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previously considered (e.g., Cavender and Felsen-

A new view of phylogenetic estimation is pre-

sented where data sets, tree evolution models, and
estimation methods are placed in a common geomet-
ric framework. Each of these objects is placed in a
vector space where the character patterns are the
basis vectors. This viewpoint allows intuitive under-
standing of various complex properties of the
phylogenetic estimation problem structure. This is
illustrated with examples discussing data set combi-
nations, mixture models, consistency, and phyloge-
netic invariants. © 2000 Academic Press
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Introduction

As evidenced by the exponential growth of papers
containing tree estimates (even outside of evolution-
ary biology), phylogenetic analysis has become an
indispensable part of evolutionary analysis. Yet, the
techniques are complex and many problems are un-
resolved or have complicated relationships with each
other. For example, some of the recent topical issues
include the effects of combining data sets, the accu-
racy and consistency of various methods, the effects
of weighting, the effects of taxon sampling, and bias
due to topology, to name a few (De Queiroz et al.,
1995; Hillis, 1995; Huelsenbeck, 1995; Huelsenbeck
and Kirkpatrick, 1996; Kim, 1996). These problems
and their problem domains are clearly intercon-
nected, but because these connections are rather
complicated it is difficult for us to obtain an intuitive
understanding of the entire structure of the prob-
lems. In this paper, I present a new view of the
phylogenetic estimation problem in which data sets,
tree models, and estimation methods are placed in a
common geometric framework. In particular while
the geometry of evolutionary tree models has been
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stein, 1987; Efron et al., 1996) the construction pre-
sented here is new in that geometric representations
of estimation methods are also considered. This com-
mon framework allows a geometric interpretation of
the myriad properties of phylogenetic estimation.
The utility of this construction is that it gives us a
single picture of the complicated phylogenetic esti-
mation process. It also leads to purely geometric
proof techniques that can be useful for difficult-to-
analyze problems. In the following, I start with a
construction first introduced by James Cavender
(1978). The key idea in his paper is to view charac-
ters in terms of all possible state assignments at the
tips of the trees. This construction allows us to view
entire data sets as a point in a large dimensional
space. While this is certainly not mechanically dif-
ferent from probability computations given previ-
ously (e.g., Felsenstein, 1981), Cavender’s paper
shifted the viewpoint from algebraic computations to
geometric properties. In fact, this geometric perspec-
tive was further developed in Cavender and Felsen-
stein (1987) with its remarkable Fig. 3 (page 69)
sketching the geometry of tree models. In this paper,
I first review this construction in detail and empha-
size its geometric nature. I then describe how tree
estimation methods can be seen as a geometrical
partitioning of this large dimensional space. Finally,
I demonstrate the utility of this view with geometri-
cal interpretations of consistency, accuracy, mixture
data sets and mixture models, and phylogenetic in-
variants. In the following, some of the material is
pedantic and appears in many other texts for which
I apologize, but I repeat it here to fix ideas.

Data Sets as Points in Large Dimensional Space

With finite state characters there is a fixed number
(albeit very large) of possible types of character state
assignments for a fixed number of taxa. For example,
with four-state characters like the nucleotides of a
DNA sequence and, say, five taxa, there are 45 5 1024
possible character state assignments. The assignment
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59GEOMETRY OF PHYLOGENETIC ESTIMATION
A, A, A], [A, A, A, A, C], . . . , [T, T, T, T, T]—up to 1024
different types. I will call a particular assignment of
character states to the terminal taxa a character pat-
tern—i.e., [A, A, A, A, A] is one character pattern and
[A, A, A, A, C] is another pattern, and so on. For
example, here is an empirical data set with 10 charac-
ters:

CHAR\TAXA 1 2 3 4 5

1 A A C C C
2 T T A A C
3 A A C C C
4 C T C G G
5 C T C G G
6 T T A A C
7 C C C G G
8 C C C G G
9 A A C C C

10 T T A A C

This data set consists of 3 character patterns of the
type [A, A, C, C, C], 3 of the type [T, T, A, A, C], 2 of the
type [C, T, C, G, G], and 2 of the type [C, C, C, G, G].
Suppose also that [A, A, C, C, C] was the 28th charac-
ter pattern in a numbering scheme, [T, T, A, A, C] was
the 878th character pattern, [C, T, C, G, G] was the
234th, and [C, C, C, G, G] was the 212nd. (These
numbers are purely made up for illustration purposes.
For the numbering scheme, whether [A, A, A, A, A]
comes before [A, A, A, A, C] is irrelevant in general. It
is relevant if we want to recreate the exact data set
from the list of numbers but we can always construct a
standard scheme, say, by recursion.) Then, the data set
can be represented by the relative frequencies of each
character pattern written as an ordered list of num-
bers,

~0, . . . , 0.3, . . . , 0.2, . . . , 0.2, . . . , 0.3, . . . , 0, 0, 0!.

That is, the data set can be represented by a vector in
a 1024-dimensional space. This construction gives us a
correspondence between a vector and a data set. Geo-
metrically a vector with l elements can be seen as a

oint in a l-dimensional (Euclidean) space. Therefore, a
ata set can now be seen as a point in a l-dimensional
pace, where l is the number of possible character
atterns. One restriction is that since these are rela-
ive frequencies, the sum of the elements in the vector
ust equal 1. Therefore, vectors representing data sets

re restricted to the simplex contained in the l-dimen-
ional space. (In the following I will refer to this space
s the character pattern simplex, or simply the sim-
lex. More formally, this simplex is a subset of Rn

obtained as an isomorphism from the free vector space
of character patterns. All geometric properties that I
Euclidean geometry.)
To summarize, given s-state characters and t taxa,

the number of possible character patterns is s t. The
elative frequency of each character pattern forms a
implex in the s t-dimensional space where the axes

of this space are the relative frequencies of each kind
of character pattern. That is, the coordinates of any
point give the relative frequencies of each character
pattern.

