mapping
ρ from the set of subintervals of [0, T ] into R+, such that

(i) E
[∫ t
s
Zrdr

∣∣∣Fs] ≤ ρ(s, t), for all 0 ≤ s < t ≤ T ;

(ii) ρ(t1, t2) ≤ ρ(t3, t4), whenever (t1, t2) ⊂ (t3, t4);
(iii)

lim
h↓0

sup
0≤s<t≤T
t−s≤h

ρ(s, t) = κ
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Then for any λ < κ−1,

E exp

(
λ

∫ T

0

Ztdt

)
<∞.

We intend to apply Proposition 6.5 for a Zt which will give us sufficient control
over the drift in (8) that we can use Novikov’s criterion and Girsanov’s Theorem
to transform the SDE (8) into the same equation without drift, and hence prove
uniqueness of the solution using an argument in the vein of Theorem 1.2 from [15].

To better understand how to use Lemma 6.5 to remove the drift from (8) en
route to prove uniqueness of the solution, we take a close look at the drift term.
Our uniqueness argument exploits the fact that, since uniqueness is a local property,
we can modify the coefficients of the (H,K) equation outside the set {(h, k), M−1 ≤
h, k ≤M} for some arbitrary M > 0, so that tr resulting equation takes the form

dHt =
f1(Ht)

F (Ht,Kt)
dt+ σ1

√
g(Ht,Kt)dW

(1)
t ,

dKt =
f2(Kt)

F (Ht,Kt)
dt+ σ2

√
g(Kt, Ht)dW

(2)
t .

(9)

where for some C > 0, C−1 ≤ g(h, k) ≤ C and |f1(h)|+|f2(k)| ≤ C, for all h, k ∈ R.
Hence the only possible difficulty will arises if when F is small. From the definition
of F in (6) and the asymptotics in Lemma 3 we note that F (h, k) is small when
|h−k|
h∨k is small.

Hence if we wish to use Girsanov’s theorem to remove the drift from (9), the
danger comes from |h−k| small if we restrict our attention to the set {(h, k), M−1 ≤
h, k ≤M}. The following simple observation is useful to control the drift.

Lemma 6.6. If a, b > 0 then

log

(
b

a

)
≤ b+ log

(
1

a

)
1{a≤1} = b+ | log (a) |1{a≤1}.

Proof. The inequality follow from the fact that if b > 0 then b > log(b) and if a ∈
(0, 1] then log(1/a) ≥ 0. The equality follows from log

(
1
a

)
1{a≤1} = | log

(
1
a

)
|1{a≤1} =

| log (a) |1{a≤1}.

Combining Lemma 6.6 and the asymptotics in Lemma 3 we note that

2

F (h, k)
. |h ∨ k|+ | log(|h− k|)|1|h−k|≤1.

Hence on the set M−1 ≤ h ∨ k ≤ M , controlling F−1(h, k) amounts to estimating
| log(|h− k|)| for |h− k| < a, where 0 < a ≤ 1 is arbitrary.

Hence, defining Nt := Ht − Kt, if we desire to apply Lemma 6.5 to Zt =
1/F 2(Ht,Kt) it will be sufficient to estimate

E

[∫ t

s

1{|Nr|≤1/2} log2 |Nr| dr
∣∣∣Fs] =

E

[∫ t

s

1{|Nr|≤1/2} log2 |Nr| dr
∣∣∣Hs,Ks

]
, (10)

for 0 ≤ Hs,Ks ≤ M for some M > 0. Notice that as we will eventually prove
that Lemma 6.5 holds with κ = 0 the conclusion of Lemma 6.5 will be more than
sufficient to invoke Novikov’s criterion.
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Recall that Nt satisfies

dNt =
f1(Ht)− f2(Kt)

F (Ht,Kt)
dt+

√
g(Ht,Kt)dWt

with f1, f2, g bounded and g bounded away from zero. As a prologue to the needed
estimate on (10), we prove the following result.

Lemma 6.7. Let 0 < a < b < 2a ≤ 1. For any M > 0, there exists a constant CM
such that for any 0 ≤ s < t with t− s ≤ 1, |Hs|, |Ks| ≤M ,

E

[∫ t

s

1{a≤|Nr|≤b}

∣∣∣Hs,Ks

]
≤
[
(t− s) ∧ CM (b− a)4/5

]
.

Proof: It clearly suffices to prove that

E

[∫ t

s

1{a≤|Nr|≤b}

∣∣∣Hs,Ks

]
≤ CM (b− a)4/5.

We prove this result with {a ≤ |Nr| ≤ b} replaced by {a ≤ Nr ≤ b}. The same
proof would estimate similarly {−b ≤ Nr ≤ −a}. Let ϕa,b ∈ C1(R) ∩W 2,∞(R) be
defined by ϕa,b(0) = ϕ′a,b(0) = 0, ϕ′′a,b(x) = 1[a,b](x). Also ϕa,b 6∈ C2, we can apply
Itô’s formula to obtain

1

2

∫ t

s

g2(Hr,Kr)1{a≤Nr≤b}dr = ϕa,b(Nt)− ϕa,b(Ns)

−
∫ t

s

f1(Hr)− f2(Kr)

F (Hr,Kr)
ϕ′a,b(Nr)dr

≤ (b− a)[|Nt|+ |Ns|]

+ C(b− a)

∫ t

s

[
1 + log(|Nr|−1)1{a≤Nr≤1}

]
dr

≤ C[1 + |Nt|+ |Ns|+ log(1/a)](b− a).

Since there exists CM such that E[|Nt| + |Ns| | Hs,Ks] ≤ CM for |Hs| ≤ M ,
|Ks| ≤ M and t − s ≤ 1, and sup0<a≤1 log(1/a)(b − a)1/5 < ∞ (we recall that
b− a ≤ a), the result is proved. �

With this result in hand, we now return to the needed estimate on (10) which is
contained in the following Lemma.

Lemma 6.8. For any M > 0, there exists a constant CM such that, for any
0 ≤ s < t with t− s ≤ 1, on the event |Hs|, |Ks| ≤M ,

E

[∫ t

s

1{|Nr|≤1/2} log2 |Nr| dr
∣∣∣Hs,Ks

]
≤ CM (t− s)1/4.
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Proof: In this proof, C stands for a constant which may vary on each line.

E

[∫ t

s

1{|Nr|≤1/2} log2 |Nr| dr
∣∣∣Hs,Ks

]
=

∞∑
k=2

E

[∫ t

s

1{(k+1)−1≤|Nr|≤k−1} log2 |Nr| dr
∣∣∣Hs,Ks

]

≤
∞∑
k=2

log2(k + 1)E

[∫ t

s

1{(k+1)−1≤|Nr|≤k−1}dr
∣∣∣Hs,Ks

]

≤ C
∞∑
k=2

log2(k + 1)

(
1

k8/5
∧ (t− s)

)

≤ C(t− s)
N(s,t)∑
k=2

log2(k + 1) + C
∞∑

k=N(s,t)

log2(k + 1)
1

k8/5
,

where N(s, t) = [(t − s)−5/8], and we have used for the second inequality Lemma
6.7 and k−1 − (k + 1)−1 ≤ k−2. For some constant C, for all k ≥ 2,

log2(k + 1) ≤ Ck1/5,
hence the second term in the last right–hand side is bounded by

C

∞∑
k=N(s,t)

k−7/5 ≤ C(t− s)1/4.

Now the first term is bounded by

C(t− s)3/8 log2((t− s)−5/8) ≤ C(t− s)1/4.
The claimed result is proved. �

We are now in a position to establish the desired uniqueness result.

Theorem 6.9. Equation (4) has a unique solution which spends zero time on the
diagonal. Furthermore the whole sequence (Uε, V ε) converges weakly to this solution
as ε→ 0.

Proof. Consider any solution of (4) which spends zero time on the diagonal. The
time–change defined by (7) transforms this process into a solution (Ht,Kt) of (8).

