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The stationary distributions of allele frequencies under a variety of common
population genetics models called Wright-Fisher k-allele models with selection
are well studied. However, the statistical properties of maximum likelihood
estimates of parameters under these models are not well understood. Under
each of these models there is a point in data space which carries the strongest
possible signal for selection, yet, at this point, the maximum likelihood estimate
for selection intensity does not exist. This result remains valid even if all other
parameters in the model are assumed to be known. We will show that this
singularity in data space can cause the parametric bootstrap to produces
inaccurate and unreliable error estimates of the selection intensity . We describe
two alternative methods to build interval estimates for the selection intensity.
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Modern World of Stochastic Models and
Statistical Analysis in Genetics

1. Mathematical Models Sophisticated mathematical descriptions are
proposed. While they are simplifications of the true biological process,
they are often robust descriptions.

2. Statistical Analysis A small part of the process is observed and
statisticians are faced with overcoming the missing data problem, or the
likelihood is known up to an integration constant which is difficult to
calculate.

3. Evaluating the statistical methods Data are simulated under a set of
parameters, the statistical procedure is applied and the relationship
between true parameters and estimated parameters is investigated.
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Wright-Fisher Model
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Heterozygote Advantage

Population size—N

Fitness w(Ai, Aj) =
{

1− s i = j
1 i 6= j

Allele Frequencies x1, x2, · · · , xk where
∑

j xj = 1

Mean Fitness

w̄ =
∑
i,j

w(Ai, Aj)xixj = 1− s
∑

i

x2
i

Mutation Rate u

Scaling σ = 2Ns and θ = 4Nu.
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Frequency Dependent Selection

An allele with frequency xi has fitness 1− sxi then the
mean fitness for the population will be

k∑
i=1

(1− sxi)xi = 1− s
k∑

i=1

x2
i
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Stationary Distribution

Define x = (x1, x2, · · · , xk) to be the allele frequencies,
where

∑
xi = 1

As N →∞

fSel(x|θ, σ) =
e−σ

Pk
i=1 x2

i

c(θ, σ)
(x1x2 · · ·xk)θ/k−1. (1)

When σ = 0 the population is neutral, no selective
advantage.
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Ancestry of a Alleles
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Ancestry of a Alleles
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Ancestry of a Alleles
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What does a neutral population look like?

type relative frequencies
1 0.7800
2 0.1730
3 0.0200
4 0.0133
5 0.0067
6 0.0033
7 0.0033
8 0.0003

Older types tend to have larger frequency than younger
types. Above is a simulated data set with k = 8 and
θ = 0.3.
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The Effects of Selection

The probability that two individuals chosen at random are
the same type is

H =
k∑

i=1

X2
i .

The Selective overdominance model penalizes homozygote,
thus decreasing H.
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Recall from Calculus

The minimum value of

H =
k∑

i=1

X2
i

subject to the constraint that
∑k

i=1 Xi = 1 occurs when
Xi = 1

k . Selection tends to make the allele frequencies
‘more evenly distributed’. It is sometimes referred to as
balancing selection.

12



How would the allele frequencies differ under
heterozygote advantage selection?

Simulated Sample under Selection versus Neutrality with
(relatively low) Mutation Rate

θ = .3 σ = 200 σ = 0
relative frequency relative frequency

1 0.17 0.7800
2 0.13 0.1730
3 0.13 0.0200
4 0.12 0.0133
5 0.12 0.0068
6 0.12 0.0033
7 0.12 0.0033
8 0.1 0.0003
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History of the problem

• Donnelly, Nordborg, Joyce (2001) developed a
likelihood framework for analyzing data under various
k allele models with selection. They use rejection
method for simulating data and importance sampling
for calculating the likelihood

• Joyce Genz (2003, 2005) use a numerical method for
calculating the constant of integration, and develop
methods for sampling from the distribution directly.
Thus, simulating the sampling distributions for
parameter estimates is now possible.

• Buzbas, Joyce (2009) show that the mle is
numerically unstable, do to a the fact that the
likelihood as a singularity.
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The Sampling Distribution of σ̂

1. For a given value of σ simulate a data set
x1, x2 · · · , xk

2. Calculate the maximum likelihood estimate σ̂

3. Repeat steps (1) and (2) many times and plot the
distribution of σ̂.
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Singularity in Data Space

Theorem 1 Consider the probability density function
fSel(x|θ, σ), defined by equation (1) that describes the
distribution of allele frequencies at stationarity for the
Wright-Fisher symmetric selective overdominance model
with parent independent mutation. Let
x∗ = (1/k, · · · , 1/k).