Model of Character Evolution

Suppose a stochastic model of character evolution for
s-state characters and t-taxa were specified. The model
would include the tree topology, branch lengths, mode
of character change, and possibly many other parame-
ters. But, ultimately, the model would specify the prob-
ability of each character pattern—it may take a lot of
computations, but eventually a model of character evo-
lution ends up specifying the probability (or a set of
probabilities) of each character pattern for all st possi-
le patterns. The probability of each kind of character
attern can be listed as a sequence of numbers that
um to 1 (sometimes called the spectra; Lockhart et al.,

1994). For example,

~0.002, 0.013, 0.009, . . . , 0.102, . . . ,

0.0, 0.052, 0.011!.
(1)

Therefore, as with the previous construction, a model
of character evolution can also be seen as a point on
a simplex contained in a s t-dimensional space.

Given sequence of numbers like (1) as the model of
character evolution, finite data sets (samples) from the
model can be generated. The sampling distribution of
the finite data sets follows a simple multinomial dis-
tribution,

Prob$c1 5 f1, . . . , cz 5 fzu O
i 5 1

z

fi 5 n%

5
n!

f1!f2! · · · fz!
p 1

f1p 2
f2 · · · p z

fz,
(2)

where ci is the random variable representing the fre-
uency the ith character pattern, fi is the observed

frequency of the ith character pattern, n is the total
umber of characters, and pi is the probability of the

ith character pattern as given by the model, e.g., the
list (1). The indices run from 1 to z 5 st, the total
number of possible character patterns. (The sampling
distribution of relative frequencies, ri 5 fi/n, condi-
tioning on the data sets size, n, is given by the same
distribution.) The sampling variance of the relative
frequency of the ith character pattern is fi(1 2 fi)/n.
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Therefore, when n goes to infinity, the sampling vari-
ance goes to zero. This is interpreted as saying that the
probability that the relative frequency of the ith pat-
tern, ri, equals any other value than pi goes to zero
(usually more precisely stated using the law of large
numbers, Hogg and Craig, 1978). Or loosely, ri goes to
pi, justifying, say, the study of consistency properties
by “plugging in” the pi for the relative frequency of each
character pattern for infinite-sized data sets (e.g.,
Felsenstein, 1978; Kim, 1996). In terms of geometry,
the model point generates a sampling distribution by
inducing a probability mass (the multinomial distribu-
tion) on the rational points of the character simplex.
This probability mass tends to become increasingly
concentrated around the model point as the number of
characters increase (Fig. 1).

A Parameterized Tree Model Generates a Model Curve

The kind of character evolution model described
above is a “point model” in the sense that the param-
eter values (i.e., the probabilities of character
change) are all fixed and represented by a fixed point
in the character simplex. A tree topology denotes a
family of character evolution models where the prob-
ability of each character pattern is a function of
several variable parameters like the branch length
and rate matrix, but all sharing the same branching
order (5 tree topology). The Markov model of char-
acter evolution over a tree has been extensively dis-
cussed in the literature (e.g., Chang, 1996; Goldman,
1990; Penny et al., 1994) and the common Markov

FIG. 1. Schematic picture of data sets seen as points in the cha
space. The rational points of the simplex correspond to finite-sized d
simplex and the model point induces a sampling distribution of finite
point as the size of the data set becomes larger. It eventually contra
model in the literature is the continuous time
Markov model with the conditional probability tran-
sition matrix after some time period t written as

P~t! 5 e Rt, (3)

where P(t) is the transition matrix and R is the rate
matrix, a real valued matrix with rows summing to
zero. A discrete Markov evolution model can be ob-
tained from (3) by evaluating (3) on a discrete set of
time points (not necessarily with uniform intervals).
In the tree models, the branching points of the tree
serve as the discrete set of points (vertex-to-vertex).
Therefore, this vertex-to-vertex discrete Markov
model is a more general model than a continuous
time model since any continuous time model can be
converted into a discrete vertex-to-vertex evolution
model by evaluating Eq. (3) at appropriate time in-
tervals. However, given an arbitrary discrete
Markov transition matrix, it cannot be always pa-
rameterized with a continuous time parameter un-
less it is a solution to an equation of the form (3).
Therefore, in the following I will use the discrete
parameterization and the probabilities of the char-
acter patterns will be a polynomial function.

If a tree is fixed and a Markov character evolution
model is specified, the probability of any character
pattern is easily computed as a function of the
Markov transition matrices and the marginal distri-
bution of character states at the root of the tree. This
kind of computation is standard in the literature

ter pattern simplex (see text). The triangles represent the simplex
sets (top triangle). A tree model of character evolution is a point in
ed data sets. The sampling distribution contracts around the model
to the model point (bottom triangles).
rac
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(e.g., Felsenstein, 1981; Hendy and Penny, 1989) but
I repeat a small example to make ideas clear. Sup-
pose we have a two-taxon tree with a third root
taxon. Also assume binary state characters and pa-
rameters of the model are as given in Fig. 2. That is,
the marginal probability of either a 0 or a 1 state at
the root is 1

2 and the transition probability for each of
the three branches is the same (denoted by p). With
binary states, there are four possible character pat-
terns at the two terminal taxa and the probabilities
of each character pattern are,

P$@0, 0#% 5 1/2~~1 2 p! 3 1 p 3!

1 1/2~p~1 2 p! 2 1 p 2~1 2 p!!

P$@0, 1#% 5 1/2~p~1 2 p! 2 1 p 2~1 2 p!!

1 1/2~p 2~1 2 p! 1 p~1 2 p! 2!

P$@1, 0#% 5 1/2~p~1 2 p! 2 1 p 2~1 2 p!!

1 1/2~p 2~1 2 p! 1 p~1 2 p! 2!

P$@1, 1#% 5 1/2~~1 2 p! 3 1 p 3!

1 1/2~p~1 2 p! 2 1 p 2~1 2 p!!,

(4)

where P{[0, 0]} denotes the probability of the char-
acter state 0 at the first taxon and also at the second
taxon. (That is, [0, 0] is a character pattern.)

