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Abstract

The paper is devoted to a systematic discussion of recentlyf deve;opct:ii
techniques for the study of weak convergence of sequences of stochas |e
processes. The methods described make essc?ntlal use _of the se-rmma{tmgah
structure of the processes. Sufficient conditions for ngl?tncss mclud‘mlg lt €
results of Rebolledo are derived. The techniques are ap‘phe‘d toa spemal class
of processes, namely the D-semimartingales. Applications to multitype

branching processes are given.
WEAK CONVERGENCE; TIGHTNESS; SEMIMARTINGALES; D-SEMIMARTINGALES;
MULTITYPE BRANCHING PROCESS

Introduction

The purpose of this paper is to study weak convergence of segtllletéces 05
stochastic processes; we rely on recently developed techniques wh}c ?pen1
on a special structure of the processes considerec?, n‘amely the semimartinga e
property. In order to reach a wider audience, a mgmﬁcapt ];?art of the paper is
expository but some of the results and many of the applications are new. .

We are concerned with the following problems: let (X" ),, <~ be a sequence 0
processes whose trajectories X*(-, w):t— X(2, }v)' are rlght-cont.muousR Tai)-
pings from R* into a Polish space H, with left limits at every point t € N Hn
other words, the paths X"(-, w) are clements of a fu'nctlon sgace D(R g ).,
thus the X®»s are random elements with values in D(R*; H), whlc_l':t is
assumed to be endowed with the classical Skorokhod topology. The law P* of
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the process X" is the law induced by X" on the o-algebra of Borel subsets in
D{(R*; H). o

The fundamental problem of weak convergence of processes is the study of
conditions under which the laws P" of a sequence of processes converge
weakly and also to identify the limit law P. (Weak convergence will be
understood in the following sense: for every continuous bounded real function
¢ on D(R*; H), lim, ., [ ¢ dP" = | ¢ dP.) The study of the convergence of a
given sequence (X") is usually accomplished in two stages:

(i) One first shows that the sequence P" has weak limits, i.e. it is weakly
compact. Since D(R*, H) is complete, metrisable and separable, this conclu-
sion is known to be equivalent to the following one called ‘tightness’: for every
€ >0 there exists a compact set X, in D(R*, H) such that inf, P*(K,}Z=1—&.

(ii) One proves that the limit of any convergent subsequence (P™),., of
(P"),-o satisfies properties which imply its uniqueness, thus obtaining the
existence of the limit £ and, at the same time, its characterization.

Necessary and sufficient conditions for tightness are well known: the reader
is referred for example to the book of Billingsley (1969). These conditions do
not refer to any special structure of the  process (except for the regularity of
their paths). This general approach is often difficult to apply in particular
situations. For these reasons sufficient conditions, particularly those involving
moments, have been derived and extensively used.

The point of view we take is that, in most particular situations, the processes
X" have a special structure, which allows us to write them as X" = A" + M”
where M" is a local martingale and A" is a process with paths of finite
variation. Such a process X" is called a semimartingale and often we have
specific information about A" and M” which can be used to verify tightness and
in many cases, to obtain the limit of the sequence; {M"), the increasing
process associated to M” by the Doob~Meyer decomposition, will play an
important role. _

The main purpose of the paper is to present and apply results which use the
semimartingaie structure; our work is divided into four parts.

In Section 1, classical situations illustrate the main ideas. Since some
elementary calculations of stochastic calculus are needed, a brief account of
this subject is included.

In Section 2, sufficient conditions for tightness are obtained and applied to
some examples. The most significant result is the theorem of Rebolledo which
gives a tightness criterion for X” in terms of the processes A” and {M"), which
in the usual examples, have an integral expression allowing an easy verification
of Rebolledo’s hypothesis. This part uses materials included in the unpublished
manuscript by Métivier (1979).

The class of D-martingales discussed in Section 3 is a class of processes for
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which a formula analogous to the Dynkin formula for a Markov process holds.
Roughly speaking, a process X with values in R? is a D-semimartingale if to
every bounded function g of class C? on R? is associated a process L(g, z, 4, )
such that for some non-decreasing function A the process

MP = p(X) - (Xe) — j L(9, X, 5, ") dA,

is a square-integrable martingale.

For sequences of such processes tightness is implied by simple assumptions
on the local coefficients b(x, £, -) and a¥(x, ¢, -) which are defined in terms of
L(¢, x, t, ) and L{(¢'¢/, x, t, ) where @'(x) = x' is the ith coordinate of x. The
limits are identified by looking at the corresponding martingale problem in the
sense of Stroock and Varadhan.

Section 4 deals with multitype branching processes. In his pioneering work
Feller (1951) showed that a sequence of critical or approximately critical
branching processes properly normalized has finite joint distributions which
converge weakly to the corresponding distribution of a certain diffusion.
Tightness and weak convergence were proved much later. Most of the
literature was devoted to the study of one-type processes.

The above methods are here applied to the study of multitype branching
processes, and results are readily obtained which are valid under minimal

assumptions on the moments of the processes considered.

1. Why semimartingales? A brief review of some stochastic calculus

1.1. Why semimartingales?

1.1.1. Typical elementary classical case. Let X be a pure homogeneous jump
Markov process in R with law of jumps p. This means that the infinitesimal
generator L of X has the form

L@ =4[ 196 +7) = S@Ik@),

We change the units of length and time so that at time ¢ the position of the
particle previously described by X, is now described by X7 =¢,X,,,, (where the
unit of length has been multiplied by 1/¢, and the unit of time by 1/«,) whose
gencrator is given by

Lrp(a) = Mar, | 86+ ) = 9Iu(e).

What are the limit laws of X as'n T %?
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1.1.2. The semimartingale property. Let us consider a sequence of Markov

processes X" with generator L*. Set ¢‘(x)=x' and i "
@(L™), the domain of L". Set ) assume @' and ¢'¢’/ e

(1.1.1) b™i(x) = L g,
(1.1.2) ami(x) = L'’ — pILgp) — piLrgp.

The Dynkin formula ") wi
ot y ula says that for all ¢ € D(L") with E(¢(X7)) < and for

(1.1.3) $07)= o)+ [ LX) ds + M(9)

whte;(e M?*(¢) is a martingale. (See for instance Métivier (1982).) If one does
n?' now whether E(¢(X7)} <, but assumes for example that the jumps of
X7 are bounded by a >0, consider a smooth function ¢** such that

. fif x| Sk+a
(pk,z(x) r= {I l
0 if |x[>k+a+1,
¢*(x) being twice continuously differentiable and bounded. Set
ri:=inf {¢:[X7| = k).

Because of the assumption on jumps

sup |X7| =k + a,

=ar
1=z

and therefore, using the Dynkin formula 'a ai
, .
ngales y gain and also the stopping theorem

tATE

i — Ak n — VH {
Xy = ¢ (X ) = X5+ A L*¢%{(X") dx + martingale

. tATE
=Xo+ L b™'(X7) ds + martingale.

In other words, for an increasi
i ing sequence (77),= i i i
fmoner o, g seq (z®)ezo of stopping times, with
4
Xp=X5+ | br(X"
, ny L b*(X7) ds + M7, where b” denotes the vector b™,

i=1,---,d
M7, .. :martingale for all & (i.e. M" is a local martingale).

(1.1.4)

Definition. A process X which can be written as X = V + M, where V has

path with finite variation and M i .
. s a lo ;
semimartingale. cal martingale, is called a
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1.1.3 More general remarks. When the processes (X") are not Markovian,
representations of the type (1.1.3) may be replaced in many cases by a formula

of the form
(1.1.5) ST = HXT) + f L"($, X", 5, 0) dAL + MI(9),

where L*(¢, , s, ) still depends linearly on ¢ but may depend also on (s, @)
in a suitable measurable way. For example, for many pure-jump non-
Markovian processes we have an L" of the form

L%, 5 0)= [ (B +3) = SEWV'E, 0,5 ).

Therefore defining b, 5, @) = LA(¢ X, 5 ©)

we get as above the semimartingale property of X"
Example. (X720 is a sequence of Markov chains with transition IT".
(X"),=o is the right-continuous step interpolation of X", and we set

X Jt’l = E,.,X fim]
and denote by 1" the transition of the Markov chain (£,X7) =0 We may write
for every bounded measurable ¢

oreond| ‘(@1 — DRI AT,

with A" =[nt]/n. Setting L*$(x) = n(Ii" — N¢(x), we see that we are in the
situation just described.

1.2. A brief review of stochastic calculus. In practice, the processes that one
meets are most often semimartingales. There is a stochastic calculus for these
processes: representation formulas of considerable usefulness will play a
fundamental role in the practical rules derived below. For more details the
reader is referred to Jacod (1979) or Métivier (1982).

1.2.1. Stochastic integrals. We recall that if Z is a semimartingale we have a
stochastic integration theory available. This means that, for a wide class of
processes ®, in particular those which are predictablet and locally bounded,

+ Predictability is actually defined as follows. Let (€, %, P) be a probability space and (%)=o
be a filtration of sub-c-algebras of . Consider on R* X Q the o-algebra % generated by the sets of
the form (s, t] X F where 0=5 =¢, F e &, (‘predictable rectangles’). The elements of # are called
predictable sets, and a process X:(t w)— X(, o) on Q is called predictable if it is a
#-measurable function.

For most of what follows, it is enough to remember that processes which are adapted to (%) and

left-continuous, are predictable.

£
=
k3
£
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the .stochflstlc integral | ® dZ:=(f}, ®,dZ,),., is defined as a right-continuous
senn_martmgale, the mapping ® — | ® dZ being linear with continuity pro-
perties analogous to those of an ordinary integral (e.g. the dominated
convergence theorem, see Métivier (1982)).

Moreover, if’*Zl*is a local martingale, then [ ® dZ is also a local martingale
(even an L#-martingale if & is bounded and Z is an LP-martingale).