Lemma 6.8 combined with Lemma 6.5 shows that, locally in the open positive
quadrant, the law of that solution to (8) is absolutely continuous with respect to that
of the same SDE, but without drift. That last equation has a unique weak solution,
according to Theorem 7.2.1 in [21]. Now any solution to (8) coincides with the
one constructed via Girsanov’s theorem in Theorem 1.1 of [15] whose assumptions
clearly hold in our case (alternatively, Girsanov’s theorem could also be used thanks
to a simplified version of Lemma 6.8 together with Lemma 6.5 again).

Now that we have a unique weak solution (Ht,Kt) to (8), we can time–change it

back to the original (Ht,Kt), i.e. defining A′t =
∫ t
0

ds
F (Hs,Ks)

, η′t = inf{s > 0, As >

t}, Ut = Hη′t
, Vt = Kη′t

. Indeed a weaker version (without the power 2 of the
logarithm) of Lemma 6.9 shows that A′t < ∞, for all t < ∞. Clearly A′t → ∞,
as t → ∞. So this defines (Ut, Vt) for all t ≥ 0, and this process coincides with
the arbitrary solution which spends zero time on the diagonal. But the law of
that process is uniquely characterized as being the time–change of the unique weak
solution of (8).
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Finally, it follows from this conclusion and Theorem 6.4 that all accumulation
points of the collection {(Uε, V ε), ε > 0} have the same law, hence the whole
sequence converges. This proves the stated result.

From now on (Ut, Vt) will always refer to the process whose law has just been
uniquely characterized.

Since the martingale problem associated to (8) is well posed, (Ht,Kt) is a Markov
process, and from Theorem 6.3 in [22] (this theorem is stated in dimension 1, but
exactly the same argument works in our case), so is its time–change (Ut, Vt). We call
Qt the Markov semigroup associated to that process, which is defined for φ : R2

+ →
R by

(Qtφ)(u, v) = E(u,v)

[
φ(Ut, Vt)

]
. (11)

Remark 2. We note that in both cases σ1 = σ2 and σ1 6= σ2, the law of the
uniquely characterized solution of (4) and that of a non–degenerate SDE in the
quadrant R+ ×R+ are equivalent.

This is in sharp contrast with the result one would get if the diffusion coefficient
would degenerate in a more regular way on the diagonal (e.g. it would be Lipschitz).
In the latter case, in the case σ1 = σ2, the solution would stay on the diagonal once
it has hit it. In the case σ1 6= σ2, the solution would stay in the set u ≥ v or v ≥ u,
depending upon the sign of σ2

1 − σ2
2 , after having hit once the diagonal.

Often the period around an orbit diverges like 1/ log(ρ) while approaching a
heteroclinic cycle or a homoclinic orbit. Here ρ is the distance from the limiting
orbit. This often leads to coefficients which vanish very slowly. This is the situation
in our setting. Hence while it may seem esoteric at first, in fact it is likely to be
generic in many settings.

6.3. Longtime behavior of (U, V ). Unlike the pair (Uεt , V
ε
t ), the pair (Ut, Vt)

constructed from (Ht,Kt) in the previous section form a Markov process. Hence,
we can speak of an invariant probability measure for the Markov semigroup Qt.

Observe that

d(Ut + Vt) =
[
a− 2(Ut + Vt)

]
dt+ dMt

where a > 0. Mt is a continuous local Martingale satisfying

d〈M〉t ≤ c(Ut + Vt)dt

for some positive c (recall that Γ(u, v) ≤ u ∧ v). Hence the following result follows
from Lemma 5.1.

Proposition 4. For any p ≥ 1, there exists a constant C(p) so that

sup
t≥0

E
[
Upt + V pt ] ≤ C(p)[1 + Up0 + V p0 ] .

We shall also need the an analogous result for the (H,K) process. We could
prove stronger results but the following will be sufficient for our purposes.

Lemma 6.10.
sup
t≥0

E
(
|Ht|2 + |Kt|2

)
<∞ .

Proof. It suffices to treat Ht. Defining Gt = [(Ht − σ2
1)+]2, we note that

d

dt
E(G2

t ) ≤ a− bE[G2
t ],

for some positive constants a and b. The result follows readily.
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Lemma 6.11. The process (H,K) possesses a unique invariant probability measure
ν. Additionally, ν has a denisty which is everywhere positive in the interior of
(0,∞)× (0,×) and

1

F
∈ L1(ν).

where F was defined in (6) and was used in the time change between (U, V ) and
(H,K).

Proof of Lemma 6.11. Lemma 6.10 gives the needed tightness of the averaged tran-
sition densities of (H,K) to employ the Krylov–Bogolyubov theorem to show the
existence of an invariant measure (just as we did in the proof of Corollary 2). Since
(H,K) was obtained by a Girsanov transformation from a non degenerate diffusion
with zero drift, its transition probabilities have a density which is positive in the
open positive quadrant. This immediately implies that any invariant measure must
have a density which respect to Lebesgue which is positive in the open positive
quadrant. This in turn implies that there can only be one invariant probability
measure which we will henceforth denote by ν.

The Birkoff ergodic theorem and the fact that ν and any transition probability
have densities which are positive in the open positive quadrant imply that for any
initial distribution and any φ ∈ L1(ν)

1

t

∫ t

0

φ(Hs,Ks)ds→
∫
φdν a.s as t→∞. (12)

It is not hard to see that whether
∫

(1/F )dν < ∞ or = ∞, in both cases, as
t→∞,

1

t

∫ t

0

ds

F (Hs,Ks)
→
∫

1

F
dν a.s.

The case
∫

(1/F )dν =∞ follows as follows. For any M > 0,∫ (
1

F
∧M

)
dν ≤ lim inf

t→∞

1

t

∫ t

0

ds

F (Hs,Ks)
,

which implies by monotone convergence that

+∞ ≤ lim inf
t→∞

1

t

∫ t

0

ds

F (Hs,Ks)
,

hence the result.
Consequently, in order to prove that 1/F ∈ L1(ν), as a consequence of Fatou’s

Lemma, all we have to show is that there exists C > 0 and T > 0 such that for all
t ≥ T ,

E

∫ t

0

ds

F (Hs,Ks)
≤ Ct. (13)

It follows from Lemma 6.10 and Lemma 6.6 that all (13) will follow from the fact
that for some constant C and all t ≥ 1,∫ t

0

E
[∣∣ log |Ns|

∣∣1{|Ns|≤1}] ds ≤ Ct.



18 JONATHAN MATTINGLY AND ETIENNE PARDOUX

Consider the function ϕ ∈ C1(R) ∩W 2,∞(R) defined as

ϕ(x) =


7
4 − x, if x < −1;
x2

4 (3− 2 log(|x|)), if −1 ≤ x ≤ 1;

x− 1
4 , if x > 1.

We then have

ϕ′(x) =


−1, if x < −1;

x(1− log(|x|)), if −1 ≤ x ≤ 1;

1, if x > 1;

and

ϕ′′(x) = (− log(|x|)+.
We now deduce from Itô’s formula

E

∫ t

0

∣∣ log |Ns|
∣∣1{|Ns|≤1}g(Hs,Ks)ds =

2E[ϕ(Nt)− ϕ(N0)]− 2E

∫ t

0

ϕ′(Ns)

F (Hs,Ks)
[f1(Hs)− f2(Ks)]ds.

The result now follows easily from Lemma 6.10 and the fact that the process
F−1(Hs,Ks)ϕ

′(Ns) is bounded.

Theorem 6.12. The semigroup Qt defined in the previous section possesses a
unique invariant probability measure λ. Furthermore, λ(du, dv) = ρ(u, v) du dv
where ρ is continuous away from the diagonal and positive in the positive open
quadrant. Lastly ρ(u, v)→∞, as |u− v| → 0 in the positive quadrant.