The important part of Eq. (4) is that the probability
of a character pattern is a function of the transition
matrices and the marginal state distribution at the
root. In this simple model, there is only a single vari-
able, p. Equation (4) can be written in the following

FIG. 2. A simple model of two-state character evolution over a
two-taxon tree with a root. Each branch has the same probability,
p, of changing from 0 to 1 or 1 to 0. The probability of {0} state or
{1} state at the root is 1

2, respectively. All possible character state
ssignments for the tree are shown at the tips of the tree.
ter pattern is a function of the parameter p:

P$@0, 0#% 5 F1~p!

P$@0, 1#% 5 F2~p!

P$@1, 0#% 5 F3~p!

P$@1, 1#% 5 F4~p!.

(5)

In the previous sections, I noted that the probability
f each character pattern forms a vector and a point in
t-dimensional space. The set of equations in (5) forms

a vector-valued function in a 4-dimensional simplex
parameterized by p. That is, (5) describes a curve in
-dimensional space. Figure 3a shows the curve drawn
y Eq. (4) as the variable p varies from 0 to 0.5 where

the three axes are the probability of the character
patterns [0, 0], [0, 1], and [1, 0]. (The probability of the
pattern [1, 1] was left out.) As can be seen from the
figure, in this particularly simple model, the curve
drawn by the equation is actually a straight line. This
curve (line) then represents the collection of character
evolution models generated by the tree topology and
the particular parameterization shown in Fig. 2.

The class of models represented by Eq. (4) is the
simplest model we can have for this two-taxon tree.

FIG. 3. (a) The tree model manifold (see text) of character pat-
tern probabilities for the model tree shown in Fig. 2. The model
manifold is a line parameterized by p, the probability of change per
branch. (b) Hypothetical model manifold with more numbers of pa-
rameters. The model manifold can have up to as many dimensions as
the number of parameters.
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every branch, direction of change (0 to 1 or 1 to 0), and
the states at the root. That is,

P$@0, 0#%

5 F1~A0, A1, p 00
1 , p 00

2 , p 00
3 , . . . , p 11

1 , p 11
2 , p 11

3 !

P$@0, 1#%

5 F2~A0, A1, p 00
1 , p 00

2 , p 00
3 , . . . , p 11

1 , p 11
2 , p 11

3 !

P$@1, 0#%

5 F3~A0, A1, p 00
1 , p 00

2 , p 00
3 , . . . , p 11

1 , p 11
2 , p 11

3 !

P$@1, 1#%

5 F4~A0, A1, p 00
1 , p 00

2 , p 00
3 , . . . , p 11

1 , p 11
2 , p 11

3 !.

(6)

n this case, since there are more variables the model
orms a higher dimensional curve (ignoring rigor, I will
all such curves manifolds; Fig. 3b). Therefore, a man-
fold in st-dimensional space can be associated with the

family of character evolution models of a given tree
topology. That is, if a particular set of values for the
parameters are chosen, a particular model of character
evolution is determined which generates the probabil-
ity of each character pattern over the given tree topol-
ogy. This model of character evolution over the tree
topology can be seen as a point in a large dimensional
space (the vector space of character pattern probabili-
ties). Equations such as (6) with free parameters rep-
resent a family of character evolution models—the
models that share a tree topology (5 branching order)
but that vary in other parameters like branch length
and rate. This family of character evolution models
forms a collection of points in the vector space (of
character pattern probabilities). The collection of
points forms a geometrical object, the model manifold
(e.g., Fig. 3). Thus, a tree topology and the set of char-
acter evolution models over the tree topology are rep-
resented as a geometrical object.

Geometry of Model Manifolds

Given the characterization of stochastic tree models
as manifolds, it is useful to first discuss some general
properties of the geometry of the tree model manifolds.
The most general tree-evolution model allows each
branch to have different transition matrices and within
each transition matrix all parameters to vary freely
(except the restriction that they are nonnegative and
the rows of a Markov transition matrix have to sum to
1.0). A rooted t-taxon binary tree (a tree with no mul-
tifurcating vertices) has 2t 2 2 branches. A general
Markov model for s-state characters has s(s 2 1) pa-
rameters. Therefore, the most general Markov model of
character evolution over a fixed t-taxon tree has
parameters. (The last (s 2 1) term is for the marginal
probability distribution of the states at the root.) This
implies that the character pattern probabilities will be
a function of (2t 2 2)s(s 2 1) 1 (s 2 1) parameters
and, geometrically, the manifold will have up to
(2t 2 2)s(s 2 1) 1 (s 2 1) dimensions in the local
neighborhood at any point. The quantity
(2t 2 2)s(s 2 1) 1 (s 2 1) is a maximum rather than
the exact dimensions because of possible degeneracy.
For this class of compact continuously parameterized
objects the dimension is given by the rank of the Jaco-
bian of the parametric functions. In fact, degenerate
points exist at the boundaries of our models, e.g., zero
length branches. It is common to put restrictions on the
general model. For example, we often assume symme-
try of the character state transitions (e.g., state A to T
transition has the same probability as T to A transi-
tion). Such symmetry assumptions would reduce the
maximum possible dimensions by reducing the number
of free parameters (to (2t 2 2)s(s 2 1)/2 1 (s 2 1)).
In the extreme case of simplification, a one-parameter
model as in Eq. (5) results in a model curve that is (at
most) one dimensional.

Different models of character evolution can be sub-
sets of one another. For example, a model with a single
parameter like Eq. (5) is a submodel of a model with
more parameters like Eq. (6). Geometrically, a model is
a submodel of another model if the model manifold of
one model is wholly contained in the model manifold of
the other model. (Such relationship has also been
called nested models (Yang et al., 1994).) Markov mod-
els of character evolution are often classified according
to the form of the transition matrices (cf. Hasegawa et
al., 1991). For example, the Juke-Cantor model (Jukes
and Cantor, 1969) of nucleotide evolution and Kimura
two-parameter model (Kimura, 1981) are identical if
we set the transition/transversion parameters equal to
each other. However, whether this implies that one
model is a submodel of another model is not always
straightforward since it has to imply one model mani-
fold being the submanifold of another model.