1.2.2.. Quadratic variation. If Z' and Z/ are two real martingales (or two
coordl‘nate processes of an R“valued semimartingale Z) then we have the
following formula of integration by parts:

. - N . r . - t
1.2.1) ZiZi=Zi7) + L Zi' dZi + j Zi-dZi+[Z', 7],
i i

whefre. [Z, Z"],_is a process with paths of finite variation known as the mutua!
vanatwf; of Z and Zf._ It i=j, [Z) Z], is an increasing process called the
quadratic variation of Z*, -

It may be helpful to remember that for every ¢
(1_.2.2) (2, Z/),=limPr X, (Zi . —Z NZ Z

810 Sk thr1 AL tmiiat LAt

where I is a subdivision 0=1,<r, <+ - <t <-.. of R whose mesh 8(IN) =

Sup,, (¢,41 —t,) tends to 0. As a consequence of thi it i i
(s to 0. ¢ of this formula it is easily se
that if Z’ has paths with finite variation, Y

(1.2.3) (Z, Z) =2 AZIAZI, (where AZ,=Z,—Z,).

s=t

When Z is an R?-valued process the formula (1.2.1) can be written
B ! t !
(1.2.4) z,®z,=z0'®zo+f Z, ®dz +f iz, ® Z,- +[Z],
i 0 0

where [Z], denotes the matrix-valued process ([Z¢, Z/],).
For such a vector process one also defines

d
(1.2.5) (Z],:=trace [Z], = 3 [Z}, Z7],
i=1
and observes that
(1.2.6) 1ZJ2=|Z, +2 f Z,-.dZ, +[Z],
0

(denoting by - the scalar product in R9),

1.2.3. The Meyer process of a semimartingale. According to a decomposition
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theorem due to Meyer (see Grigelionis (1973), Métivier (1982)), and assuming
that the process ([Z, Z])= is locally integrable, there exists a unique
predictable process, with paths of finite variation, denoted by (Z, Z;), such
that

(1.2.7) (1Z', 27, — {Z', 27} D=0

is a local martingale.
For an R¢-valued semimartingale Z we write {Z}) for the matrix-valued
process ({Z%, Z/}); ;-1,....a and

(1.2.8) (Z) :=trace {Z).
Consequently
(1.2.9) [Z] - {Z) is a local martingale.

The interest of the Meyer process is that it is rather regular and usually
carries a lot of information about the law of Z (usually more than [Z]). For
example, if N is a Poisson process, it follows from (1.2.3) that [N]=N, but
Nt — 1 is immediately seen to be a martingale, which gives (N,) =¢ and it can
be proven (see, for example, Grigelionis (1973) or Métivier (1982)) that the
only pure jump process N with jumps of amplitude 1 such that (N) =t is
precisely the Poisson process.

1.2.4. A small calculation. Let us return to the situation described in 1.1.3
with A” = ¢ for simplicity. Thus (dropping the n, for the rest of the calculation)
we have

(1.2.10) o) = 90X+ [ "Lig,s, 0, X,) ds + M),

Set
bi(x, s, w):=L(¢', s, w, x)
at(x, s, w):= L(¢'¢), s, w, x) — x'b/(s, 0, x) — x/b'(s, @, x).

As already seen
(1.2.11) X, =X, + L "B(X, 5, w)ds + M,
Applying (1.2.10) again to ¢*¢’:
XiXi = XiXh + L "X, 5, @)X+ DX, 5, ©)X]) ds

(1.2.12) t
+ J' a’(X,, s, w)ds + loc. mart.
]

S e
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But, the integration by parts formula (1.2.1) and (1.2.10) together tell us
. . . " ! PR o ‘
XiXi= Xi Xi + f XB(X, 5, ) ds + f X dM
Q
(1.2.13) - t '
+ f XIbi(X,, 5, ) ds + f X dM: + [XX],
0 0
From (1.2.3) and the continuity of the paths of ([55(X,, 5, ) ds),=, we obtain
(M, M7}, = [X', X7],.
Dropping the local martingale part in (1.2.13) we can write
¥
(12.14) XiXI= XX} + f (B(X,, 5, )X+ B(X,, 5, ©)X) ds + [M’, MT],
0

This formula compared with (1.2.12) gives

3

(M, M7, —f a¥(X,, s, o) ds =loc. mart.

0

Fron?‘ this formula and the definition in Section 1.2.3 we obtain (since
(Jo a¥(X,, s, w) ds),=, is continuous and therefore predictable):

4
(1.2.15) (M, MY, =J’ a¥(X,, s, w) ds.
0
Thus we obtain the process { M}, Its trace .
t
(1.2.16) (M), = j trace a(X,, s, o) ds,
. 0

which will turn out to play a decisive role in what follows, has a simple explicit
form.

We shall illustrate this immediately on the example of jump processes given
at the beginning.

1.3. Two simple examples of weak convergence

1.3.1. An elementary ‘invariance principle’. We return to the example of a

sequence of pure-jump Markov processes as in Section 1.1.1. Take

an = En’ sn ‘L 0'

Set

pi=1[ yu@y)

af:=4 Ld ' — BOG — Bu(dy)  a&:=trace (a).
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The calculation of L”, b” and a” as in Section 1.1.2 immediately gives
b"(x)=p

amhi(x) = g,a.

Therefore

(1.3.1) X=X, =X+ pt+M;
and

(1.3.2) (M"), = g,at.

The Doob inequality gives for every N> 0
E( sup |M:'|2) =4¢,aN
O=t=EN
which vields

(1.3.3) lim E(sup X7 —x7 - ﬁt|2) =0.
=N

n—x

We want now to study the ‘fluctuation process’:
Xp—-X;—pt

1/Ve M.

(1.3.4) Ve, ( M,

We know that Z":= M"/Ve, is a martingale and from (1.3.2)
(1.3.5) (Z), = at.

From the Doob inequality again

i Esup|Z'>*=4aN for every n,

=N
(ii) sup E |Z% .o—Z72|=4ad for every n and for every stopping time 7,.
a=6
The Rebolledo theorem will imply that just those two inequalities (in fact
weaker inequalities) yield the weak compactness (or tightness) of the sequence

of laws of the processes M™. .
Let us show now that there is only one possible limit. The Dynkin formula

applied to the process (X7) and the function x — ¢((x — x,— B1)/Ve,) gives
P(Z2) = (X7 — x5 — BrY/VE,)

= [~ arveds - Vo) ds

0

+[[ds [ e oMEIVE+VEy) = SMIVE NI
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Therefore
’ d

(1.3.6) ¢(Zr= f > aff(azzp)/(ax"a;f)&;"(z;‘) ds + (e, f) + martingale

Lj=1

where lim,_,.. l|¥(e,, Oll.=0.

Let us call B, the law of Z" in the space D(R*; R?) and set as usual
E(@)=o(t) for each @ e D(R*; R?). On the space D(R*;RY) we consider
the right-continuous filtration (2}),=, generated by the ‘canonical process &’.
In other words, if 9, is the oc-algebra generated by {£,:5s=1} one sets
@r =Ny @2

Equation (1.3.6) allows us to write for every Fe 9, and s =¢

E{lo@-0@) - [ 3 an@omevarn@)is|usive, ol

0 ij=1

Set

t d
D(@) = 1p(@)[P(5(@) — p(&(@))] - j 2 &(8°¢)/(9x'0x))(E.(®)) ds.
s {,j=1
Consider any convergent subsequence (P,,), ., and call P its limit. From (ii)
it follows easily that for every ¢, E(|AE|?)=0 and that for P-almost all & the
mapping & — ®(&) is continuous at point &. Therefore the convergence of
(P, )x=o to P allows us to write

E(®) =lim E*(®) =0.

This proves that for the law % and every ¢ twice differentiable with compact
support,

r d
(e8)- 0 [ 3 a(@e)(aron)E) &)
i,j= =
is a martingale.
It is known that there is only one probability law with this property: it is the
law of the diffusion with generator

d

> a((8%)/(ax'ax")),

Li=1
{see, for instance, Stroock and Varadhan (1979)).

1.3.2. An example in branching processes. As an introduction to Section 4
we consider an example of a Markov jump process which is not homogeneous
in space (the intensity of jumps depends on x). We take for X the
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Galton-Watson process with one type of particle. Such a process is an
N-valued Markov process whose gencrator L is given by

(1.3.7) Lo(x)=Ax §>‘, [p(x +k — 1) — ¢(x)]v(k)

where 4 is the ‘rate of death’ of one particle and v(k) is the probability that a

dying particle gives birth to & descendants. .
We can clearly consider L as operating on functions on R* (not only on & ).

In this way all the processes X7 := g, X, have R™ as state space.
Writing L", b", a™/ as before and assuming

yi=A > (k= 1v{k)<e, ﬁ:=l§u(k—1)2v(k)<oo

k=0

we easily obtain
X;‘=X3+£yX;‘ds + M7,
M? being a martingale with |
mry, = [ pxcsas.

Let us assume that we are in the critical case: (y =0) and X§=x (we consider
a system of particles with elementary mass &,, but with a fixed total mass at the

beginning). Then
Xi=x+M}

is a martingale,
t
()= | pxsas
since E(X?)=x and therefore
E(M"}, = Bat.

One obtains again from the Doob inequality

(i) E (sup | X :‘lz) = NBx
I=N
and for every stopping time 7,

Tnt+d
(Mn)r,.-iv&_(Mn)t,,:J; ﬁX?dS

n
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and for each 7, =N

() PUM,). .o~ (M), Z 7} S P{sup X1 1185} < (4p82mPN.

SEN

These properties (i) and (ii) will immediately imply tightness.

As regards the convergence, it is easy to derive (as we shall do in Section 4),
using the martingale property of ¢(X7)— ¢(Xz) — f4 L"¢(X,)ds, that the
sequence P" of laws of the processes X" converges weakly to the law P
characterized by the following property. For every ¢ twice differentiable
bounded on [0, [, the process

1
(66— o)~ [ pe(oranE) a)
0 =0
is a martingale. This is the law P of diffusion with generator Px(8*/3x?) (with
absorption at the boundary 0).