Proof of Theorem 6.12. Let ρ(u, v) be the density of the unique invariant measure
ν as guaranteed by Lemma 6.11 . The same lemma also states that ρ is positive in
the open positive quadrant.

Now, using the notations from the proof of Theorem 6.9, for any measurable and
locally bounded f : (0,∞)× (0,∞)→ R one has∫ t

0

f(Us, Vs)ds =

∫ t

0

f(Hη′s
,Kη′s

)ds

=

∫ η′t

0

f(Hr,Kr)

F (Hr,Kr)
dr

1

t

∫ t

0

f(Us, Vs)ds =
η′t
t
× 1

η′t

∫ η′t

0

f(Hr,Kr)

F (Hr,Kr)
dr

If one assumes that f is bounded then Lemma 6.11 ensures that f/F ∈ L1(ν) and
that for any initial distribution

lim
t→∞

1

t

∫ t

0

f(Us, Vs)ds =
(

lim
t→∞

η′t
t

)
×
∫

f

F
dν a.s

where the convergence of 1
η′t

∫ η′t
0

f(Hr,Kr)
F (Hr,Kr)

dr to
∫
f
F dν is ensured by (12). The same

computation with f ≡ 1 permits one to conclude that

lim
t→∞

η′t
t

=
(∫ 1

F
dν
)−1

.
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In summary, we have that for any f measurable and bounded, for any initial prob-
ability measure,

lim
t→∞

1

t

∫ t

0

f(Us, Vs)ds =

∫
f
F dν∫
1
F dν

. (14)

This is enough to show that our process (Ut, Vt) has the unique invariant probability
measure

λ(du, dv) =
F−1(u, v)ρ(u, v)dudv∫

R2
+
F−1(u, v)ρ(u, v)dudv

.

Indeed, to see uniqueness, let λ′ be any ergodic invariant probability measure for
(Ut, Vt). Then for any bounded f , the Birkoff ergodic theorem implies that

lim
t→∞

1

t

∫ t

0

f(Us, Vs)ds =

∫
fdλ′ a.s

for λ′-almost every initial (U0, V0). Combining this with (14) implies that
∫
fdλ′ =∫

fdλ for all bounded f which in turn implies λ = λ′. Since any invariant measure
can be decomposed into ergodic invariant measures the uniqueness of λ is proved.

7. The Deterministic Dynamics. We now investigate more fully the determin-
istic dynamics given in (1) and obtained by formally setting ε = 0 in (7). As already
mentioned, (1) has two conserved quantities (u, v) = Φ(ξ0) which are constant on
any given orbit. If ξ0 = (X0, Y0, Z0) then u = 2x2 + z2 and v = 2y2 + z2 give two
independent equations. Since we are working in three dimensions, the locus of the
solutions, which contains the points in the orbits, is a one–dimensional curve. We
undertake this study since the 1

εB term in (1) implies that on the fast timescale the
solution will make increasingly many turns very near a deterministic orbit of (1),
before the stochastic or dissipative terms cause appreciable diffusion or drift from
the current deterministic orbit.

7.1. Structure of orbits. If u 6= v then the orbit is a simple periodic orbit which
is topologically equivalent to a circle. In this case, there are two disjoint orbits
which are solutions. If u > v, one such orbit is given by

Γ+
u,v =

{
(

√
u−z2

2 ,±
√

v−z2
2 , z) : z ∈ [−

√
v,
√
v]
}
,

and another by

Γ−u,v =
{

(−
√

u−z2
2 ,±

√
v−z2

2 , z) : z ∈ [−
√
v,
√
v]
}
.

Similarly if v > u then the corresponding orbits are given by

Γ+
u,v =

{
(±
√

u−z2
2 ,

√
v−z2

2 , z) : z ∈ [−
√
u,
√
u]
}
,

Γ−u,v =
{

(±
√

u−z2
2 ,−

√
v−z2

2 , z) : z ∈ [−
√
u,
√
u]
}
.

Whether u > v or v > u is enough information to localize a given orbit to one
of two orbits on sphere of radius

√
(u+ v)/2. The remaining piece of information

is contained in the sign of the function defined by

sn(x, y, z) = sign
(
1|x|>|y|x+ 1|y|>|x|y

)
(1)
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The value of sn corresponds to the sign decorating the Γ±u,v. Hence if one starts
from the initial condition (x, y, z) such that the (u, v) computed from these orbits
satisfies u 6= v then the deterministic dynamics will trace the set Γsn

u,v.
The exception to being topologically equivalent to a circle are the lines of fixed

points given by {(0, 0, z) : z ∈ R}, {(x, 0, 0) : x ∈ R}, and {(0, y, 0) : y ∈ R} and the
heteroclinic orbits which connect them which are contained in the locus of points
where u = v. For a given such choice there are four heteroclinic orbits given by

H(1)
u =

{
(

√
u−z2

2 ,

√
u−z2

2 , z) : z ∈ [−
√
u,
√
u]
}

H(2)
u =

{
(

√
u−z2

2 ,−
√

u−z2
2 , z) : z ∈ [−

√
u,
√
u]
}

H(3)
u =

{
(−
√

u−z2
2 ,−

√
u−z2

2 , z) : z ∈ [−
√
u,
√
u]
}

H(4)
u =

{
(−
√

u−z2
2 ,

√
u−z2

2 , z) : z ∈ [−
√
u,
√
u]
}

These heteroclinic orbits split each sphere into four regions which contain closed
orbits of finite period. The following set limits hold

lim
v→u−

Γ+
u,v = lim

u→v+
Γ+
u,v = H(1)

u ∪H(2)
u

lim
v→u+

Γ+
u,v = lim

u→v−
Γ+
u,v = H(1)

u ∪H(4)
u

lim
v→u−

Γ−u,v = lim
u→v+

Γ−u,v = H(3)
u ∪H(4)

u

lim
v→u+

Γ−u,v = lim
u→v−

Γ−u,v = H(2)
u ∪H(3)

u

In contrast to the case when u 6= v, the orbits starting from a given point (x, y, z) do
not converge to one of these unions of heteroclinic trajectories since any given orbit
is restricted to a single heteroclinic trajectory. This could be a point of concern,
but we will see in the next section that it does not pose a problem, which is an
interesting and important feature of this model.

7.2. Symmetries and their implications. Defining se : R3 → R3 by se(x, y, z) =
(y, x, z) and s± : R3 → R3 by s±(x, y, z) = (−x,−y, z), observe that if ξt is a so-
lution to (1) then so are se(ξt) and s±(ξ). This implies that Γ−u,v = s±(Γ+

u,v) and

Γ+
u,v = se(Γ

+
v,u), and that if µ is an invariant probability measure for Pt then nec-

essarily µs−1e and µs−1± are also invariant probability measures for Pt.
The situation for the stochastic dynamics given in (7) is the same for s± but

depends on the choice of σ1 and σ2 for se. In all cases s±(ξεt ) is a solution (for a
different Brownian motion) if ξεt is a solution. However se(ξ

ε
t ) is again a solution if

ξεt is one only when σ1 = σ2. In any case, we have the following observation which
we formulate as a proposition for future reference.

Proposition 5. Let s : R3 → R3 be a map such that s(ξεt ) is a solution (for possibly
a different Brownian motion) whenever ξεt is a solution, then µε = µεs−1 where µε

is the unique invariant probability measure of P εt guaranteed by Theorem 3.1.

Proof of Proposition 5. As before it is clear that µεs−1 is again an invariant proba-
bility measure, however we know that µε is the unique invariant probability measure
given the assumptions on the σ’s. Hence we conclude that µεs−1 = µ.
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7.3. Averaging along the deterministic trajectories. Since the separation of
time scale between the fast and slow dynamics leads to the averaging of the coeffi-
cients of (Uε, V ε) equation around the deterministic orbits we now discuss averaging
along the deterministic orbits in general. After this we will define the function Λ
whose asymptotics was described in Proposition 3.