Proposition 1. Given some Markov model of evolu-
tion and its induced model manifold, any polynomial
relation between the elements of the transition matrix
induces a model submanifold (the submanifold might
not be strictly smaller).

Proof. The model manifold is obtained as a variety
of the elimination ideal (see section on Phylogenetic
Invariants for definition) in the polynomial ring k[F, u]
to k[F], where F is the set of variables for character
pattern probabilities (left-hand side of Eq. (6)) and u is
the set of variables representing the transition matrix
elements (right-hand side of Eq. (6)). Any polynomial
relations in the transition matrix elements can be rep-
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xtended to k[F, u]. Therefore, the model manifold
induced by polynomial relations is given by the inter-
section of the two varieties projected to k[F] and is a
subset of the points of the original variety.

The relevance of Proposition 1 is that whenever we
build submodels using a polynomial relation between
the elements of the transition matrix, we can use log-
likelihood ratio tests with the standard x2 distribution
approximation for hypothesis tests between the mod-
els. However, this assumes that the maximized likeli-
hood point for either the null hypothesis or the alter-
native hypothesis is not degenerate. For example, the
x2 approximation will not hold for degenerate points
like zero length internal branches. Symmetry assump-
tions are special cases of polynomial relations and they
can also be seen as having other geometric conse-
quence for the model manifold. For example, with bi-
nary states the assumption that 0 to 1 transition has
the same probability as 1 to 0 transition implies that
Prob{[0, 0, 0, 0]} 5 Prob{[1, 1, 1, 1]} and so on. That is,
he probability of any character pattern and the prob-
bility of its binary complement will be identical. This
eans that the model manifold will be restricted to the

inear subspace defined by Prob{[0, 0, 0, 0]} 2
rob{[1, 1, 1, 1]} 5 0. Similar considerations of this

kind lead to the extraction of linear invariants for
phylogenetic trees (Lake, 1987a,b; Nguyen and Speed,
1992; Steel et al., 1993, see below). Conversely, the
most general model with general transition matrices
for each branch does not have any linear invariants,
but it may have higher order invariants.

With larger numbers of taxa, we have parametric
functions in higher dimensions and there will be one
manifold for each possible tree topology. Figure 4
shows an example of model manifolds for binary state
four-taxon trees with two free parameters (in fact, the
figure shows the set of model trees discussed in Felsen-
stein, 1978; only 3 out of 16 dimensions are shown).
Figure 4 shows the model surfaces for all three tree
topologies (labeled as Tree 1, Tree 2, and Tree 3).

The geometrical relationship of the different tree
models can be complicated, but an outline of some
general features can be sketched. One property can be
easily seen from the fact that the tree topologies differ
from one another by the internal branches. If all the
internal edges are set to zero (or equivalently set the
Markov transition matrix to the identity matrix), every
tree topology will be equivalent to each other. There-
fore, the manifolds corresponding to each tree topology
all share a subspace where all the internal edges are
zero (up to ts(s 2 1) 1 (s 2 1) dimensions). Similarly,
if the terminal edges correspond to (converges to) infi-
nite time (or equivalently if the Markov transition ma-
trices have rows with constant and identical elements),
regardless of the tree topology, the probability of any
character pattern converges to independent products of
the equilibrium distribution of the individual states.
(This is assuming that we use the usual nonpathologi-
cal models that have an equilibrium distribution.)
Therefore, the manifolds corresponding to each tree
topology all converge toward a single point at or near
the center of the simplex. If the marginal equilibrium
distribution of the Markov model is uniform then the
points at zero length branches and infinite length
branches will also meet.

Setting individual branch lengths to zero identifies
different topologies. For example, an internal branch
separates three different tree topologies that are
related to each other by a nearest-neighbor-inter-
change operation (Swofford et al., 1996). Setting this
internal branch length to zero will identify the char-
acter pattern probability of the three topologies.
Therefore, the manifolds corresponding to three to-
pologies related to each other by a NNI operation
share a maximum of (2t 2 3)s(s 2 1) 1 (s 2 1)
dimensional subspace and differ along a maximum of
s(s 2 1) dimensions. Figure 5 shows a schematic
picture of the geometrical relationships of different
tree models—we have a high dimensional orange!
Now, suppose two models, Tree 1 and Tree 2, differ
from one another by a NNI operation around an
internal edge and the length of this internal edge is
zero. For some set of parameter values for the
branches, Tree 1 will generate a particular set of
probabilities for the character patterns. Because the
length of the internal edge is zero we can find pa-
rameter conditions for model Tree 2 that will yield

FIG. 4. A low dimensional projection of the actual model mani-
fold for a two-state four-taxon tree parameterized according to
Felsenstein (1978). The three different “lobes” correspond to the
model manifold for each of the three different possible tree topolo-
gies. The axes correspond to informative characters by the parsi-
mony criterion, namely, [0, 0, 1, 1], [0, 1, 0, 1], and [0, 1, 1, 0].
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identical probability of the character patterns. This
raises the interesting question whether two different
tree topologies can be made to yield identical char-
acter pattern probabilities if none of the internal
edges are allowed to be zero. I discuss this question
in a separate section below.

(In addition to these properties the tree model man-
ifold is connected and compact assuming a discrete
time parameterization. This is because there is a con-
tinuous map from Iw to the model manifold—namely,
the polynomial function of character pattern probabil-
ities, where I is the closed interval [0, 1/s]—the possible
alue range for the elements of the transition matrices.
ere w is the total number of variables in the character

volution model and s is the number of states. Assum-
ng a continuous time parameterization we have an
pen point at when time (or branch length) goes to
nfinity. In this case, we can assume that we are inter-
sted in the closure of the model manifold that is con-
ected and compact and is sufficient for the develop-
ent of our theory.)