2. Sufficient conditions for tightness

In this section we give a detailed exposition of the results which provide
sufficient conditions for tightness in terms of the semimartingale structure of
the processes considered. The result of widest and most immediate ap-
plicability in this respect is the theorem of Rebolledo (1979). The initial
Rebolledo proof is quite long and imbedded in a paper containing many
variations on the theme; at the same time, Aldous (1978) gave a criterion for
tightness which we exploit to present a simpler proof here.

For the sake of completeness, we start by recalling a few facts on the
Skorokhod topology; then present the theorems of Aldous and Rebolledo, and
briefly mention new developments, without proof, since they will not be used
in our applications.

2.1. Weak compactness of a sequence of probability measures on
D(R™*; #). 3 will denote a complete separable metric space with a distance d.
We write D(R*; #) (D([0, N], %)) for the set of -valued functions defined
on R* ([0, N]), which are right continuous and have left limits at everyteR*
(€ [0, N]). These functions are called cadlag in the French terminology, and
we shall keep this useful abbreviation.

The space I(R™*; %) will be endowed with a topology analogous to the
Skorokhod J-topology introduced in Skorokhod (1956) for D({0, N]; ). The
reader is referred to this paper, or to Billingsley (1969) or Parthasarathy (1967)
for the properties of the Skorokhod topology on D([0, N]; %) and to Lindvall
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(1973) and Whitt (1980) for details concerning the Skorokhod topology on
D(R™*; %). . .

This topology, which turns out to be completely metrizable, is quickly
understood by its convergence structure: a sequence (x,},., in D(R*; )
converges to x in D{R*; %) if and only if there exists a sequence (4,)
of homeomorphisms of R* such that lim, A, =identity mapping and x =
lim, x, o A,, both convergences being uniform on every compact subsct of
R+.

Let us briefly recall one possible definition of the topology on D(R™*; %), as
given in Lindvall (1973).% For each N>0 and x e D(R*; ), call IIyx the
function:

x(t) if t=N
ILyx(t):= 4 [N+ —¢]x(t) f NESr=N+1
0 if tZN+1

and let for x, y e B{R™*; 3)

Sn(x, y):= it | sup d(TLyx(s), T » A1)

@11 MO~ A(s)
+‘s;u:]p+ |t—l(t)]+§13£ log P

where A is the set of homeomorphisms of [0, o[. .
It is easily seen that the functions 8, are pseudo-metrics (they are symmet_rlc

and satisfy the triangle inequality) on D(R*; #). The metric structure, which

we shall consider on D(R*; 3), is the one defined by this family of

pseudo-metrics. It may be defined by the metric

(212) 5 1)= 3, 25 (ulx, ) A1),

NeX

The Skorokhod topology on D([0, N]; #) can be defined by the metric

Bu(x, y):= it [sup d(x(@), v = 40)

2.1.3) ~
( +sup |t — A()| + sup logﬂ)}:—j—(Q

=N

!

t An aiternative rapid way of defining the topology of D(R™; %), suggested to us by N.
Dinculeanu, is the following. Let us call O([0, ]; ) the set of cadlag functions from [0, «) to %
with the metric complete structure homeomorphic to that of D([0, 1], ) through. the homeo-
morphism ¢ — ¢ oy with ¥{x) = [log (1 + x)|. For each N >0 consider the mapping IT,, from
D(R*; #) into D([0, »]; ) defined by IIf(t)=f(r) for <N and ljm__,TNf(s) for té{\’. The
Skorckhod topology on D(R™; ) is the coarsest one for which the mappings I, are continuous.

SIEN
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where Ay is the set of all increasing homeomorphisms of [0, N]. For this metric
D([0, N}, %) is complete separable. It'is ‘easily seen that, for each N, Iy is a
continuous mapping of D(R*; ¥) onto a compiete subspace of D([0, N+
1]; ), namely the space of cadlag functions from [0, N +1] into %, which are
continuous and vanishing at N + 1.

This implies immediately the completeness of D(R*; #) for the metric
(2.1.2) and shows also that a set A in D(R*; %) is compact in D{R*; %) if and
only if its projections I1,(A4) are compact. This makes it possible to easily
deduce compactness criteria in D(R*: %) from known compactness criteria in
D([0, N]; ) (as for example in Billingsley (1974)).

2.1.1. Remark. It should be remarked that, if a sequence (x,) in D([0, N], %)
converges to x, for the metric 8, then Lm,, x, (N) =x(N). For this reason the
topology on D(R™*; ¥) is not defined by the family (6,) of pseudometrics.

2.1.2. Compactness criteria in D(R*; %). We state a necessary and sufficient
condition for the compactness of the closure of a set 4 in D(R*; #), which, as
remarked above, can easily be derived from compactness criteria in the spaces
D([0, N], %).

If x e D(R*; 3) we define for each N >0 and § >0

w¥(x, 8):=infmax sup d(x(¢), x(s))
Iy eIl 4=p<r<tiy,

where T, is the set of all increasing sequences r=f <, <---<f, <Nin R+
with the property inf,_, |r,,, — | = 6.

A set AcD(R*; %) has a compact closure if and only if it satisfies the
following two conditions:

(i) There exists a dense subset T of R* such that for every t e T the set
{x(t):x € A} has compact closure in .

(ii) For every N >0, lim, | osup,., w¥(x, 8) =0.

2.1.3. Weak compaciness of sequences of probability measures. On Q:=
D(R*; #) we consider the o-algebra % of Borel sets associated with the
previously defined topology. We denote also by (8):=o the ‘projection process’
or ‘canonical process’. i.e., for @ € Q, £(®):= @(t).

A family (P,),= of probability measures on (@, %) is said to converge
weakly to P if for every bounded continuous function ® on O

qumﬁ,;fmﬁ.

A family (B,), -, is said to be relatively weakly compact if every subsequence
admits a weakly convergent subsequence. A well-known necessary and
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sufficient condition for the relative weak compactness of the sequence (B,), =,
due to Prokhorov (see Parthasarathy (1967)) is the ‘“tightness’ of the sequence
(P),=o: for every >0 there exists a compact subset K, of € such that
inf, P,(K,)=1—¢. )

The above characterization of sets with compact closure in &2 leads to the
following criteria for tightness (for the analogous statement in ([0, 1]; 3) see

Billingsley (1968), p. 117).

Theorem (basic criterion for tightness). A family (P,),=, of probabilities on
Q:=D(R*; %) is tight if and only if the two following conditions hold:

(i) There exists a dense set 7 in R* such that f})r every t € T and £ > 0 there
exists a compact set C(¢, £) in ¥ such that sup, P, {®: E(@) € C(t, e)} Ze.

(i) lim,_,,lim,, sup P,{@: w™(@®, 8)>n} =0 for all >0 and N > 0.

Remark. Condition (i) is easily reformulated as follows: for every ¢ in a
dense set T € R*, the family of probability measures (P, ° &%), On ¥ is a
tight family. The conditions (i) and (ii) are easily seen to be implied by the
conditions for compactness in Q. Conversely, if (i) and (ii) hold, take a
countable dense subset (T). . in T and find for each & a compact C, = # and
8, > 0 with sup, P, {E, € C,} = £/2¥*2 and for some n,

sup P, {w* (-, 8,) > 1/k} = g/2++2,

nZ=ng

If we let
K, :=Q- kL>J ({4 ¢ G} U {w*(:, 8,) > 1/k})

the set K, has compact closure and inf, ., P,(K,)Z1—&.

Corollary. Let (X"),., be a sequence of processes defined on their
respective probability spaces (Q7, &7, P"), with values in the complete
separable metric space 9. The sequence (P") of laws of the processes (X")
form a tight sequence if and only if:

[T,] For every ¢ in some dense subset T of R* the laws of the random variables
(X", form a tight sequence of laws in 7.
[T,] For every N>0, n>0, £>0, there exists 6>0 such that
lim, sup P,{w: w € Q,, w¥(X"(-, ), 6} >n} =&
2.1.4. Particular case: ¥ = R 1In this case sets of compact closure in R4 are
bounded sets. Moreover, condition [T,], when [T,] holds, can be replaced by a
condition on the jumps of the processes (X"):

[T;] For each ¢ the laws of the random variables (AX?),., where AX?:=
X7 - lim, , X7 form a tight sequence.
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2.1.5. Particular case: ¥ is a separable Hilbert space. We recall that in this
case a subset K in  has compact closure if and only if for every p >0 there
exists a finite-dimensional subspace F of % such that projx(K) has a compact
closure in F and sup, . d(h, F)=p. If the processes {X") ., take their values
in the separable Hilbert space %, their laws (P") form a tight sequence if and
only if the conditions [T}], [T{] and [T,] hold, where:

[T7] For each ¢ in a dense subset T of R* and every i €  the laws of the real
random variables (h, X7), ., form a tight sequence,

[T7] For each £ >0, p >0, and ¢ € T there exists a finite-dimensional subspace
Fof &, such that lim, sup P"{d(X7, F)>p)}=e¢.

2.2. The Aldous condition for tightness. The notations are those of Section
2.1. We shall give in this section a sufficient condition for tightness, due to
Aldous. An important part of this condition is the property which we now
introduce and denote by [A].

In this section (X"),=, will denote a sequence of cadlag processes defined
respectively on their own probability spaces (Q", 2, P*) and taking values in
the complete separable metric space % (with distance d). Tt is assumed that on
each space Q" a filtration (%7),., of sub-o-algebras of of” is given, with respect
to which X" is adapted.

2.2.1. Definition. We say that the sequence (X™),cx Of processes satisfies the
Aldous condition [A] if;

[A] For each N >0, £>0, 5 >0 there exists a 8 > 0 and n, with the property
that whatever be the family of stopping times (T.)nen (T, being an
"-stopping time on Q") with 7, £N,

sup sup P{d(X7, X7, ) Zn) e

™
nZng 0=

We say that the sequence (X, satisfies the condition [A; ] if:

[A’] For each N>0, £>0, >0 there exists 6 >0 and g such that for any
sequence (0, 7,),cx Of pairs of stopping times (tr, and o, being an %"-
stopping time on Q") with g, <7, <N,

sup P{d(X;, X . }2n, 1,<0,+8}=e
n=ro -

2.2.2. Theorem (Aldous). Conditions [A] and [A'] are equivalent and imply
the tightness condition [T,)].
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Proof. [A'] trivially implies [A]. The fact that [A] implies [A'] is a
consequence of the following lemma.