Given a function ψ : R3 → R, we define

(Aψ)(ξ) = lim
t→∞

1

t

∫ t

0

(ψ ◦ ϕs)(ξ)ds. (2)

Notice that Aψ is again a function from R3 → R and that it is constant on the
connected components of the level sets of (u, v).

7.3.1. Averaging when u 6= v. Let (u, v) = Φ(ξ). If u 6= v then ξ lies on a periodic
orbit of finite period. Letting τ denote the period, one has

(Aψ)(ξ) =
1

τ

∫ τ

0

(ψ ◦ ϕs)(ξ)ds

To obtain a more explicit representation for the averaging operation we will
switch to an angular variable θ. Given any positive u and v, for θ ∈ [0, 2π] we
parametrize z by z(θ) =

√
u ∧ v sin(θ). To define the other coordinates we introduce

the following auxiliary angles

φ1(θ) =

{
arcsin

(√
v
u sin θ

)
u > v

θ u ≤ v
, φ2(θ) =

{
θ u ≥ v
arcsin

(√
u
v sin θ

)
u < v

.

and set x(θ) =
√

u
2 cos(φ1(θ)), and y(θ) =

√
v
2 cos(φ2(θ)). Putting everything

together we have that the trace of the trajectory starting at (
√

u
2 ,
√

v
2 , 0) is given

by

Γ+
u,v =

{
γu,v(θ) : θ ∈ [0, 2π]

}
where γu,v(θ)

def
=
(
x(θ), y(θ), z(θ)

)
. As already discussed depending on weather u > v

or v > u this represents a closed orbit on the sphere of radius
√

(u+ v)/2 which
rotates around respectively either the x-axis in the positive x half space or the y-
axis in the positive y half space. The orbits in the negative half space are given by
Γ−u,v = s±(Γ+

u,v).
To define the occupation measure on these orbits we define a third auxiliary angle

φu,v(θ) = arcsin
(√

u∧v
u∨v sin θ

)
=


φ1(θ) u > v

θ u = v

φ2(θ) u < v

For u 6= v, we define a probability measure on R3 by

ν+u,v(dx dy dz) =

∫ 2π

0

Ku,v

| cos(φu,v(θ))|
δγu,v(θ)(dx dy dz)dθ (3)

where K−1u,v =
∫ 2π

0
1

| cos(φu,v(θ))|dθ. We let ν−u,v(dx dy dz) = ν+u,vs
−1
± . For u = v, we

define ν±u,u(dx dy dz) = δ(0,0,±
√
u)(dx dy dz). Each of these probability measures is

supported on the corresponding set Γ+
u,v or Γ−u,v. It is straightforward to see that

for any ψ : R3 → R and (x, y, z) ∈ R3 such that |x| 6= |y| one has

(Aψ)(ξ) =

∫
R3

ψ(η)νsu,v(dη) (4)



22 JONATHAN MATTINGLY AND ETIENNE PARDOUX

where ξ = (x, y, z), (u, v) = Φ(ξ) and s = sn(ξ) where sn was defined in (1).

7.3.2. Definitions of Γ and Λ. The central quantities which need to be averaged
in the (Uεt , V

ε
t ) dynamics, given in equation (3), are the infinitesimal quadratic

variations. They are given respectively by 16σ2
1x

2 and 16σ2
1y

2. From (4), we have
that x2 = 1

2 (u − z2) and y2 = 1
2 (v − z2). Since u and v are constant along the

deterministic trajectories, this in turn implies that

A(x2) =
u−A(z2)

2
and A(y2) =

v −A(z2)

2
.

Since z2 does not depend on the chose of sign in the definition ν±u,v(dx dy dz) by
defining the single function

Γ(u, v) = A(z2) = Ku,v

∫ 2π

0

(u ∨ v) sin2(θ)

| cos(φu,v(θ))|
dθ (5)

we have access to all of the averaged quantities we will require.
Clearly the function Γ(u, v) is symmetric in (u, v) and can be written as a function

of u ∨ v and u ∧ v only. In fact one see that if one defines

Λ(r) = Kr

∫ 2π

0

sin2(θ)

| cos(arcsin(r sin(θ)))|
dθ, where

K−1r =

∫ 2π

0

1

| cos(arcsin(r sin(θ)))|
dθ

for r ∈ [0, 1] then (5) holds. The properties of Λ given in Proposition 3 follow
directly from this definition, Proposition 6 in the next subsection, and its proof.

7.3.3. Averaging near the diagonal.

Proposition 6. Let ψ : R3 → R be a continuous function. If δ = 1−(u∧v)/(v∨u)
then as |u − v| → 0 (and hence δ → 0) while (u, v) remains in a compact set, one
has

(νψ)(u, v, σ) = 1
2 (ψ(0, 0,

√
u ∨ v) + ψ(0, 0,−

√
u ∨ v)) + o(1) (6)

If in addition for all u

Cu(ψ) =

∫ 2π

0

ψ(
√
u cos(θ),

√
u cos(θ),

√
u sin(θ))

| cos(θ)|
dθ <∞,

then as u→ v one has

(νψ)(u, v, σ) =
Cu(ψ)

2| ln(1− r)|
+ o
(
| ln(1− r)|−1

)
,

where r = u∧v
v∨u .

Remark 3. The asymptotic expansion given in Proposition 3 follows from the fact
that Cu(1 − z2) = 4u. The continuity properties follow from the formulas and the
fact that the values at the ends of the intervals are finite.

Proof. We will begin by exploring the asymptotics of the constant Kr which equals
Ku,v when r = u∧v

v∨u . Making the change of variables α = sin θ followed by β2 =
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√
rα2, one has

K−1r =

∫ 1

0

4√
(1− rα2)(1− α2)

dα =
4

r
1
4

∫ r
1
4

0

1√
(1− r 1

2 β2)(1− r− 1
2 β2)

dβ

=
4

r
1
4

∫ r
1
4

0

1

1− β2

1√
1− γ(r) β2

(1−β2)2

dβ,

where γ(r) = r
1
2 + r−

1
2 − 2. Now since for all β, r ∈ (0, 1] with β ≤ r

0 ≤ γ(r)
β2

(1− β2)2
≤ γ(r)

r2

(1− r2)2
≤ 1

16

we have

4

r
1
4

arctanh(r
1
4 ) ≤ K−1r ≤ 16√

15

1

r
1
4

arctanh(r
1
4 ), (7)

again for all r ∈ (0, 1]. Furthermore it is clear that

lim
r→1

Kr| ln(1− r)| = 1

2
. (8)

Now

(νψ)(u, v, σ) = Ku,v

∫ 2π

0

ψ(x(θ), y(θ), z(θ))

| cos(φ(θ))|
dθ . (9)

As |u − v| → 0 and hence r → 1, this integral concentrates around the two points
θ equal π/2 and 3π/2 since around these points | cos(φ(θ))| → 0 as r → 1. At
these points (x(θ), y(θ), z(θ)) converges to (0, 0,

√
u ∨ v) and (0, 0,−

√
u ∨ v) respec-

tively. Around these points we have one behavior and away from the another.
Consider the following representative portion of the integral which will converge to
1
2ψ(0, 0,

√
u ∨ v). Fixing any sufficiency small ε > 0, we define a = a(ε) so that

sin(π/2− a) = sin(π/2 + a) = 1− ε. Then

Ku,v

∫ π

0

ψ(x(θ), y(θ), z(θ))

| cos(φu,v(θ))|
dθ = Ku,v

∫ π
2−a

0

ψ(x(θ), y(θ), z(θ))

| cos(φu,v(θ))|
dθ

+Ku,v

∫ π
2 +a

π
2−a

ψ(x(θ), y(θ), z(θ))

| cos(φu,v(θ))|
dθ +Ku,v

∫ π

π
2 +a

ψ(x(θ), y(θ), z(θ))

| cos(φu,v(θ))|
dθ .