• If θ is assumed to be known, then, for all allele
frequencies x 6= x∗, the maximum likelihood estimate
for σ is finite. Denote the MLE as a function of the
homozygosity h =

∑k
i=1 x2

i by σ̂(h). Then,

lim
h→(1/k)+

σ̂(h) = ∞ (2)
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Consider for example a highly polymorphic
locus with k = 20

1/k = 0.05

A 38% decrease in homozygosity (h = 0.13 to h = 0.08)
corresponds to an approximate 300% increase in σ̂(h)

σ̂(0.13) ≈ 350

σ̂(0.08) > 900
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Lyme disease sample

The following data was collected by Qui et al. (1997)
Hereditas 127: 203-216 on B. burgdorferi (the cause of
Lyme disease) from eastern Long Island, New York.

relative frequency
1 0.10
2 0.37
3 0.26
4 0.27

The observed homozygosity is h = 0.288 relatively close to
the minimum 0.25 under k = 4.
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Lyme disease sample

K = 4
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Lyme disease sample

The maximum likelihood estimate is

σ̂ = 35.1

Based on the simulated sampling distribution for σ̂ we get
an estimated standard error of 176.4.

The 2.5 percentile of the simulated sampling distribution of
σ̂ corresponds to 17.2 and the 97.5 percentile is 681.3.
Therefore, an approximate 95% interval estimate based on
the parametric bootstrap associated with σ̂ is (17.2, 681.3).
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Exact Confidence Interval

For a given confidence level (1− α) and an observed
homozygosity H = h, we choose σ̂L and σ̂U so that

FH(h|σ̂L) = α1, FH(h|σ̂U ) = 1− α2, (3)

where α = α1 + α2.
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Reliability and Precision

True Confidence Level for Parametric
Bootstrap for Lyme Disease Data

Recall that σ̂LB = 17.2 and σ̂UB = 681.3.

Using the monotonicity of the homozygosity gives
α1B = 0.354, and α2B < 0.001. Thus the true confidence
level is 1− α1B − α2B ≈ 0.65.

Exact Confidence Interval for Lyme
Disease Data

Using the monotonicity of the homozygosity method with
α1 = α2 = 0.025 produces an exact 95% confidence
interval of (−8, 105) for the Lyme disease data.
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Bayesian Approach

Assuming independent uniform priors on (θ, σ), the joint
posterior distribution of (θ, σ) is proportional to the
likelihood,

PSel(θ, σ|x) ∝ e−σ
Pk

i=1 x2
i

ENeut

(
e−σ

Pk
i=1 X2

i

) (x1x2 · · ·xk)θ/k−1,

(4)
which can be sampled using a standard Markov Chain
Monte Carlo approach.
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Summary of Results from Lyme Disease Data

interval estimate for σ confidence/credibility
P− boot (17, 681) 65%
Exact c.i. (−8, 105) 95%
Bayesian (11, 125) 95%
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P-boot for k = 20
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HLA Data

The population frequencies are given by
x′ = (0.22, 0.21, 0.17, 0.16, 0.15, 0.04, 0.03, 0.02).

The homozygosity statistic is h = 0.172, again close to the
minimum hmin = 0.125 for k = 8.
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Summary of Results of HLA Data

interval estimate for σ confidence/credibility
P− boot ((21, 396) 70%
Exact c.i. (−10, 159) 95%
Bayesian (6, 183) 95%
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Posterior Distributions
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Full Model

fSel(x|θ,Σ) =
e−x′Σx

ENeut(e−X′ΣX)
fNeut(x|θ) (5)

fNeut(x|θ) =
Γ(θ1 + θ2 + · · ·+ θk)
Γ(θ1)Γ(θ2) · · ·Γ(θk)

xθ1−1
1 xθ2−1

2 · · ·xθk−1
k .

(6)
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General Theorem

Theorem 2 Consider the probability density function
fSel(x|θ,Σ) defined by equation (5) that describes the
distribution of allele frequencies at stationarity under the
Wright-Fisher model with selection and parent independent
mutation. There exists a vector of allele frequencies
x∗ = (x∗1, · · · , x∗k)′ where fSel(x∗|θ,Σ) is unbounded as a
function of Σ regardless of θ
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Conclusion

• Assuming a k allele model with heterozygote
advantage, the maximum likelihood estimates
coupled with the parametric bootstrap approach gives
unreliable and imprecise interval estimates of the
selection intensity. Even if the mutation parameter is
assumed known.

• The problem is caused by a singularity in data space.
Since the parametric bootstrap approach samples
data space repeatedly, there is good chance of
sampling near the singularity.

• Methods that vary the parameters and fix the data
produce better estimates. The monotonicity method
and the Bayesian method both have this property.
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