Geometrical Interpretation of Tree Estimation Methods

Tree estimation methods take data sets as inputs
nd produce one or more tree topologies as outputs
and perhaps some other estimates such as branch
engths). As mentioned above, a data set can be seen as

point in a large dimensional space. Then, the action
f a tree estimation method can be seen as a labeling of
his point; that is, the point is labeled with the identity
f some tree topology. If we were to systematically

FIG. 5. A cartoon diagram of the spatial arrangement of the
model manifolds for three different tree topologies related to each
other by nearest-neighbor-interchange. All model manifolds share
two points, the point where all branch lengths are zero and the point
where all branch lengths are infinite. Two topologies differing by a
single internal branch (NNI-related) share a ((2t 2 3)s 1 1)(s 2 1)

imensional subspace.
t would output a tree topology label(s) for each data
et, thereby also a label for each point on the st-dimen-

sional simplex. Most methods produce a tree for every
input data set, therefore, a particular estimation
method partitions the character pattern simplex into
different regions labeled with different tree topologies
(Fig. 6). (Of course, it is not a partition in the strict
sense since some data sets can yield more than one tree
estimate. This technicality can be resolved by treating
such points as the boundary of two or more tree topol-
ogies and consider the estimation partitions as open
sets.) Now consider the collection of all points labeled
with the same tree topology (i.e., a partition). This is
the collection of all data sets that reconstruct to the
same tree topology. This collection of points also forms
a geometrical object that I will call a “method parti-
tion.” Unless two different estimation methods produce
exactly the same tree topology for every data set, dif-
ferent estimation methods form geometrically different
method partitions (Fig. 6).

While geometric characterization is not easy for
many methods, some methods yield to analysis like

FIG. 6. A schematic diagram of the geometry of estimation meth-
ods. A given estimation method can be seen as a partitioning of the
character pattern simplex into different tree topology regions. Dif-
ferent methods have geometrically different partition shapes. (The
particular shapes shown here are for illustration purposes only and
have no real meaning.)



the maximum-parsimony method and phylogenetic

w

a

m

b

L~D2, T9! . L~D1 1 D2, T*) 5 L(D1, T*) 1 L(D2, T*)
w

p
a

t
c
f
t
m
f
T
p
m

m

o

s
a
h
m
P

n
C
1

65GEOMETRY OF PHYLOGENETIC ESTIMATION
invariants.

Maximum-Parsimony Method

The maximum parsimony method defines a parsi-
mony length function of the form, l(c, T), where c is a
character pattern and T is a tree topology. For exam-
ple, with a 4-taxon tree, and the character pattern [0, 0,
1, 1], the length function value for the topology {{1, 2},
{3, 4}} is 1, while for the topology {{1, 3}, {2, 4}}, the
value is 2. The length function is easily computed for
any character pattern and tree topology combination
(Maddison, 1989; Swofford and Maddison, 1992). The
parsimony length of a data set is obtained by summing
the parsimony function over individual characters. In
practice, we do not need to compute the length function
for every character, but only for every different char-
acter pattern. The computed value is then multiplied
by the frequency of the character pattern. Therefore,
the parsimony length of a data set, D, and topology, T,
is given by

L~D, T! 5 f1 z l~c1, T! 1 f2 z l~c2, T! 1 · · ·

1 fz z l~cz, T!
(7)

5 O
i 5 1

z

fi z l~ci, T!,

where ci is the ith character pattern, fi is the frequency
of that pattern in the data set and the index runs from
1 to z 5 st, the total number of possible character
patterns for t taxa. Because the length function is
summed over the character in this additive manner,

L~D1 1 D2, T! 5 L~D1, T! 1 L~D2, T!, (8)

where D1 1 D2 denotes the combining of two data sets
by summing the frequency of the character patterns
(equivalent to concatenating the two data sets). For
relative frequencies,

L~D1 1 D2, T! 5 aL~D1, T! 1 ~1 2 a!L~D2, T!, (89)

here a is the relative size of data set D1 compared to
D2. Therefore, the parsimony length function is addi-
tive with respect to concatenating data sets.

The parsimony method estimates the tree topology
by choosing the topology that minimizes the data set
length [Eq. (7)]. Suppose, T* is the maximum-parsi-
mony tree for some data set D1. Also, suppose that the
same topology, T*, is the maximum-parsimony tree for
nother data set D2. Then it is seen by the additivity

characteristic of (8) that T* is also the maximum parsi-
ony tree for the combined data set D1 1 D2.

Proof. Suppose T9 were a shorter tree for the com-
ined data set. Then L~D1 1 D2, T9! 5 L~D1, T9! 1
hich contradicts the statement that T9 is a shorter
tree than T*. The first and the last equality is by (8)
and the inequality is because T* is the maximum-

arsimony tree for the individual data sets and L is
nonnegative function.

This shows that the set of data sets that is labeled as
he same tree by the maximum-parsimony method is a
onvex set. That is, if T* is the maximum-parsimony tree
or one data set and it is also the maximum-parsimony
ree for another data set, then it is the maximum-parsi-
ony tree for any convex combination (in terms of the

requency of each character pattern) of the two data sets.
his means that the method partition of the maximum-
arsimony method is a convex partition. I will call such
ethods convex methods and say
Proposition 2. The maximum parsimony estimation
ethod is a convex method.
Proof. This immediately follows from the additive

bjective function as proven above.
In fact, it is a linear subspace of the character pattern

implex (because the parsimony method chooses a tree
ccording to a set of linear inequalities). Convex methods
ave the nice property that they are robust to mixture
odels—in a particular sense that I will discuss below.
hylogenetic Invariants
Phylogenetic invariants were previously introduced as a

ew approach to phylogenetic inference (Cavender, 1978;
avender and Felsenstein, 1987; Fu and Li, 1992; Lake,
987b; Navidi et al., 1991; Nguyen and Speed, 1992). The

invariants are functions of character pattern probabilities
consisting of a set of polynomial equations. The equations
denote a set of values that are “invariant” (constant) only on
particular trees. Different trees have different sets of invari-
ant equations. Phylogenetic estimation is done by esti-
mating the character pattern probabilities with the ob-
served frequencies, substituting into the invariant
equations for each tree, and asking if the values deviate
significantly from the expected value (usually zero).