The remaining half of the integral in (9) will converge to 1
2ψ(0, 0,−

√
u ∨ v) in a

completely analogous fashion. The first and third integral behave the same. We
consider the first. If, as before, we have r = u∧v

v∨u and then make the change of

variables α = sin θ followed by β2 =
√
rα2 to obtain

Ku,v

∣∣∣ ∫ π
2−a

0

ψ(x(θ),y(θ),z(θ))
| cos(φu,v(θ))| dθ

∣∣∣ ≤ Ku,v‖ψ‖∞
r

1
4

∫ (1−ε)r
1
4

0

1
1−β2

1√
1−γ(r) β2

(1−β2)2

dβ

≤ CKr‖ψ‖∞arctanh((1− ε)r 1
4 ) .

By the asymptotics on Kr given in (7), this goes to zero since ε > 0 as |u− v| → 0
and hence r → 1.
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Now as r → 1 one has

Kr

∫ π
2 +a

π
2−a

ψ(x(θ), y(θ), z(θ))

| cos(φ(θ))|
dθ ≈ψ(0, 0,

√
u ∨ v)

2Kr

r
1
4

∫ r
1
4

(1−ε)r
1
4

1
1−β2 dβ

≈ 1
2ψ(0, 0,

√
u ∨ v) .

The last conclusion follows directly from the assumed finiteness of Cu(ψ) and the
asymptotics of Kr as r → 1 as |u− v| → 0. in (8).

7.4. The Ergodic Invariant Measures. The set of ergodic invariant probabil-
ity measures is the set of extremal invariant probability measures. The extremal
measures are those which can not be decomposed. Clearly this corresponds to the
collection of the occupancy measures of each periodic orbit along with the delta
measures sitting on each of the fixed points (0, 0,

√
u) and (0, 0,−

√
u). These are

precisely the measures ν±u,v defined in Section 7.3.1. Since the union of these orbits
and fixed points covers all the space except for the heteroclinic connections which
cannot support an invariant probability measure. Hence we have identified all the
ergodic probability measures.

We summarize this discussion in the following result.

Proposition 7. The set of ergodic invariant probability measure of (1) consists
precisely of

{ν+u,v, ν−u,v : u, v > 0} .

Given (u, v) ∈ R2
+, we define the probability measure νu,v on R3 by

νu,v(dξ) =
1

2
ν+u,v(dξ) +

1

2
ν−u,v(dξ) (10)

where ν±u,v(dξ) we defined in (3) and the text below it.
The following corollary of Proposition 7 will be central to the proof of the con-

vergence of µε to a unique limiting measure.

Corollary 3. Any invariant probability measure m for (1) which satisfies ms−1± =
m can be represented as

m(dx dy dz) =

∫
[0,∞)2

νu,v(dx dy dz) γ(du dv)

for some probability measure γ on (0,∞)2. Furthermore the measure γ is unique.
Conversely, a probability measure which is invariant for (1) and satisfies ms−1± = m
is uniquely specified by the measure γ = mΦ−1.

Proof of Corollary 3. The ergodic decomposition theorem [2] implies that there ex-
ists a unique pair of measures (γ+, γ−) so that the total mass of γ+ + γ− is one
and

m(dx dy dz) =

∫
[0,∞)2

ν+u,v(dx dy dz) γ
+(du dv)

+

∫
[0,∞)2

ν−u,v(dx dy dz) γ
−(du dv) .
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Now since ms−1± = m, ν−u,v = ν+u,vs
−1
± and ν+u,v = ν−u,vs

−1
± , we have that

m(dx dy dz) =

∫
[0,∞)2

ν−u,v(dx dy dz) γ
+(du dv)

+

∫
[0,∞)2

ν+u,v(dx dy dz) γ
−(du dv) .

Since ν−u,v and ν+a,b are mutually singular for all choices of positive u, v, a, and b,

we see that γ+ = γ− and the total mass of both is 1
2 . Setting γ = 2γ+ = 2γ− we

see that γ is a probability measure and that

m(dx dy dz) =

∫
[0,∞)2

[
1
2ν

+
u,v(dx dy dz) + 1

2ν
−
u,v(dx dy dz)

]
γ(du dv)

=

∫
[0,∞)2

νu,v(dx dy dz) γ(du dv)

This proves that any invariant m satisfying the symmetry assumption can be repre-
sented as claimed. All that remains is to show is that γ is unique. Let γ̃ be another
probability measure so that

m(dx dy dz) =

∫
[0,∞)2

νu,v(dx dy dz) γ̃(du dv)

which implies that

m(dx dy dz) =

∫
[0,∞)2

[
1
2ν

+
u,v(dx dy dz) + 1

2ν
−
u,v(dx dy dz)

]
γ̃(du dv)

which in turn implies that 1
2 γ̃ = γ+ since the ergodic decomposition is unique.

However, this implies γ̃ = γ as desired.

7.5. The Limiting Fast Semigroup. We begin with a small detour to think
about the limiting dynamics. Its action on a test function can be understood to
instantly assign to each point on an orbit the average of the function around the
orbit and to each point on the heteroclinic connection the value of the function at
the limiting fixed point on the z-axis.

Recall the definition of νu,v from (10), for φ : R3 → R we define νφ by

(νφ)(u, v) =

∫
φ(ξ)νu,v(dξ) .

Recalling the definition of Φ which maps ξ to (u, v) from (4), we note that for any
ρ : R2

+ → R,

ν(ρ ◦ Φ)(u, v) = ρ(u, v) . (11)

Lastly recalling the definition of P̃ εt from (2), Qt from (11) and let λ be the unique
invariant probability measure of Qt guarantied by Theorem 6.12. For φ : R3 → R
we define

(P̃tφ)(ξ) = (Qtνφ) ◦ Φ(ξ) (12)

Remark 4. If φ is a test function such that φ◦s± = φ or m is an initial measure on

R3 such that m = ms−1± then is not hard to convince oneself that mP̃ εt φ → mP̃tφ
as ε → 0. If one neither starts with initial data which has this symmetry nor
uses a symmetric test function, then things are more complicated. The orbit may
average with respect to only one of the two measure: ν+u,v or ν−u,v. For definiteness
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assume that we are on the ν+u,v orbit. We believe that when the (U, V )-dynamics

hits the line U = V then it is essentially spending all of its time at (0, 0,
√
u) and

(0, 0,−
√
u). (See Proposition 6.) With probability 1

2 it returns to a ν+u,v orbit and

with probability 1
2 it enters on to a ν−u,v orbit. Hence to describe the P̃t semigroup

in the non-symmetric setting, it seems we need to add a sequence of independent
Bernoulli random variables to make decision of whether one should average with
respect to the + or the − orbit. Since we are primarily interested in the structure of
the invariant probability measure we have not tried to make this picture rigorous.

Let λ be the unique invariant probability measure of Qt and define µ = λν.

Observe that µ is invariant under P̃t because for any bounded φ : R3 → R one has

µP̃tφ = λν(Qtνφ ◦ Φ) = λQtνφ = λ(νφ) = µφ .

Here the first equality is by definition, the second follows from (11), the third from
the invariance of λ under Qt and the last from the definition of µ.

8. Convergence of (U ,εV
)
ε towards (U, V ). We now prove the results which were

taken for granted in Section 6, namely that {(Uεt , V εt )}>ε0 is tight, and that any
accumulation point (Ut, Vt) solves the SDE (4).

8.1. Tightness. Let us rewrite (3) in the form{
dUεt = (Cu − 2Uεt )dt+ dMε

t

dV εt = (Cv − 2V εt )dt+ dNε
t ,

(1)

where {Mε
t , t ≥ 0} and {Nε

t , t ≥ 0} are continuous local martingales such that

d

dt
〈Mε〉t ≤ CUεt ,

d

dt
〈Nε〉t ≤ CV εt , (2)

where Cu, Cv and C are three positive constants.
We want to show

Proposition 8. Suppose that

sup
ε>0

E
[
(Uε0 )2 + (V ε0 )2

]
<∞ .