Lemma. Let X be a process with paths in D(). Let t; and 7, be bounded
random variables with 7, = 7, such that for all # € [0, 28],

PAX, X, ,9)=n)=¢g for i=1,2
Then
PA(X,, X,)Z2n, 1,<t,+ 6) = 8e.

Proof. Set I=[0, 28]. Let f be any function on R, and 0=¢ =¢, <t, + 6.
We claim that if d(f(r,), f(t,)) =2y then one of the two sets {fe
I:d(f(s), f(t. + 6)) = n} has Lebesgue measure =4/2,

Indeed, if both have measure <6/2, their complements in [:A;={6¢
I:d(f(s,), f@t; + 8)) <n} each have measure >38/2. But since the two trans-
lates t, + A; and r,+ A, are contained in the set [¢,, £, +28], which has
measure <34, they must intersect. Thus there exists ¢' with d(f(t,), f(+')) <7
and d(f(t,), f(t')) <mn, establishing the claim. Applying this to the functions
X(w) and the times 7,(w), T,(®) we have (I is the Lebesgue measure)

P(X,, X, )&2n 1,2 1,<1,+ 8)
SP({B el:d(X(z), X(r,+6))Zn}=8/2)
+ P(I{@ e I:d(f(1,), f(r, + 8)) = n} = 8/2).
By the Chebychev inequality and Fubini’s theorem, the first term is at most

28

2/6 | P{d(f(t), f(r; +8)Zn} do =4e¢.

Similarly for the second term. We finish the proof of Theorem 2.2 by showing
that Condition [A’] implies [T,].
For each n, define the increasing sequence of stopping times
0=15, -+, thy=inf{#:4>7/d(X7, X%) > n}.
From this definition
[I'? < N] < [d(Xr',!’ Xt."_,) = ??]»
and by hypothesis there exists § such that P,[zf <N, tf <77, + 8] = &/2, for

all n.
Choose an integer g such that gé Z2N. Then P, (1} <N)=e¢, for all n.
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Indeed,
q
NP(t,<N)ZEl[1,;7,<N]= > E[t,~1,_y; T, <N]
i=1
4q
=) OP(t, <N, (t,—1,_,)Z )
i=1

= i 6(P(z, <N)—-P(1,<N,1,—1,_,<8)
i=1
=q0[P(r, <N)—&/2].

From gé = 2N this vields
P(t;<N)Z=eforalln.
Now using this hypothesis again we can find a o > 0 such that
P(tz<N,v7<tl_,+0)=elqgforalln

s0 that
q
P,,(U [t7<N, mP<7r  + o]) =¢ for all n.
i=1

But on the set [t =NNUZL, [t} <N, 7 <1’ ,+ 0], w¥(6)X")=1n so that
P*(wN (o X")=Z n) = 2¢ for all n.

2.2.3. Remark. In Aldous (1978) the following trivial example is given which
proves that [A] is far from being a necessary condition for tightness. Take X,
as being the deterministic process X, (f) =0for 0=¢=4, X (1) =1fori=:=1.

The reader will notice that the same reasoning can be applied if X, := | P
where 7 is a predictable stopping time, and more generally if X, converges in
law toward a process X which has a discontinuity on an accessible stopping
time. In other words the Aldous condition implies the quasi-continuity of the
limit X. (No jump at accessible stopping times.)

2.2.4. Remark. One may wonder whether the ‘strong uniform right equicon-
tinuity in probability’ expressed by condition [A] for the processes is strictly
stronger than the mere ‘uniform right equicontinuity in probability’ which
would read in the case H = R:

[ECP] For every N>0, &£ >0, 5 >0 there exist 8 >0 and n, such that

sup sup su%PH{IX"(t+9)—X"(t)|§n}§£.

n=ng B0, 8] re0,

The following example with X":=X shows that it is not the case. Take
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Q=[0,1] with P:Lebesgue measure. Take t(w) = o, 7 (@) =(w — 1/k)* if
k=2. If X is defined by

1
Xt w)= ;1 e e

clearly the t,’s are stopping times of the process X.
For every t and 8 = 1/2,

1
2r—1

P{X(r L) - X(t)’ > } <rb.

This shows that [ECP] is fulfiiled.
Conversely, whatever the value of 6, as soon as 1/k<dé we have
P{|X(z, + 6) — X(z,)| Z3} =1, and property [A] does not hold for (X).

2.2.5. Remark. A natural question, too, is to ask whether the weaker
assumption [ECP] is necessary for weak convergence, while [A] is not, as
shown in Remark 2.2.3. The following example given to us by S. Orey shows
that this is not the case. 7
For each n, Q, is [0,1] with the Lebesgue measure, while X, (w)=
f(n(t — @)™), where f is the triangular function
1-xf, x<1

f(x)={0, xz1.

Since for every 7 >0, ng, n Zny, t and 0 = 1/n,,

P{X"(t+ 8)— X"(1)| 2 n} =2/n,
P{wl{(X" (), D) =1} =1 as soon as # > 1/8.

The necessary condition [T,] for tightness is therefore not fulfilled.
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2.3. Tightness of sequences of laws of Hilbert-valued semimartingales. In this
section, H is a separable Hilbert space. We now give a sufficient condition
for tightness for the laws (B,) of a sequence (X") of semimartingales due to
Rebolledo (1979).

2.3.1. Lemma (Lenglart (1977)). Let X be a cadlag adapted positive process on
a stochastic basis (Q, o, (%),.x+ P) and Y a real adapted increasing process
on the same basis such that for every finite stopping time 1:E(X,)S E(Y).
Then

(i) For every finite stopping time 7 and £ > 0,

(2.3.1) P{sup X, > e} =1/eE(Y,).

(i) If moreover Y is predictable, for every stopping time 1, every £ and
n>0

(2.3.2) P{flsl},)X’>£}§1/£E(z An)+P{Y.=n).

Proof. (i)SetS:=inf{t:X,> £} A 7. Since clearly {sup,=, X, > ¢} c {X; = ¢},
we have

sP{sgp X, > e} SeP{X;Z ) SE(X)SE(Y,) = E(Y).
(ii) We may write

(2.3.3) P{supXj>e}§P{sust>s, Y;<n}+P{Y,==’n}.

S=t SET

Define
§:=inf {t:¢>0,Y,Z 7}, and let [S] denote the graph of S.

If ¥ is predictable, § is predictable, being the beginning of the predictable
set {(£ ©):Y(w)Z7n} and since [S]c {(s w):Y(w)Zn}. Let §, be an
announcing sequence for §: i.e. an increasing sequence (S,) of finite stopping
times such that S, <S a.s. and lim, S, = $. Since {Y, <n}c{r<S} we may
write

{Sliszs>€, Yr<7?}CU{ sup X,%s}

n LU=raS,

and from the properties of X and Y

P({sty X, > Y< n}) =hm lVeE(Y, s ) S 1/eE(Y, A n).

This inequality, with (2.3.3) proves (2.3.2).
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2.3.2. Theorem (Rebolledo). Let (M*) be a sequence of H-valued processes,
which are right-continuous locally square-integrable martingales, defined on
their own probability space (Q, (%7, P"). Let (M) ([M"]) be the associated
Meyer increasing process (quadratic variation). (See Sections 1.2.2 and 1.2.3.)
Then if the processes ({M")), ., satisty the condition [A], the same condition
holds for the sequence (M"),_, and ([M™]),ex If H is finite-dimensional and if
the processes ({M"}),. satisfy condition [T,], then the same condition holds
fOI' (M")ne.}v' and ([Mn])ns.‘\v"'

Proof. We first remark that if M is a locally square-integrable martingale,
then so is

LtT =M -M;,,
for every stopping time 7. Moreover

(LT)t = <M>l - (M)T/m [LT]t = [M]l - [M]TAI'

If (U,) is an increasing sequence of stopping times such that U, 1« and
(L%.y) is for each k a square-integrable martingale, we have the following
well-known equalities for every finite stopping time §:

E((LT>S:\UJ;) = E[LT]SAUk
= EQLE ol S E(_sup IL7IP) S4E((LT);,0.
Therefore, for every finite stopping time,
E(ILER S ECLT)s) = E(LT)) S B( sup |ILIIF) S4E((LT)s).

We can therefore in particular apply Lemma 3.1 to X = ILT||* and ¥ = (LT,
We get for every a and b and every & >0,

— =
P{ - 124, - 7| _b}

SEVUBE[({M)r,s— (M)r) Aa]l+ P{({M)r,s— (M)r)Za).
Choose a = b%¢/2. Then for every & such that

P{(M)r s~ (M) Za}<er2

we obtain

P{ su

TSsET+8 I

IMS—MTIIéb}és.

It is therefore clear that, if condition [A] holds for {M"), it holds for M™. The
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same reasoning shows that it holds for [M] too. The inequalities
P{ sup M, gb} = UBE((My) Aa)+ P{{M)yZa)
O=s<N

P{[M]yZb}=1BE({My) Aa)+ P{{M)yZa)

show in the same way that condition [T,] of Theorem 1 holds for M" and [M]
as soon as it holds for {M"). This proves Theorem 3.2.

2.3.3. Corollary. If (X"),=, is a sequence of finite-dimensional semimartin-
gales of the form X" = A” + M” with A" a process with finite variation and M"
a locally square-integrable martingale and if the sequences (4”) and ({M™))
satisfy the conditions [T,] and [A] of the Aldous theorem, the probability laws
(P*) of the sequence (X") form a tight family. (We assume AL =A%)

2.3.4. Remark. Here is an example to show that the tightness of ((M"}), ., is
not enough to imply the tightness of (M), ..