Initial derivations of the invariants involved deduc-
tions from branch lengths of a tree (e.g., Cavender, 1978),
algebra (e.g., Nguyen and Speed, 1992), or heuristic al-
gorithms (e.g., Sankoff, 1990) which tended to be algebra-
ically involved. From the geometry of phylogenetic esti-
mation, we can obtain a more intuitive view of
phylogenetic invariants. As mentioned above, a tree and
a model of stochastic evolution yield a set of equations
that represent the probability of each character pattern,
for example, of this form,

p1 5 f1~a1 · · · at!

p2 5 f2~a1 · · · at!

···
pn 5 fn~a1 · · · at!,

(9)
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pattern and a’s are the parameters of the character evo-
lution model. Equation (9) then is a parametric descrip-
tion of the model manifold embedded in the space of
character pattern probabilities. For example, a paramet-
ric description of a unit circle in the plane is given by

x 5 cos~u!

y 5 sin~u!.
(*)

Equation (*) gives, for every value of u, a value of the
x coordinate and a value of the y coordinate. Another
epresentation of a unit circle is given by the equation
2 1 y2 5 1, or equivalently,

x 2 1 y 2 2 1 5 0. (**)

The parametric description, equation (*), specifies the
ircle by giving the x, y coordinates as a function of a
arameter, u. The equation (**) specifies the circle by
rescribing a constraint condition on the set of points
hat belong to the unit circle—namely, if a point with the
oordinates (p, q) is part of the unit circle, it has to satisfy
he condition (**). That is, the sum of the squared coor-
inates minus one must always satisfy the invariant
uantity zero. Given a random point with the coordinates
p, q), we can ask whether it belongs to the collection of

points making up a unit circle by computing p2 1 q2 2
and asking whether this quantity is zero.
Many geometric objects of interest (or, at least the

onnected compact objects) can be described by a set of
onstraint equations like (**). In which case, the object is
escribed by the set of “roots” of the equation. The collec-
ion of such “root points” of an algebraic equation is called
n algebraic variety (Cox et al., 1992). The same geomet-

ric object can be also described by a parametric function
like (*). The equations like (**) are the implicit function
(or equation) forms of the parametric functions of the
form (*). The two forms are (almost) equivalent descrip-
tions of the same object. (“Almost,” because the geometric
object described by the implicit form can be a larger object
that strictly contains the geometric object described by
the parametric form.) Therefore,

Proposition 3. Phylogenetic invariants are the im-
plicit function form of the parametric tree model func-
tions of the form (9).

For example, consider Eq. (4) from above. From (4)
we obtain,

P$@0, 0#% 5 1/2~1 2 2p 1 2p 2!

P$@0, 1#% 5 p 2 p 2

P$@1, 0#% 5 p 2 p 2

P$@1, 1#% 5 1/2~1 2 2p 1 2p 2!.

(10)
found in terms of the coordinates:

P$@0, 0#% 2 P$@1, 1#% 5 0

P$@0, 1#% 2 P$@1, 0#% 5 0

P$@0, 0#% 1 P$@0, 1#% 1 P$@1, 0#%

1 P$@1, 1#% 2 1 5 0.

(11)

Each of the three equations in (11) is an equation of
a hyperplane. The geometric object is described as
the simultaneous roots of all three equations, that is,
the intersection of three hyperplanes in four dimen-
sions and therefore a line as we have seen above. For
more complex models with more taxa, the parametric
function describing the model is more complex and it
is difficult to find its implicit form. There are stan-
dard computational algebraic geometry techniques
to derive implicit forms from the parametric model
functions called Groebner basis (also found in popu-
lar packages such as Mathematica). The basic idea is
to rewrite equations of the form (9) as

p1 2 f1~a1 · · · at! 5 0

p2 2 f2~a1 · · · at! 5 0

···
pn 2 fn~a1 · · · tat! 5 0.

(12)

That is, as a set of equations in n 1 t variables. If
we denote all possible polynomials in n 1 t vari-
ables (over some field k) as k[ p 1 . . . pn,
an 1 1 . . . an 1 t 2 1], Eq. (12) is a subset of such polyno-
mials whose zero points (variety) correspond to the
model manifold when projected to p 1 . . . pn. The

roblem is to find the set of polynomials in
[ p 1 . . . pn] whose variety contains the variety of the

polynomials in k[ p 1 . . . pn, an 1 1 . . . an 1 t 2 1] pro-
jected to p 1 . . . pn. Such a set of polynomials is called
the elimination ideal (Cox, 1992) and can be system-
atically found using Groebner basis algorithms with
lexical ordering of the variables. Using Math-
ematica, the four-taxon two-state symmetric charac-
ter invariants are found as

h1 5 p3p 5
2 1 p7p 5

2 1 p 7
2p5 1 p3p6p5 1 p3p7p5 1 p4p7p5

1 p6p7p5 1 p7p8p5 1 p4p 7
2 2 p4p5p6 2 p4p 6

2

2 p5p7 1 p6p8 1 p4p7p8 2 p3p6p8 2 p4p6p8

2 p5p6p8 2 p 6
2p8 2 p3p7p8 2 p6p7p8 2 p3p 8

2

2 p6p 8
2



h2 5 p 7
2 1 p2p7 1 p3p7 1 p5p7 1 p6p7 1 p8p7 2 p7

B

is 8 (because of the binary symmetries). Therefore, the
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1 p3p5 2 p4p6 1 p2p8

h3 5 p 6
2 1 p2p6 1 p3p6 1 p4p6 1 p5p6 1 p7p6 1 p8p6

2 p6 1 p2p5 2 p4p7 1 p3p8

h4 5 p1 1 p2 1 p3 1 p4 1 p5 1 p6 1 p7 1 p8 2 1, (13)

where pI’s denote the probability of each character
pattern (eight total given the symmetric model). These
equations are more complex than Cavender and
Felsenstein’s (1987) original elegant set,