Then the collection of processes {(Uεt , V εt ), t ≥ 0}ε>0 is tight in C([0,+∞);R2).

In light of (1) and (2), the following needed first step follows from Lemma 5.1.

Lemma 8.1. Under the condition of Proposition 8,

sup
ε>0

sup
t≥0

E
[
(Uεt )2 + (V εt )2

]
<∞.

We can now proceed with the proof of tightness.

Proof of Proposition 8. We prove tightness of Uε only, V ε being treated completely
similarly. We have

Uεt =
Cu
2

+

(
Uε0 −

Cu
2

)
e−2t + e−2t

∫ t

0

e2sdMε
s .

Clearly the first two terms on the right are tight in C([0,∞)), since the collection
of R–valued r.v.’s Uε0 is tight. We only need check tightness in C([0,∞)) of the

process W ε
t :=

∫ t
0
e2sdMε

s . Since W ε
0 = 0, we need only verify condition (ii) from

Theorem 7.3 in Billingsley [1], which follows from the condition of the Corollary of
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Theorem 7.4 again in [1]. In other words it suffices to check that for any T , η and
η′ > 0, there exists δ ∈ (0, 1) such that for all ε > 0, 0 ≤ t ≤ T − δ,

1

δ
P

(
sup

t≤s≤t+δ
|W ε

s −W ε
t | ≥ η

)
≤ η′. (3)

Combining Chebycheff and Burkholder–Davis–Gundy inequalities, we deduce that
(we use below the result from Lemma 8.1)

P

(
sup

t≤s≤t+δ
|W ε

s −W ε
t | ≥ η

)
≤ η−4E

(
|〈W ε〉t+δ − 〈W ε〉t|2

)
≤ η−4e8TC2δ

∫ t+δ

t

E[(Uεs + V εs )2]ds

≤ η−4C̄e8T δ2,

from which (3) follows if we choose δ = e−4T η2
√
η′/C̄.

8.2. Tighness of λε. Since (Uεt , V
ε
t ) is not a Markov process it does not have

an invariant probability measure. However the projection λε = µεΦ−1 of µε, the
unique invariant probability measure of the Markov process ξεt , is well defined. We
now establish the following tightness result:

Lemma 8.2. The sequence of measure {λε : ε > 0} is tight on the space (0,∞) ×
(0,∞).

Remark 5. We emphasis that Lemma 8.2 is tightness in the open set (0,∞)×(0,∞)
which implies the measure does not accumulate neither at the boundary at “infinity”
nor at the boundary at zero. In other words, for any δ > 0 there exists a r > 0 so
that

inf
ε>0

λε([ 1r , r]× [ 1r , r]) > 1− δ.

The following result which implies the tightness at infinity follows immediately
from the definition of λε, the definition of Φ and Corollary 2.

Lemma 8.3. For any p ≥ 1, there exists a C(p) > 0 so that

sup
ε>0

∫
(up + vp)λε(du, dv) < C(p)

We now handle the boundary at zero.

Lemma 8.4. Let ζt be a Markov process and f and g two real-valued functions on
the state space of ζt satisfying 0 ≤ g(ζt) ≤ f(ζt) for all t ≥ 0 almost surely and such
that f(ζt) is a continuous semimartingale satisfying

df(ζt) = (a− f(ζt))dt+ c
√
g(ζt)dWt

where a and c are positive constants and Wt a standard Wiener process. If µ is
any invariant probability measure of ζt with µ[ f2 ] =

∫
f2(ζ)dζ < ∞, then for any

δ ∈ (0, 1).

µ{f ≤ δ} ≤
µ
[
f2
]

+ b

a | log δ|
, (4)

with b = 1 + c2/2.
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Proof of Lemma 8.4. Defining

φ(x) =

{
− 1
x , x ≤ 1

1, x ≥ 1
, I(x) =

{
1− log x, x ≤ 1

x, x ≥ 1
,

H(x) =

{
2x− x log x, x ≤ 1
1
2x

2 + 3
2 , x ≥ 1

.

Observe that H ′(x) = I(x) and I ′(x) = φ(x) and that φ, I and H are well defined
on the intervals (0,∞), (0,∞) and [0,∞) respectively. H and I are everywhere
positive, while φ is positive on [1,+∞) and negative on (0, 1). It is plain that the
discontinuity of H ′′ at x = 1 will not prevent us from using Itô’s formula. Taking
ζ0 distributed according to µ, noticing that since H(x) < 2 + x2 for x ≥ 0, and
setting Xt = f(ζt) for notational convenience, we have that

µ
[
Eζ0H(Xt)

]
= µ

[
Eζ0(H ◦ f)(ζt)

]
= µ

[
H ◦ f

]
<∞. (5)

Now from Itô’s formula

dH(Xt) = (a−Xt)I(Xt)dt+
1

2
c2g(ζt)φ(Xt)dt+ dMt

where Mt is the Martingale defined by dMt = c
√
g(ζt)I(Xt)dWt. We conclude that

a

∫ t

0

Eζ0 [I(Xs)] ds ≤ Eζ0H(Xt)−H(X0) +

∫ t

0

Eζ0 XsI(Xs) ds

+
c2

2

∫ t

0

Eζ0 g(ζs)φ
−(Xs) ds .

Now integrating over the initial conditions ζ0 (which were distributed according to
µ), we see that H terms are equal by the stationarity embodied in (5) (and hence
they cancel) and that

aµ[I ◦ f ] ≤ µ[f(I ◦ f)] +
c2

2
µ[g(φ− ◦ f)]

and since g(φ− ◦ f) ≤ 1,

aµ
[
| log f |1{f ≤ 1}

]
≤ aµ[ I ◦ f ] ≤ µ[ f(I ◦ f) ] +

c2

2

Finally, for any δ ∈ (0, 1)

aµ{f ≤ δ} = aµ
[
{| log f | ≥ | log δ|} ∩ {f ≤ 1}

]
≤
aµ
[
| log f |1{f ≤ 1}

]
| log δ|

≤
µ
[
f(I ◦ f)

]
+ c2

2

| log δ|

The result follows, since xI(x) ≤ 1 + x2.

The following Corollary is a direct consequence of the two last Lemmata

Corollary 4. There exists a constant C > 0 so that for any δ ∈ (0, 1)

sup
ε>0

λε{(u, v) : u+ v < δ} ≤ C

| log δ|

Proof of Lemma 8.2. The result follows immediately by combining
Lemma 8.3 and Corollary 4.
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8.3. Convergence of Quadratic variation. Now that we know that the collec-
tion {(Uεt , V εt ), t ≥ 0}ε>0 is tight, in view of Theorem 6.3, the weak uniqueness
result for (4), and comparing (3) and (4), the weak convergence (Uε, V ε)⇒ (U, V )
will follow from the convergence of the quadratic variations of Uε and V ε to those
of U and V , which will be proved in the next Lemma.

For each M > 0, let

κεM := inf{t > 0, Uεt ∨ V εt > M}.

Considering the three different cases of the behavior of (U, V ), it is not hard
to see that in all cases κM , defined exactly as κεM , but with (Uε, V ε) replaced by
(U, V ), is a.s. a continuous function of the (U, V ) trajectory, hence

κεM =⇒ κM as ε→ 0

will follow from (Uε, V ε)⇒ (U, V ).
In particular

lim inf
ε→0

P(κεM > t) ≥ P(κM > t).

Clearly for all t > 0,

P(κM > t)→ 1, as M →∞.
It will then follow that for any t > 0, the lim inf as ε → 0 of P(κεM > t) can be
made arbitrarily close to 1, by choosing M large enough.