Take Q" =R* x {—1, +1}, and let 7" be the projection of Q on R* and u"
the projection on {—1, +1}. The probability law P on ” is such that the
random variables 7" and 4" are independent, with P"{z" > t} =exp (—t) and
P{u"=+1}=P"{u"=-1} =4 We set X":= Lignsy + U"Loni iy The
filtration (%7),=, is the right-continuous one generated by X”. We observe that
F3 is the o-algebra generated by 7" and that E™(u”| Fnrimy-) =
E™(u" | #%)=0. Let us note also that 7" is a totally inaccessible jump, while
T+ (L/n) is predictable. Let us set M7:= Lorgy = 2" A+ w0y iy It is
easily seen that (M?)=1" Af+ Linvumyasy- The sequence (M?) converges
weakly towards the law of the increasing process A,:= 7 A ¢ + 1 (z=n Where 7 is
an exponentially distributed random variable, while the laws of (M") do not
form a tight sequence (because of the two jumps of magnitude 1 which come
together with probability 1 at time 7).

2.4. Extensions of the Aldous and Rebolledo results. In order to obtain
conditions closer to necessity than the previous Aldous and Reboiledo
hypotheses (see Remark 2.2.3) and in particular to obtain tightness conditions
where the limits are not necessarily quasi-continuous, extensions of the
theorems described in Sections 2.2 and 2.3 have been worked out, in particular
by Jacod et al. (1983) and also by Platen and Rebolledo (1981) and Reboliedo
(1979).

For the sake of completeness we mention a few results from Jacod et al.
(1983), but we shall not use these results later in our applications. We say that
an increasing process G” dominates the semimartingale X" = A” + M~ if for P"
almost all w, the measure dG"(:, ) is greater than d(|A™ + {M))(@) where
|A™] is the variation of 4™,
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2.4.1. Theorem (Jacod et al. (1983)). Each one of the following conditions is
sufficient for the tightness of the sequence P%. where G” dominates the
semimartingale Z”,

(C,) The sequence (P%.) converges weakly towards a P such that Plo:a
continuous} = 1.

(C,) (P.) converges weakly towards a Dirac probability measure.

(Cs) (@, (F7), P") = (, (%7), P)
(i) G* converges in probability to G as D(R™"; ¥)-valued random

variables.

(ii) G is predictable with respect to the filtration M, 2.

(Cy) Pgn converges weakly to a limit £ such that the canonical process & is

@ (P)-predictable where @ (8} denotes the natural filtration of D(R*; %)
completed for P,

Another type of extension concerns the infinite-dimensional case. The last
statement in Theorem 2.3.2 applies only to the finite-dimensional case. The
following result may be found in Métivier (1984).

Recall that (M) is the # &, ¥-valued process (matrix-valued process)
such that M ® M — {M) is a martingale, with {M} predictable and with
finite variation. (See Métivier (1982), Chapter 4, for details.) Let us recall that
if (h,) is an orthonormal basis of %, the elements of ¥ ®, % are of the form
1= Eijen At: ® 1y with [|$]], = £ |4,/ <w, and #®, 5 is a Banach space for
the norm ||$||;. This space is included in the Hilbert—Schmidt tensor product

9’6@2%::{,)7 = A @Ry, Y, |A,;,-|2<°°}-
%] if

The space #&, 9 is a Hilbert space with A; @ 4; as an orthonormal basis and
norm |[9]|, = (Z; [A;]*)2. The injection from #'Q, % into ¥ ®, ¥ is continuous.

2.4.2, Theorem (Infinite-dimensional semimartingales). Let (M”) be a se-
quence of locally square-integrable martingales, with values in the separable
Hilbert space . If the sequence of #&,#-valued processes ({M™"H1), .,
satisfies the condition [T,], the same condition holds for the processes (M"), ..

3. Weak convergence of %-semimartingales

3.1. D-semimartingales in R% In this section we introduce the class of
processes for which one can write a formula similar to the Dynkin formula for
Markov processes. As a consequence of this formula, they turn out to be
particular semimartingales. For this reason we call them Dynkin semimartin-
gales or, for short, @-semimartingales.
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3.1.1. Definition. A cadlag adapted process X, defined on the stochastic basis
(Q, o, (F);z0, P), with values in R?, will be called a @-semimartingale if there
exists an increasing cadlag function A(¢), a vector space % of continuous
functions on R and a mapping L:(%¢ X R Xx R* x Q) — R with the following
properties:

(D,) The functions x — ¢’(x):=x"and ¢'¢/,i,j=1, - - -, d belong to 4.
(Dy) (i) Forevery (x, f, 0) e R* x R* x Q the mapping ¢ — L(¢, x, t, ®) is a
linear form on € and L{¢, -, 1, w) € €.
(ii) Forevery ¢ € 6, (x, t, w) — L(¢, x, ¢, @) is By« ® %-measurable for
the Borel o-algebra By« of R and the g-algebra % of predictable
sets.

(D;) For every ¢ €€ the process M? defined by M*(¥, w):= ¢(x,(w)—
d(xo(@)) — [§ L(¢, x,(w), s, w) dA, is a locally square-integrable mar-
tingale on (Q, (%)=, P).

Now, we introduce the first- and second-order ‘local coefficients’ b; and g, ;.
3.1.2. Definition. Forevery i,j=1, .-, d we set
bix, t, w):=L(¢', x, w, 1)
a;{x, t, 0):=L(¢'¢), x, 0, 1) — x'b(x, w, £) — x'b,(x, w, £).

The b;’s and a, ;s will be called the local coefficients of first and second order.
We write b(x, t, w) for the vector (bi(x, f, ®));=; .., and a(x, ¢, @) for the
matrix (a,,(x, ¢, ©));;—1,....a

3.1.3. Lemma. Let X be a @-semimartingale with local coefficients & and a.
Let us define

3
M =X -X,- j b(X,-, s )dA,.
0
Then (M,),= is a locally square-integrable martingale and

.= |

10.¢}

trace a(X,-, 5, ) dA, = 2, [|B(X,, 5, -)||* | A4,
=y

Proof. The fact that (M,) is a locally square-integrable martingale follows
immediately from the definition of b and (D;) and (D5).
Now the formula on quadratic variation gives

(3.11) le= Il +2 [ X, ax, +0x),

But, writing V, for the process [i,,8(X,-, s, -)dA, (with paths of finite
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variation) we obtain

X1, =M. +2(M, V], + [V].=[M], +2 3 AM, AV, + 3 A V|

and hence

G-12)  [X],=[M],+23 (b(X,, s, JAM)AA, + g I6(X,-, 5, )|[(AA,)2

=t

Therefore

IKIP =10 +2[ (Xb(K,-, 5, ) da, + [V
(3.1.3) 1011

+ 2 16X, s, )I? |A4, + N,
s=r

where (N} is a locally square-integrable martingale. Now using property (Dy)
with ¢(x) = ||lx||? = trace (x'x), we obtain

X7 = 1%, 12 + 2 f] X b5, ) dA,
¢
(3.1.4)
+f tracea(X,-, s, ) dA, + ¥,
]DJI]

where (Y) is a locally square-integrable martingale. Comparing (3.1.2) and
(3.1.3) we see that

(1= [ wrceatx,s, aa,+ 3 ekl a4 )
10,¢] =7 [

20

is a locally square-integrable martmgale. Formula (1.2.9) then gives the
lemma.

We shall make use of the following version of the classical Gronwall
inequality.

3.1.4. Lemma. Let A be a cadiag increasing function on [0, T] with A(0) =0,
A(T}=¢. If @ is a positive left-continuous function such that forall t =T

DN)=K+p| @(s)dA,

0.4

[2p£] ]

O(T)=2K > (2p&y
i=0

where [x] denotes the integer part of x.
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Proof. Define ¢,=0:--0,,,:=inf {r:4,~A,,=1/20} AT and set X =
P, Note that, because of the left confinitity of @

P(H)=K+p O(s)dA, forall 1 =T
]0“![

and therefore

Yen=K+p flo () dAs) + pf] O(s) dAG) = K + plr, +1

Xk+1
Ty Ok 1]

or

X1 =2K 4 2p8x,.

Noticing that T = Of2pe) leads immediately to the inequality of the lemma.

3.2. Tightness of sequences of D-semimartingales

3.2.1. Hypotheses. We consider a sequence (X") of %-semimartingales, each
X" being defined on its own probability space (Q~, 7, (FD)=er P7). We
assume that these P-semimartingales are associated with the same space € of
continuous functions on R4 and we call L. (or A”) the mapping (¢, x, ¢, w)—
L*(¢, x, 1, @) (or the increasing function) attached to X” (see Definition
3.1.1).

For easy further reference we now list some hypotheses which will be used
later,

(H,;) There exists a constant X and a sequence of positive adapted processes
(CP)e=o such that for every #, x and o

@ (|&*(x, @, O[>+ trace a’(x, w, 1)) = K(Cr + ||x]]?).
(ii) For every T >0

supsup E(C?)<e and lim sup P"{sup cr> p} =0.
n =T p—e n =7
(H;) The sequence (X8)n=o of random variables is such that
sup E(||Xgf|?) < ce.

(H;) There exists a positive function & on R* and a decreasing sequence of

numbers (g,,) such that lim, 4o @(2) =0, lim, teoPn, =0and for all 0 <s < ¢
and all n:

A - A= alt—s) + P

In the practical applications which will be mentioned in subsequent sections
the sequence (4”) will be either A™(t)=t for all n and ¢ or A"(r) = (1/n)[nt]
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where [u] denotes the integral part of u. Let us remark also that condition (I,)
implies that A" has all its jumps smaller than p,.

3.2.2. Lemma. Let (X"),zo be a sequence of P-semimartingales satisfying
the assumptions (H,), (H,) and (H,). We set g

(3.2.1) MP:=Xr—X2—| BYX™,s, ) dA”.
10,4]

Then for each T >0 there exists a constant K, and n, such that for all # = ng

(3:22) E(sup I717) = K 1+ E 1)
and
(3.2.3) E(sngJullM?llz) = Kr(1+E ||X3]).