K 5 ~p5 2 p8!~ p3 2 p2! 2 ~ p7 2 p6!~ p1 2 p4! 5 0

T 5 ~p2 1 p3!~ p5 1 p8! 2 ~ p1 1 p4!~ p6 1 p7! 5 0.
(14)

ut by division of polynomials

K 5 h2 2 h3 1 ~ p6 2 p7!h4

T 5 h2 1 h3 2 ~ p6 1 p7!h4,
(15)

so Cavender and Felsenstein’s invariants describe a
subset of the model manifold. This raises the question
of how many equations are required to implicitly de-
scribe the model manifold. Felsenstein (1991) exam-
ined this question but left it incompletely answered. In
general, the total number of simultaneous equations
that define a geometric object is indefinite. This is
because if the roots of g(x) 5 0 describe a geometric
object, the equation f(x)g(x) 5 0 also has the same
geometric object as a subset of its roots. However, a
bound on the number of equations in the minimal set is
found as the dimensions of the character pattern sim-
plex minus the number of free variables in the tree
model (the codimension) as postulated by Felsenstein
(1991). For differentiable functions like the character
pattern probabilities, the rank of the Jacobian matrix,
J, gives us the local dimension of the model manifold.
In the appendix, I give a proof of the following state-
ment.

Proposition 4. The rank of the Jacobian matrix of
the parametric equation equals the number of indepen-
dent parameters in the Markov transition matrices at-
tached to each branch.

Proof. See appendix.

Therefore the codimension, n 2 r, is the minimal
number of equations that we need. There must be at
least this many equations to describe the model man-
ifold. However, possibly more are needed for a “nice”
representation. This is seen the four-taxon two-state
symmetric case of Eq. (14). The number of parameters
in this model is 5 for the probability of change in each
branch. The dimension of the character pattern space
codimension is 3 and we expect to need at least three
invariants; however, it turns out that four as given in
equation (13) are the best polynomial descriptors of the
model manifold because they divide all other polyno-
mial descriptors.

Finally, invariants derived using elimination ideals
are guaranteed to be the smallest variety that contains
the parametric model, though it may be larger. That is,
the set of zero points given by (13) may be larger than
the model manifold. This question can be answered by
examining the entire sequence of elimination ideals (36
equations with hundreds of terms for the four-taxon
two-state model) and asking whether the solutions to
(13) extend to the entire sequence. An examination of
the 36 equations shows that, in fact, the solutions to
(13) do extend to the full ideal over k[p1 . . . pn,
an 1 1 . . . an 1 t 2 1] (not repeated here, the equations are
20 pages long). Therefore, Eq. (13) describes the model
manifold for the four-taxon two-state model exactly. It
is difficult to examine this in general terms and each
model must be examined individually. As well much of
the theorems are given over the set of complex num-
bers whereas only the real numbers are relevant for
phylogeny problems (but see Hagedorn, 1999, for a
general exposition and Hagedorn and Landweber,
1999, for a survey).

The Combined Geometry of Data, Model, and
Estimation Method

In the sections above, I discussed the geometry of
data sets, tree models, samples of the tree models, and
tree estimation methods. The description of each of
these objects involved the space of character pat-
terns—that is, the objects were described as geometri-
cal objects in a large dimensional space where the axes
of the space denote the frequency or probability of each
kind of possible character patterns. All of these geo-
metric objects can be embedded in a single picture.
Figure 7 shows a schematic abstraction of such a pic-
ture. The triangle in the picture symbolizes that the
geometrical objects are contained within a simplex.
Every rational point in this simplex represents an em-
pirical data set or a sampled data set from a model. A
tree topology with a model of character evolution draws
a manifold in this space (what I called a model mani-
fold). If a point is fixed on the tree model manifold, this
is equivalent to choosing particular values for the pa-
rameters of character evolution. Given such a point, a
sampling distribution of the model is generated as
probability values on the rational points of the simplex.
Sampling distribution of the entire family of models for
a given tree topology can be generated integrating the
conditional sampling distribution over the set of points
in the tree manifold with respect to a suitable proba-
bility measure for the points. The tree estimation



from model X (with the corresponding point x) and 1
2

v

68 JUNHYONG KIM
methods now can be drawn as a partitioning of the
simplex into labeled points (each label being the iden-
tity of the tree topology). In the following sections, I use
this geometric setup to give a pictorial description of a
variety of concepts and phenomena that arise in phy-
logenetic estimation.

Applications

Combining Data Sets and Mixture Models

Combining data sets has been extensively discussed in
the literature (see De Queiroz et al., 1995). Given the
view of data sets as points in the character pattern sim-
plex, we can obtain a very simple geometrical picture of a
combined data set. Associate with data set X a point x in
the simplex, and with data set Y a point y in the simplex.
Then the combination of the two data sets lies on a line
connecting the two data sets because it is a convex linear
combination of the frequencies of character patterns in
each data set. The exact position on the line will depend
on the relative sizes of the data sets such that the ratio of
the distance from the combined data set to the two orig-
inal data sets will be proportional to the relative sizes of
the data sets (Fig. 8a).