Lemma 8.5. Let νε be any sequence of tight probability measures on R3 and let

(X̃ε
t , Ỹ

ε
t , Z̃

ε
t ) be the solution to (1) with (X̃ε

0 , Ỹ
ε
0 , Z̃

ε
0) distributed as νε. Then for

any t > 0, as ε→ 0,∫ t

0

(X̃ε
s )2ds⇒

∫ t

0

A(x2)(Us, Vs)ds and

∫ t

0

(Ỹ εs )2ds⇒
∫ t

0

A(y2)(Us, Vs)ds.

Proof. Since 2(X̃ε
s )2 = Uεs − (Z̃εs )2 and 2(Ỹ εs )2 = V εs − (Z̃εs )2, we only need to show

that
∫ t
0
(Z̃εs )2ds⇒

∫ t
0
A(z2)(Us, Vs)ds. It suffices in fact to show that∫ t∧κεM

0

(Z̃εs )2ds =⇒
∫ t∧κM

0

A(z2)(Us, Vs)ds ,

for all M > 0.
The vlaues of t > 0 and M will be fixed throughout this proof. For any δ > 0,

we define Nδ = dt/δe, tn = nδ ∧ κεM for 0 ≤ n < Nδ and tNδ = t ∧ κεM . Let now

Z
(n)
s be the z component of the solution to the deterministic dynamics (1) at time

s which started at time tn from the point (Xε
tn , Y

ε
tn , Z

ε
tn). Then clearly∫ t∧κεM

0

(Z̃εs )2ds = ε

Nδ−1∑
n=0

∫ tn+1/ε

tn/ε

(Zεs )2ds = Φε,δ + Ξε,δ (6)

where

Φε,δ = δ

Nδ−1∑
n=0

ε

δ

∫ tn+1/ε

tn/ε

(Z(n)
s )2ds

Ξε,δ = ε

Nδ−1∑
n=0

∫ tn+1/ε

tn/ε

[
(Zεs )2 − (Z(n)

s )2
]
ds.
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To control the error term observe that

|Ξε,δ| ≤

√√√√ε

Nδ−1∑
n=0

∫ tn+1/ε

tn/ε

[
Zεs + Z

(n)
s

]2
ds

√√√√ε

Nδ−1∑
n=0

∫ tn+1/ε

tn/ε

[
Zεs − Z

(n)
s

]2
ds .

The first term in the product on the righthand side is bounded due to the stopping
time κεM . Using Lemma 4.1, we see that E|Ξ,εδ| is bounded by a constant times the
square root of

ε

Nδ−1∑
n=0

∫ tn+1/ε

tn/ε

E
[
Zεs − Z(n)

s

]2
ds ≤ CMε2d

t

δ
e exp

[
CM

δ

ε

]
.

Hence if we choose

δ = C−1M ε log(1/ε), (7)

then Ξε,δ → 0 in L1(Ω) as ε→ 0. Having made this choice of δ, we now suppress it
from notation designating dependence on parameters.

We now further divide Φε (δ having been suppressed) depending on whether in

phase space the starting point (X
(n)
tn/ε

, Y
(n)
tn/ε

, Z
(n)
tn/ε

) lies the region where |Uεtn −V
ε
tn |

is small or not. To accomplish this, for any ρ > 0, let χρ ∈ C(R; [0, 1]) be such that

χρ(x) =

{
0 , if |x| ≥ ρ,
1 , if |x| ≤ ρ/2

and define χ̄ρ = 1− χρ. Consider the decomposition Φε = Aε,ρ +Bε,ρ where

Aε,ρ =δ

Nδ−1∑
n=0

ε

δ
χρ(U

ε
tn − V

ε
tn)

∫ tn+1/ε

tn/ε

(Z(n)
s )2ds,

Bε,ρ =δ

Nδ−1∑
n=0

ε

δ
χ̄ρ(U

ε
tn − V

ε
tn)

∫ tn+1/ε

tn/ε

(Z(n)
s )2ds .

The reason for this decomposition is that why the time average of (Zn)2 over the
time interval [tn+1, tn] is close to the function A(z2)(Utn , Vtn) is different in the two
regions. The terms which have |u − v| > ρ have periods uniformly bounded from
above and hence as (tn+1 − tn)/ε = δ/ε → ∞ the number of periods contained in
the interval over which we are averaging also goes to infinity. On the other hand,
as the points approach the diagonal u = v the period grows to infinity. So for
|u− v| small enough the period might be much greater than the length of the time
interval (tn+1 − tn)/ε = δ/ε over which we are averaging. Hence the reason for
convergence for the Aε,ρ to the appropriate average values occurs by a different
mechanism. Proposition 6 shows that A(z2)(u, v) → u = v as |u − v| → 0. To

understand why ε
δ

∫ tn+1/ε

tn/ε
(Z

(n)
s )2ds → Utn ∧ Vtn one needs to recall the discussion

from Section 7. The deterministic orbits when u = v consist of heteroclinic orbits
connecting the fixed points at (0, 0,

√
u) and (0, 0,−

√
u). Since the time to reach the

fixed points on these orbits in infinite, it is not surprising that for |u− v| small the
periodic orbit spends most of its time near (0, 0,±

√
u) ∼ (0, 0,±

√
v). This can also

be seen in the fact that the occupation measures given in (3) concentrates around
θ ∼ π/2, 3π/2, which corresponds to the fixed points, if |u − v| ∼ 0. Importantly,
even when the time is not long enough to traverse the orbit completely, any average
will be concentrated near the fixed points since the time to reach the neighborhood



INVARIANT MEASURE SELECTION BY NOISE 31

of the fixed point is small relative to the time it will take to leave that neighborhood
once it has arrived there. This idea will be made quantitative below.

Hence we define

Âε,ρ = δ

Nδ−1∑
n=0

χρ(U
ε
tn − V

ε
tn) (Uεtn ∧ V

ε
tn) and Θε,ρ = Aε,ρ − Âε,ρ

B̂ε,ρ = δ

Nδ−1∑
n=0

χ̄ρ(U
ε
tn − V

ε
tn)γε(U

ε
tn , V

ε
tn)A(z2)(Uεtn , V

ε
tn) and Υε,ρ = Bε,ρ − B̂ε,ρ

where

γε(u, v) =

⌊
δ

ετ(u, v)

⌋
ετ(u, v)

δ
,

and τ(u, v) was the period of the deterministic orbit.
For all β > 0 and α > ρ, we define

τ̂β,ρ = min
{
τ(u, v) : |u− v| ≤ ρ, β ≤ u ∧ v ≤ u ∨ v ≤M

}
,

Ψα,ρ = 4
√
M

∫ 1−α

0

1

|1− a2|
da .

The utility of Ψ is the following which can be deduced from Section 7.3

sup
u,v≤M

Leb
(
{s > 0, |zs| 6∈ [(1− α)

√
u ∧ v,

√
u ∧ v]}

)
≤ Ψα,ρ .

Now

|Θε,ρ| ≤ t
[
M
(Ψα,ρ

δ/ε
+

Ψα,ρ

τ̂β,ρ

)
+ 2β

]
def
=Kε,ρ,α,β .

On the other hand, since

Υ,ερ = ε

Nδ−1∑
n=0

χ̄ρ(U
ε
tn − V

ε
tn)

∫ tn+1
ε

tn
ε +

[
δ
ετεn

]
τεn

(Z(n)
r )2dr ,

we have the inequality

|Υ,ερ| ≤M
ε

δ
δ

Nδ−1∑
n=0

χ̄ρ(U
ε
tn − V

ε
tn)τ(Uεtn , V

ε
tn)

≤ ε

δ
M̄(ρ)

def
=Lε,ρ ,

where M̄(ρ) := supu,v≤M χ̄ρ(u, v)τ(u, v) < ∞ if ρ > 0. Hence Lε,ρ → 0 as ε → 0,
for any ρ > 0.