Proof. Let (73)x~o be a sequence of stopping times converging monotoni-
cally to +, such that (M7, )=, is a square-integrable martingale for each .
Writing X7 as M} + X + [1o 1 b"(X™, s, -) dA? we derive

E (fgl; ¢ ’z‘nglz) =3E(|IX3]%) + 3E(a(T) + p,,)( f 67(X,-, )| dAg)

B.TAt]]
+38(sup Mz, ).
t=T
Using the Doob inequality,
(3:2.4) E(sup 1M 5, JF) S4E((M) ).
=T
Using Lemnma 3.1.3 we derive, for some constant K,

E(sup 1%, J2) S3EXGID) + K[ [ (ot e, gl as .
ST 10.7]

Setting 7 :=sup,=r E(C}) and using (H,) one obtains for every < T
E (gglg 1x :;-Mllz)

SSEXGIP)+ K@) +poyre + K [ (sup | gl ).

Applying Lemma 3.1.4 to ®(t):= E(sup,., [1X% .,l?) we obtain immediately

[E——
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the existence of a constant K. such that
B(sup X3 IP) S K21 + £ x50
s<T
The Fatou lemma for &k 1 = leads immediately to
B(sup |1X71P) = K51+ E 35]1)

and therefore to formula (3.2.2). Formula (3.2.4) and Lemma 3.1.3 imply for
nen,

E(sup ||Mf||2) = 4f E(trace @*(X’-, s, -)) dA"
t=T 0,7

s4k[ E(Cr+ Xz daz
[0.7]

S4K(T + p,,o)(yT + sup E ||X§'||2).

This gives formula (3.3.3).

3.2.3. Proposition. Every sequence (X”) of %-semimartingales satisfying the
hypotheses (H,), (H,) and (H,) is tight.

Proof. The inequality (3.2.2) implies the tightness of the laws of the
R<-valued random variables {X7:n € &} for every £

We have only to prove, using the theorem of Rebolledo, that the processes
(B"),cx and ((M")), - satisfy the Aldous condition [A], where

Bri= f (X", 5) dA™.
10,7

From (3.2.2) and (H,) we derive

n neyn N _n__ <C¥((§)2 7 |2
629 Plaplb s s > 75} s P k0 + g

and
(3.2.6) P"{sup trace a"(X", s, -) >—"-—} éﬁk 1+ E x5
sET £ a(6) n T
for some K, and all neN. Since A%, — A% a(8)+ p, the following

inequalities follow from (3.2.5) for any family (z,) of stopping times such that
T,=T:

n @ 6 2 e ]
(6.27) sup P'{|1B, ., — By > (1 +a—‘(’5)}é ;2) Ko (1+sup E x5
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and
sup P{[ ez, Ol dag > n(1+ 5}
(3.2.8) e o(6)
ngT(1 +sup E [IX5]P).
From the inequality (3.2.6) we derive
[
sup P"{f trace (X7, 5, -} dA? > g (1 + ——)}
n Yon, Tu+a] a’(a)

(3.2.9)
g“—flzzr(l +sup E 1X?).

The Aldous condition for (B") follows readily from (3.2.7) while the Aldous

condition for (M") follows from (3.2.8), (3.2.9) and from the fact that as soon

as p, =1

2l s Ol llaaze=
+

Tn<S=Ty

167xz-, s, )| .
1%, tn+ 8]

3.3. Convergence of sequences of D-semimartingales. Once the tightness of
a sequence (X”) of P-semimartingales has been derived, the study of the
convergence in many cases goes as follows. Assume that there exists a subset
of bounded functions €, of € and on %, a linear operator L, mapping %€, into
bounded continuous functions on R? Let us also assume that we are able to
prove (this is sometimes one of the most difficult steps!}) that for every ¢

(H,) lim | E*|L"(¢, X-, 5, ) ~ LX) |dA7=0.
0

Let us finally make the hypotheses

(Hs) The measure dA” converges weakly to the Lebesgue measure
and strengthen (H,) to

(H;) The laws of (X3),=, converge weakly to a probability law p, and
sup, E |X3? <o,

Then the limits of the laws (£”) of the sequence (X") can be characterized as
solutions of a ‘martingale problem’ associated with (L, Gy t4o). Let us recall
the definition. On the space Q:=D(R*; R<) (see Section 1.1.4) we consider
the right-continuous filtration (%),=, generated by the canonical process &. We
say that a law P on 4 is solution of the martingale problem (L, G, u,) if

(M,) The law of &, is u, under P and
(M) For every ¢ €%, the process M? defined by M?:=¢(E)— ¢(&) —
6 Lg(&) ds is a martingale on (R, (%), P).

Weak convergence of sequences of semimartingales 49

3.3.1. Theorem.

(i) Let (X™) be a sequence of D-semimartingales satisfying (H,), (H3), (Hy).
Then for any weak limit P of the sequence (F”) the canonical process is
continuous in probability.

(i) If moreover (H,) and (Hs) hold, the weak limits P are solutions of the
martingale problem (L, %,, ;). In particular if the martingale problem
(L, 6y, 1o} has a unique solution P then (B"), -, converges weakly to P.

Proof. (i) The first part of the theorem follows from the following lemma.
(An analogous proof allows us to show that under the same conditions one has
P{|AE,| >0=0} for every predictable stopping time z.)

Lemma. I P is the weak limit of the sequence of the probability laws (P*)
of processes (X") satisfying the Aldous condition, the canonical process £ is
continuous in probability for A.

Proof of the lemma. If the sequence P~ converges to P, there exists a dense
set T e R* such that, for every u € T, the laws of X « converge to the law of &,
for P. Let us assume that for some 7, £>0 and reR*, for every k>0, one
can find 1, and ¢, with t—h<t,<t<t,<t+h and P{lg,— & |>n)>e
Because of the right continuity of &, ¢, and t, may be assumed to be in 7. Then

jll'l;lc Pn{’§f1 - gt:l >n}>e
But this contradicts the Aldous condition, which implies the existence of A
such that for every ¢,
lim sup P{|§—-§,|>n/2}=0.

n—® E1SH+2R

(i) As a consequence of (i) the functions & — E(®) are continuous at
P-almost all points @. For every s <z e R+, ¢ € 6, and bounded B-measurable
function ® on Q, the mapping

5= [0 - 96) - [ L@ (@) d]0(w)

is P-a.s. continuous and bounded.
If (P*') is a convergent subsequence of P* we can therefore write

im 2| 20 0) - 0(6) - [ Lo as |

= £[o0)[0(&) - 9(8) - | o) |}

To prove the martingale property we only have to show that, when ® is

%.-measurable, this limit is 0.
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But, by hypothesis,
Brfo0|s@)- o)~ [ 1,55 ) ats]} =0

for all n’.

The required nullity is then a comsequence of (H,) and of the following
relations which are implied by (H,):

lim @ =0 P-as.

| L&) ds - | L&) day

(Note that s — L¢(E,) is cadlag.)

3.3.2, Example. Let us return to the example in Section 1.3.2 with €=
6*(R). In this (critical) case »” =0 and a*(x, s, -) = Bx. Tightness is a very
trivial consequence of Proposition 3.2.3. Now take for %, the subset of
functions in € with compact support and for P €€,

2
L¢(x)=ﬁx%;%(x) for x20 and L¢(x)=0 for x<0.

One can write
L) = L(x) + Lig()
with
L39) = 53 Bx 3 (60 + .0k~ 1)) - o3
— ealle = 1)¢"(x) ~ 1620k — 179" (8)Iv(k)

for x =0 and L"¢(x) =0 for x 0. Since ¢, ¢’ and ¢" are bounded, one may
find for each &, >0 an integer £, such that

sup
x

g}c [&(x + &,(k = 1) = §(x) — &,(k — 1)’ (x) — L&, (k — 1)20"(E)]v (k)

=eisup |9 ( S (k= 1v(0)) = 22

For such a &, one can moreover write

1 .
;511m sup
n n k4

kg:k [P(x +&,(k — 1) — p(x)

~ &k —1)¢'(x) — &%k — 10" (E,)]v(K)] S lim &, (k, — 1)° [|¢"]|...
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One has therefore

lim sup |LZ¢(x)| =0

for every ¢ €€, and convergence in law to the diffusion with generator
1,2 Px(3%/3x2).

4. Multitype branching processes

4.1. Notation. We introduce the following notation:
R4 the d-dimensional Euclidean space; its elements will be denoted by
X=(xy, Xa)s
R*:  the subset of R whose elements have non-negative coordinates:

{xeR:x20,i=1---,d},

N the lattice points of RY; its elements are i= (i), - - -, iz), i; being
integers,

N+d - R+d N Nd,

8, the Kronecker symbol,

e the j-unit vector, j=1, - - -, k; &=(0,, ", 84;),

g’ R¢— R, the projection map ¢'(x,, - - -, x,) = x,

I the unit d X d matrix.

For a matrix M (or a vector x), M" (or x™) will denote the transpose.

Foreachi, i=1,---,dlet §=(,,, -, & ,) be a random element of N*+¢
whose probability distribution on N*¢ is given by p,(;/) = p,(iy, - - -, J)-

We shall assume that E§ and EE?, are finite.

The elements of the mean matrix M are given by

My=20pdD),  ij=1,---,d;
and the elements of the covariance matrices by
oi,j(l) = 2 (rni— Mrs)(”; — My)p(r).

a; will denote the column vector given by
o= (0;(1), - - -, g,(d)), 0, =0, (k).

X+ y will denote the scalar product of the vectors x and y.
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4.2. Discrete time

4.2.1. The model. A multitype Galton—-Watson process is a Markov chain
Z,=(Z,, -, Z,,) whose state space is N* and whose transition probability
P(i, j) is given by

(4.2.1) P(i, j) =pi" = p3=. . % pYiay),

where * denotes the product of convolution.
The quantities defined in Section 3.1 are casily computed, and we obtain

(4.2.2) Lo(i) = Ej) (@() — @@)p1 - - - pii(z)
(4.2.3) b(@)=(by(D), - - -, by(i)) =i(M ~ I}
(4.2.4) a, () = (M* - DI'IM — 1)), + o,

We consider a sequence of such processes Z{™, n=1,2,--., using the
above notation with superscript #, and we introduce the sequence XXt} of
normalized processes:

(4.2.5) XD =¢,Z[nt], =0

where ¢, is a sequence of constants decreasing to 0. For the processes X)(r)
we have (proceeding as in Example of Section 1.1.3: A, () = 1/n[ns)):

(4.2.6) L), x) = nL('tp, -Elx) where  ¥(x) = p(c,x)
4.2.7) b (x) = nx(M™ - I)
(4.2.8) afP(x) = n((M®T — DxTe(M™— 1)), , + ne,xal?.