Now applying Lemma 8.6 below, we see that for all ρ > 0, as ε→ 0 one has

Âε,ρ + B̂ε,ρ =⇒ Âρ + B̂ρ
def
=

∫ t∧κM

0

χρ(Us − Vs) (Us ∧ Vs)ds

+

∫ t∧κM

0

χ̄ρ(Us − Vs)A(z2)(Us, Vs)ds

Notice that as ρ→ 0, Âρ + B̂ρ converges to∫ t∧κM

0

1Us=Vs (Us ∧ Vs)ds+

∫ t∧κM

0

1Us 6=Vs A(z2)(Us, Vs)ds .



32 JONATHAN MATTINGLY AND ETIENNE PARDOUX

By Proposition 6, we see that 1Us=Vs (Us∧Vs) = 1Us=Vs A(z2)(Us, Vs) since (x, y, z) 7→
z2 evaluated at (0, 0,

√
u ∧ v) is u ∧ v. (Of course u ∧ v = u = v since we are con-

sidering the case u = v.) In light of this, we conclude that Âρ + B̂ρ converges
to ∫ t∧κM

0

A(z2)(Us, Vs)ds

as ρ→ 0.
Now let F ∈ C(R+,R+) be any increasing, bounded function. Then

F (Âε,ρ + B̂ε,ρ −Kε,ρ,α,β − Lε,δ) ≤ F (Aε,ρ +Bε,ρ) ≤

F (Âε,ρ + B̂ε,ρ +Kε,ρ,α,β + Lε,δ).

Observe that Aε,ρ + Bε,ρ = Φε and hence is independent of the choice of ρ. Since
F is bounded and as already noted Lε,ρ → 0 as ε→ 0 for any ρ > 0, we have that

EF (Âρ + B̂ρ −Kρ,α,β) ≤ lim
ε→0

EF (Φε)

≤ lim
ε→0

EF (Φε) ≤ EF (Âρ + B̂ρ +Kρ,α,β),

where

Kρ,α,β = lim
ε→0

Kε,ρ,α,β = t
[
M
(Ψα,ρ

τ̂β,ρ

)
+ 2β

]
.

Now since Kρ,α,β → 0 if ρ → 0, followed by α → 0, followed by β → 0 we obtain

that lim→ε0 EF (Φε) exists and equals limρ→0 EF (Âρ + B̂ρ).
It remains to exploit Lemma 8.7 below to deduce that

Φε ⇒
∫ t∧κM

0

A(z2)(Us, Vs)ds

as ε→ 0.

Lemma 8.6. Let Xn be a sequence of X–valued r. v.’s, and X be such that Xn ⇒
X, where X is a separable Banach space. Let {Fn, n ≥ 1} be a sequence in C(X ),
which is such that as n → ∞, Fn → F uniformly on each compact subset of X .
Then Fn(Xn)⇒ F (X), as n→∞.

Proof of Lemma 8.6. Choose ε > 0 arbitrary, and let K be a compact subset of X
such that P(Xn 6∈ K) ≤ ε, for all n ≥ 1. Now choose n large enough such that
|Fn(x) − F (x)| ≤ ε, for all x ∈ K. Choose an arbitrary G ∈ Cb(R), such that
supx |G(x)| ≤ 1. We have

|E[G ◦ Fn(Xn)]−E[G ◦ F (X)| ≤ |E[G ◦ Fn(Xn)−G ◦ F (Xn);Xn ∈ K]|
+ 2ε+ |E[G ◦ F (Xn)−G ◦ F (X)]|

The first term of the righthand side can be made arbitrarily small by choosing ε
small, uniformly in n, since G is uniformly continuous on the union of the images
of K by the Fn’s. The last term clearly goes to zero as n→∞.

Lemma 8.7. Let {Xn, n ≥ 1} and X denote real–valued random variables, defined
on a given probability space (Ω,F ,P). A sufficient condition for Xn ⇒ X is that

E[F (Xn)]→ E[F (X)],

for any continuous, bounded and increasing function F .
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Proof of Lemma 8.7. It is plain that the condition of the Lemma implies that
E[F (Xn)] → E[F (X)] for any F continuous, bounded with bounded variations.
Associating to each M > 0 a continuous function FM from R into [0, 1], which is de-
creasing on R− and increasing on R+, equal to zero on the interval [−M+1,M−1],
and to one outside the interval [−M,M ], we note that the condition of the Lemma
implies that

lim sup
n→∞

P(|Xn| > M) ≤ lim
n→∞

E[FM (Xn)]

= E[FM (X)].

Since the last right–hand side can be made arbitrarily small by choosing M large
enough, the last statement implies tightness of the sequence {Xn, n ≥ 1}. Conse-
quently Xn ⇒ X will follow if E[F (Xn)]→ E[F (X)] for any F in a class of contin-
uous and bounded functions which separates probability measures, which clearly is
the case under the condition of the theorem.

9. Proof of Theorem 3.2. Recall that for each ε > 0 µε denotes the unique invari-
ant probability measure of ξε, and that λ denotes the unique invariant probability
measure of the diffusion process (Ut, Vt) or equivalently of its semigroup Qt.

The fact that any accumulation point of the collection {µε, ε > 0} satisfies
µ = µs−1± follows from Proposition 5. Corollary 3 states that at most one invariant

probability measure of (1) satisfies both µ = µs−1± and µΦ−1 = λ.
From Corollary 2 we know the collection {µε, ε > 0} is tight. Consequently,

there exists a sequence εn → 0 and a measure µ̃, such that µεn ⇒ µ̃.
We now show that this µ̃ is invariant for the ξr dynamics. Fix an arbitrary t > 0.

If we initialize ξεn with its invariant probability measure µεn , then both marginal
laws of the pair (ξεn0 , ξεnt ) equal µεn . Since (ξεn0 , ξεnt ) ⇒ (ξ0, ξt), we deduce that if
ξ0 ' µ̃, then ξt ' µ̃, and this is true for all t > 0, hence µ̃ is invariant for ξ.

Next recall that for each ε > 0, we defined λε := µεΦ−1. Since both marginal
laws of the pair (ξεn0 , ξεnt/ε) equal µεn , we conclude that both marginal laws of the pair

((Uεn0 , V εn0 ), (Uεnt , V εnt )) equal λεn . We now show that λ̃ = µ̃Φ−1 is an invariant
measure for Qt. Combining the fact that

((Uε0 , V
ε
0 ), (Uεt , V

ε
t ))⇒ ((U0, V0), (Ut, Vt)) ,

Φ is continuous and that from Lemma 8.2 we know that λ̃ is supported on (0,+∞)×
(0,+∞), we conclude that λεn ⇒ λ̃. Since the marginals are equal for all t > 0, we

conclude that λ̃ is an invariant probability measure forQt. Since from Theorem 6.12,
Qt has the unique invariant probability measure λ, we conclude that λ̃ = λ.

Hence µ̃ = µ, and µε ⇒ µ, as ε→ 0.
Because λ = µΦ−1 does no charge the diagonal, µ does not charge the set {x =

y}∪{x = −y}. Pick a point (x, y, z) ∈ R3, with |x| 6= |y| and let (u, v) = Φ(x, y, z).
Assume that (x, y, z) ∈ Γ+

u,v (the other case is treated exactly in the same way).

To (x, y, z) corresponds a value θ of the parameter on Γ+
u,v defined in Section 7.3.1.

There exists a smooth bijection Ψ with a smooth inverse from an open neighborhood
O of (x, y, z) onto an open neighborhood U of (u, v, θ). The restriction of µ to O is
the image by Ψ−1 of the restriction to U of the measure

Ku,v

| cos(φu,v(θ)|
ρ(u, v)dθdudv,
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where ρ denotes the density of λ with respect to Lebesgue measure and we have
used formula (3). Hence the restriction of µ to O is absolutely continuous with
respect to Lebesgue measure on R3, with a density which is positive at (x, y, z)
since ρ(u, v) > 0.
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