From this it follows that

) 2 d
(4.2.9) trace a®™(x) = M +ngx > ol
R =1

and the sequence of martingales

(4.2.10) M) = XON(t) — XO(0) — n f X, (= M —I)dA,(t)

will have their Doob—Meyer increasing process given by
? d

“.2.11) (), = ne, [ X0 -) S o da, s)
] i=1

(use formula (3.1.3), and observe that the quadratic terms cancel each other).
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From Proposition 3.2.3 it follows that the processes X and 4 will be
tight as soon as n(M™ - I), ¢{” and ne, are bounded.

It is now easy to derive sufficient conditions for the weak convergence of
X™ and to identify the limit.

4.2.2. Theorem. Let Z™ be a sequence of multitype Galton—Watson pro-
cesses such that

1
(i) M®=1+-C, with limC,=C

n—x

(ii) '!1_1)1510 ofpPy=0, I=1---,4d oM=K for some K,

= 1, SO d, f >0
(i) lm Y, (n—m@PRpi(r) =0, or any &
norlr||=evn i=1,---, d.

(That is, we consider a family {&:neN,/=1,-.. ,d} of independent

random variables with respective laws p§™, satisfying Lindeberg’s condition.)

Then, given a sequence &, such that lim, _,., ne, = a, a >0, the processes
X0 =, ZWnt],  X*0)=x§, limx{ =x, x, +0

will converge weakly to the unique diffusion process in R*? starting at x,, with

generator given on C? functions by:

d 3 1 & &*
— A e 2
(4.2.12) L:=2 &C), FRRE L PR ax?

Proof. We have only to check the hypothesis (H,) of Theorem 3.3.1 and to
establish the uniqueness of the martingale problem associated with (4.2.12).
First, observe that our assumptions imply

lim of (=0 it ()~ 0.

Next we shall make use of the following lemma.

Lemma. Let 9, i=1,---,n be a sequence of independent identically
distributed d-dimensional random vectors with mean 0 and covariance matrix
o™ such that lim, .. 6™ =g Let §, = £, g7'; if the 5™ satisfy the central
limit theorem, namely the Lindeberg condition; for any £ >0

lim E| g2 oy vy = 0

then ||S,[|*/n is uniformly integrable and for any bounded continuous function f
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vanishing at 0

2
lim E-”S;—” f(i) =0.

n-»o n

Proof. 8,/\/n converges weakly to a d-dimensional Gaussian vector G with
mean 0 and covariance ¢. By the Skorokhod representation theorem (Sko-
rokhod (1956)) there are random variables §,, G' with the same law as §,, G
such that §,/Vn converges almost surely to G'. Since E(||S,]|*/n) converges to
E||G[? it follows that ||S,]|%n is uniformly integrable and so is (||S%]%/
n)f(S./n), since f is bounded. This last sequence converges almost surely to 0
and, taking expectations, the lemma is established.

We return to the proof of the theorem. We take for %5 the class of bounded
C*functions @ on R*4. The generators are given by

L@, x) = nE(¢(e,Z,) — ¢(x))
where

xkl En

d
Z0=23 2 &)
k=1 j=1

and the §{") are independent random vectors distributed according to p{™.
Let us observe that '

1 1
Ez® =—x(I +—C,,) =lx,,
€ n €

n (3

and

1
(CovZm), = S—xa,(-}').

Writing
L, x) = nE(p(£,Z,) — 9(x,)) + n(p(x,) - 9(x)
and using Taylor’s series with remainder, we obtain

4
ij

2

L‘”)(¢»1)=i(xC)-@(x)+E&§d: 2 x0(0) o (x.) + R, (x)
“ n 'ax,- 2 Py ™~ ax, n n

where R, (x) is given by

n g . =07
Rn =35 E nZn —x, ). Z, — n (—_ a = )
O =3 ECZ e (S 0 - 52 )

where [|AZ]| = ||x, — £,Z,|). It follows from the lemma that R, (x) converges to 0,
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and moreover
IR, ) =C |Ix|.

To finish the proof we have to check condition (H,) and prove the
uniqueness of the solution of the martingale problem (L, €, x).
We write (H,) in the form

tim f E" |L"(p, £.-) — L(p, £,-)| dA,(s) = 0;

knowing that lim,_,., R,(£, ) = 0 and
R, (5-)=CJ|&-]| for some constant C
and using the fact that
E(R"(§,-))=K exp(at) for some constants K and a,

the property (H,) follows immediately from the Lebesgue dominated conver-
gence theorem and

flim f K exp (as)(dAr- ds) = 0.
A= g

The uniqueness of the solution of the martingale problem in R*4 associated
with the diffusion operator L and with initial condition x, is easily seen in the
following way. It is a standard result in the study of martingale problems (see
Strook and Varadhan (1979), Theorem 6.2.3, p. 142) that, if the solutions D,
of the martingale problem (L, %,, x,) for all x, € R*¢ are such that for any t >0
the law &P, is uniquely determined, then the marginals (§.'-P,,
veo, 5710 B) are uniquely determined for all X, and any finite family
tp<tf; < -+ <t,. Therefore P_ is unique for any initial condition x.

If P is any limit law of the laws B, of the processes X", we need only to
check that the moments of &, under P are uniquely determined. But, if v is a
monomial of degrec k, the particular form of L gives

BOED) %0~ [ 3 at B (&) du - [ S bEA4(6) du =0

where {y*":i €} is the family of all monomials of degree k, and af and b¥
are constants bounded by K k(k —1). The moments of order k are therefore
recursively determined.

Remarks. (a) The statement of the theorem also appears in Buckholtz and
Wasan (1982), under stronger assumptions and with a formal proof which
seems to contain some gaps.
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(b) The assumptions of Theorem 2.2 are essentially necessary for weak
convergence to a diffusion; the following example shows that if we keep all the

above assumptions except (iii) we shall still have weak convergence of X to a
Markov jump process.

4.2.3. Example. We consider the sequence Z™ of multitype Galton—Watson

processes associated with the probabilities p;(f) whose Fourier transforms are
given by

A . A
Eexp (iu- &)= (1 — E) exp (iu,) + e v, (nu), I=1-..,d

where y,(u) is the Fourier transform of a non-negative random vector ¥, with
finite covariance. The conditions (i) and (ii) of the theorem being satisfied, the
associated sequence X™X(r) = Z{"}/n is tight; we note, however, that condition
(iii) is violated.

The action of the generator L, on the functions exp (iu - x) using formula
(4.2.2)-(4.2.6) yields:

L(exp (iu - x), x) = Ii;n L,(exp (iu - x), x) = exp (iu - x)A Ek: x vy, (u) — 1).
LN =1

In general, for any function f continuous and bounded,
d d

(4.2.13) L(f, x)=—-A ; xf(x)+ A ;‘, X, f F&+3)dG(y)
=1 =1 Jr+

where G, denotes the distribution of Y.

(4.2.13) is the generator of the process X(¢) in R*9, which starting at the
point x, will stay there for a random time T, whose distribution is exponential
with parameter A Y% | x,, then it will jump to x + y where the law of ¥y is given
by X, x,G(y)/ L x,.

From Theorem 3.3.1 it will follow that X converges weakly to X provided
one can show that the martingale problem associated with I, has a unique
solution. This follows easily from the fact that the martingale problem

associated with L characterizes the distributions of the waiting time in a state
and the jumps.

4.3. Limit of the accompanying martingale of a critical process (discrete
time). In the critical case we are inspired by the work of Kurtz (1975) to prove
another limit theorem. This is a case where we study the limit of a family of
martingales which are not Markovian. Let Z, be a critical process with mean
matrix M which is assumed to be primitive, i.e. there is an integer m such that
all the elements of M™ are strictly positive and the largest cigenvalue of M is 1.
It then follows from the Perron-Frobenius theory that to the eigenvalue 1
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there will correspond a right eigenvector uT and a left eigenvector v whose

components can be chosen to be strictly positive and normalized in such a way
that

d
(4.3.1) Du=1  wt=1
i=1
M"=R+Q" with R;=upv, RO=0R=0
and there are constants ¢ and p, 0< p <1 such that for all »

Q5] = cpm.

A multitype Galton-Watson process whose mean matrix is primitive is called
positively regular. We assume also the existence of o, (see Section 4.4.1). As
above let us consider the sequence of processes

X (= &L,

with lim,, ;. ne, = a, a>0. Then since X*)(¢) has non-negative coordinates
and EX®™)(t) = xM!™! is bounded by (4.3.1) it follows casily from (4.2.11) that
(M), will satisty the assumptions of Aldous’s theorem and from Rebolledo’s
theorem (4.3.2) M will be a tight sequence as soon as X™(0)=x{" are
bounded. Let us assume that lim,, ., x§ = x,.

Let

YO =y+n I'X(")(r ~ )M —I)dA, (7).
0

Then the couple (X®)(t), Y*)(r)) defines for each n a discrete Markov chain
with time parameter j/n, j=0,1,2, -+ and state space R??; its transition
probability is given by

Pn(x; Y u, '-') = Pn(x’ u)av,y+x(M—1)

where F,(x, u) is the transition probability of the process X,
It follows that if

Lf(x,y)=2 P.(x, y;u v)[f(u, v) — f(x, y)]

then
FEXO(D), YO 1)) — FXO0), YO0)) - n f ' L(fX™(z =), Y (1 - ))dA,(7)

will be a martingale. Choosing f(x, y) of the form f(x, y) = @(x —y) with @ in
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G(R9), and using the Taylor formula with remainder, one obtains:

PP = YO 1)) — p(X(0) — Y(0))

(432 —ine, [ S XO(—0)0,0) 2L - Yz -y at () 4 E,

is a martingale. The remainder E, is of the form

Ey=n [ ROz =), YOz~ )) da (1)

with
Rn=2Rp
i
1 ) x S S
Ry(x, y) == (enf —xM)y(e,j — MmP(—,')[ —= Py ]
/50233 e M)l =502 (5 1) 5 g) - 2 ey

where ||§, — (x - y)I| = |le,j — xM]|.
Using the lemma as in the proof of Theorem 4.2.2 one obtains

lim R,(x,y)=0 and Iim E, =0

n—soe

To check (H,) with

1 e
L I=a- PO
(@) %3 § <Ro; 92,9z

we have now to show that

e e
lim | E*a > YOX¢ —Ra. Wy dar =
fim | B'a 2, ¥z - )R, 357 B2 YD) dAz=0

and this follows from the fact that lim_,_ £ 1Y2I? = 0 which is obtained from
the explicit form of the covariance of Z, (see for instance Harris (1963), p. 37).

Therefore any weak limit P of the laws P™ of the processes M™ s a
solution of the martingale problem (L, %o, x¢} on the half space xR = 0 (where
all the processes M™ take their values), with %, the set of C? functions.
Exactly as in the proof of Theorem 4.2.2 the uniqueness of P follows from
the argument on the uniqueness of the moments,

We have thus obtained the following theorem.
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4.3.1. Theorem. Let Z, be a multitype critical positive regular Galton-Watson
process with mean matrix M and covaridnce matrices o;;. Let R be the
projection matrix in the Perron-Frobenius decomposition of M. Then if
X®X1) = g,Z},,; with X(0) = x{» converging to x,# 0, ne, — &, & >0, the
sequence

E0Q) =XO) =n [ X0~ )M-1) dd, (0

will converge weakly to the unique diffusion in the half space xR =0 with
diffusion operator L given by

2
Ly= aXR% 3627 Gl g C*functions on xR = 0)

H
i 3x,-3xj
and initial condition x,.

4.3.2. Remarks. (a) Since E™R =X™R and X™(I — R) goes to 0 it follows
that » [ X™)(z — )(M — I) dA, () behaves like the diffusion ECNI —R).

XR is the projection of the vector X on the vector v in the direction
perpendicular to u.

(b) A particular case of an age-dependent process. Let Z(f) be an
age-dependent process whose lifetime distribution T is discrete with a finite
number of jumps at the integers, i.e.

P(T=x)= ; 8:9,(x).

If the process is critical we can describe Z by a (k + 1)-type Galton-Watson
process where the type denotes the age of the particle. The mean matrix M will
be given by

0 1 2 k
0 10 0
1-n0 n

M=11-rnb0 0

1—'rk rk_l

where

P S
p=Bn T Y& porziii|Tz))
&t +g
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Letting r,=1, r, =0, we have
1-v ifj=0
M;= ¢ r, ifj=i+1
‘ otherwise.

The right eigenvector is p=(1,---,1) and the left eigenvector v is given by

Yy =_1/(1 + }:.TT), ViS8imt g =P(T=j)(1+ ET) and our theorem
applies to this situation.

4.4 Continuous time

4.4.1. The model. We consider a system of d types of particles. A; denotes the
ratc of death of a particle of type i and p,(f)=p, - -, ja) the
probability that when it dies Ji» ** -, ja particles of type 1, - - -, d are created.
Let Z(t)= (2", - - -, Z“(t)) denote the random vector of the number of
particles of type 1,- - - | d in the system at time ¢.

We adapt the notation of 4.4.1 by setting in an analogous way

My:=3 1 1)
A= '11.
A,
Omi)) = 2 (= 8, )0 = 8)p,(r), 0= oLl
o, = (:;rm, A1) - - - @, (d)), where T denotes the transpose
& =(dy;, - - -, 8,) the jth unit vector
a=AM-1I)

+d : ;
fV the set of d-dimensional vectors whose components are non-negative
mtegers.

Under those assumptions it can be shown that this system defines a unique

Markov process Z(r) whose state space is N*¢ The quantities defined i
Section 3.1 are given by '

W4l Llgx)=—(hx+- -+ Ax o) + Edi Ax, 2 plx+j—e)p,(i),
i=1 JenNtd

(442) b(x)=xa
and

(443) a‘.]_(x) =x+A- 0,,(')
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Moreover
(4.4.4) EZ(t) = Z(0) exp ().

(This implies in particular the positivity of the matrix exp ().

We consider now a sequence (Z*)(-)),., of such processes using the above
notation with superscript n. We introduce the sequence X®(r) = &, Z™(n1)
(noting that the Z"(nr) are as Z"(¢) but with an increasing intensity of jumps
which come to the same as accelerating the time) and we obtain for their
generator

@45 Le@=nZh S (00 + e - o6) - 9()]pi0).

We have all the ingredients to establish an analogue of Theorem (4.2.2),
but, instead, we shall modify the model to deal with population-size dependent
multitype branching processes, generalizing the results of Lipow (1977).

Keeping the above notation, we let the quantities p™ and A% be functions
of x & N*9. The new processes are still Markovian, but (4.4.5) will take the
form:

d
L@, x)=n >, A" (xe 1) x,67}
i=1

(4.4.6)
X 3 @0+ e~ e,0) ~ 9P, e

from which it follows that
4.4.7) 5" (x) = nxa,(£;'x)
(4.4.8) ai(x) = ne x A (e Yo (e x).

We make the following assumptions:
i) sup sup AP(elx) <o,  lim AC(e;%) = Alx);
n X n T @
(ii) sup sup ne, (&, 'x) < ]i;n ne, (g, 'x) = C(x);
(iii) limsupsup », |jIPpiG, x)=0, i=1,.--,d;
Nf® n LN AT ES

(iv) sup sup o™ (x) <<, li;n M (e x)o (e x) = o/(x);

(v) Let %, be the space of C? bounded continuous functions on R+ and L be
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defined on %4, by

d ] a d &2
(4.4.9) L=E=ZI (.I:C(.\:)),-a—xi+Ei‘§_:1 x,-oi(x)a?, o >0,
Then the martingale problem associated with (L, %, x,), ¥, € R** has a unique

solution (this is true in particular if d = 1 or if C(x) and o(x) are constants),

4.4.2. Theorem. Let Z™(t) be a sequence of population-size-dependent
multitype branching processes, satisfying the assumptions (i) to (v), above, and
let X™(f)=¢,Z™(nf) with limen=a, a>0 and X (0 =x§ with
lim x§” = x,, x,# 0. Then the sequence X ®(t) converges weakly to the unique
diffusion in R*“ starting at x,, with generator L given by (4.4.9).

Proof. The proof follows the steps of the proof of Theorem 4.2.2 but the
computations are much easier. However, we need an estimate on EX™)(¢)
which is easily obtained from the Gronwall inequality: since

X)) ~X(0)-n er(")(t)a(")(s;lX(")(r)) dt

is a martingale, taking expectations and using (ii) one obtains that there is a
constant K such that

EX®™(r) < X™(0) + K f EX®(r) dz
0

from which it follows that
EX™(t) = X™(0) + K exp (K1).

Remark. Being in the continuous-time case, the branching structure of the
above processes has completely disappeared. One deals here with diffusion
approximations of a relative large class of Markov processes.

4.4.3. The critical case. Theorem 4.3.1 has also a version for multitype
branching processes in the continuous-time case. Going back to the notation
of the beginning of this section, the process Z(1t) whose generator is given by
(4.4.1) will be assumed to be positive regular, i.e. there exists a £,> 0 such that
foralli, j=1,-.-,d, (exp ofy); > 0. Under that assumption the eigenvalues of

exp (at) are given by exp (Af), where A; are the eigenvalues of ¢ and they can
be arranged in such a way that

A>ReA,=---ZRel,.

The left and right eigenvectors v and u of A, can be chosen with all coordinates
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strictly positive and normalized so that
wrv=1 u-1=1

We shall assume that the process is critical, i.e. A, =0. Then the following facts
are well known:

lim exp (o) = R = ((u,, v,))

and the o,(I) being finite, imply that the covariance matrices of Z(¢) grow
linearly with r. (Details can be found, for instance, in Chapter V of Athreya
and Ney (1972).)

Theorem. Let Z(t) be a critical positive regular multitype branching process,
with parameters @ = A(M —1I) and o. Let R be the projection matrix in the
Perron-Frobenius decomposition of exp (ez). Then, if X®)(f) = £, Z(nt) with
X)(0) =x§” converging 10 x,, x, # 0 and lim ne, = @, >0, the sequence of
martingales

(4.4.10) EONt) = X(t) — n f ‘X(")(r)adr

will converge weakly to the unique diffusion in the half space xR =0, with
generator L given by

1 Fo
= aXRA - ——
Ly Z,Z,- % Ox,0x;
and initial condition x, (@ is any C?-function on xR Z0).

Proof. One can easily imitate the proof of Theorem 4.3.1; we sketch the
main steps of a different argument.

For any function @ on R of class C* we recall the elementary formula
P(5) — @(8) = 2 @(£) — p(&, ) — grad o(£,-) - AL
s=t
+[ erad o6,y g
0

where § is a function of bounded variation. For @ in C? we apply this formula
to the martingale " in (4.4.10) to obtain, using T: aylor's formula with
remainder,

P(E()) — @(E(0))

=33 3 E96) - E6NED0) - £96) o

(EWGN +R,
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(first-order terms cancel in the expansion). Observing that the sum over s can
be written as

¢ az
fo ax.;_ (EM)[(X),(x™),]

H

(where | | denotes the mutual quadratic variation) and one obtains, using
(1.2.8),

1 d t 82
PEVO) = 9(EPO) =3 3 | T (E@)a(X(, X) +R, + martingale.
0 OX;CX;

2 ij=1
But from the proof of LLemma 3.1.3
T
(XPXP), = ns, [ a,x) d

where a is given by (4.4.3).
Finally we obtain

P(E) ~ (e -3 S ne, [

=martingale + R,

S (EX™ (7 )Ag, dv
Ox;0x; T Y

from which the proof follows as in Theorem 4.2.2.
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