The same picture can be drawn for mixture models
where some of the characters are generated from one
kind of model (say a model with fast rates of evolution)
and the other characters are generated from a different
kind of model (say a model with slow rates of evolu-
tion). Again, the mixture model lies on some point
within the line drawn between the two points repre-
senting the original models. The position of the point
representing the mixture model depends now on the
model of the mixture. For example, we might have a
mixture model consisting of 1

2 probability of drawing

FIG. 7. A schematic diagram of the geometry of phylogenetic
estimation. The triangle represents the character pattern simplex.
The tree model is a subspace of this simplex (shown as the gray
object). A tree estimation method is a partition of the simplex into
tree topologies (shown as the speckled object). Finite-sized data sets
are rational points of the simplex (shown as a grid).
probability of drawing from model Y (with the corre-
sponding point y). Then the mixture model will be
represented by a point halfway on the line connecting x
and y. More generally, there might be a mixture model
of drawing from model X with probability a and draw-
ing from model Y with probability 1 2 a. Then the
point representing the mixture model is a distance
away from point y (assuming that the line connecting x
and y has unit distance; Fig. 8a). More complicated
models can be generated with the assumption that a
has some prior distribution like the beta distribution.
Then, the unconditional mixture model is obtained by
integrating over the prior distribution (in a suitable
sense) and the mixture model point will be a/(a 1 b)
distance from point y, where a and b are the parame-
ters of the beta distribution.

This discussion can be extended to the commonly
used model of gamma distributed rate mixture models

FIG. 8. (a) When two models or two data sets are combined, it
corresponds to drawing a line between the two model points in the
simplex (shown labeled as x and y) and selecting a point on the line.
The particular position of the mixture (combination) point is propor-
tional to the mixture proportions. (b) A model of rate variation across
sites can be seen as a model curve that is a subset of model manifold.
The (vector-valued) model curve, c(l), is parameterized by the rate
ariable, l. Points along this curve correspond to taking a particular

tree shape and expanding the shape or contracting the shape (shown
by the trees on the left). (c) A gamma distribution model of rate
variation across sites is equivalent to integrating the model curve,
c(l). The result of the integration is a point inside the convex hull of
the model curve.
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rate parameter that is a scalar quantity, say l, applied
as a multiplier to the rate matrix R in Eq. (3). The
model then assumes that l is drawn from a gamma
distribution (usually with only one varying parameter)
and the characters are drawn from a tree model con-
ditioning on the value of l. To geometrically under-
stand this mixture model, we need to first determine
the ensemble of tree models that are being “mixed.”
First note that a single rate parameter is being applied
over the whole tree (of course, the expected amount of
change on any given branch can be different since it is
proportional to the length of the branch). Therefore,
this is equivalent to picking some tree shape and trac-
ing out all the uniform “contractions” or “expansions”
of the tree (Fig. 8b). In the tree model manifold, this is
equivalent to picking a point and drawing an one-
dimensional (vector-valued) curve, c(l), that passes
through the point. The curve is one-dimensional be-
cause it varies according to the single parameter l. In
other words, an one-dimensional curve parameterized
by the variable l represents the family of possible
“uniform” rate variations for a given tree shape. This
curve is, of course, a subset of the tree model manifold.
The mixture model consists of mixing the points of this
curve together in proportions according to a gamma
distribution of the l parameter. The particular point
represented by the gamma mixture model can be found
by integrating over the (vector-valued) curve in a suit-
able sense (i.e., integrate the vector c(l) with respect to
the push-forward measure of l; Fig. 8c). The important
point is that the gamma distributed variable sites
model is a single point in the character simplex rather
than multiple points or a family of points for fixed
values of l. Therefore, the characters drawn according
o this model are identically and independently distrib-
ted (iid). In fact, geometrically,

Proposition 5. A non-iid model of character evolu-
ion is given by a set of points in the character pattern
implex, not a single point.

Proof. This follows simply from a geometric inter-
retation of the definitions.

For example, if we have fixed rate categories (e.g.,
e assume that the third position evolves at a dif-

erent rate than the first and second position of a
odon), the resulting data set is not drawn from an
id model and the probability of the character pat-
erns is given by three different points in the char-
cter pattern simplex. Certainly more complicated
ixture models can be generated. For example, dif-

erent rate distributions might be applied for every
ranch of the tree, etc. The convex hull of a geomet-
ical object represents the all possible convex linear
ombination of points of the geometrical object.
Proposition 6. The family of all possible mixture
models is contained in the convex hull of the tree model
manifold.

Proof. The convex hull of the models is a compact
convex set. A compact convex set is the closure of
convex combinations and therefore contains the inte-
gral sum with respect to a normalized measure.

In the previous discussion, I mentioned convex meth-
ods as methods whose method partition is convex.
Therefore, if a convex method estimates some tree T for
data set A and the same tree for data B, then it will
estimate the same tree for any convex combination of
the two data sets. Therefore,

Proposition 7. Let a convex method be a consistent
estimator over some restricted parameter set, S, then it
is a consistent estimator for any mixture models of the
parameter set S.

Proof. Immediately follows from proposition 6.

For example, maximum parsimony is not a consis-
tent estimator. But, suppose we restrict our attention
to the parameter space where it is a consistent estima-
tor, then it is a consistent estimator for any mixture
models of the restricted parameter space.

Finally, a mixture model also has geometrical
structure. One thing that is obvious is that since we
are integrating over the rate parameter we loose one
dimension, while gaining the dimensions of the pa-
rameters of the mixture distribution. In fact, if the
parameters of the mixture distribution are fixed (say
from a separate estimation process) then the result-
ing mixture models is a smaller model (in the num-
ber of dimensions) than the original model—that is,
in some sense the mixture model is a simpler model.
For some mixture models, phylogenetic invariants of
the mixture model can be derived. (That is, the entire
set of invariants not just the linear set which obvi-
ously contains the mixture model.) However, since
the parametric equations include an integral there is
no guarantee that we will end up with an algebraic
variety. That is, the parametric equation may be an
analytic function and the model manifold may not be
exactly expressible with a set of algebraic equations
(over Rn).

Consistency and Separation of Tree Topologies

A phylogenetic estimator is consistent if the estimate
converges to the model parameter (Felsenstein, 1978;
Kim, 1998). The consistency property also has a very
simple geometrical picture. In a previous section, I
noted that the probability mass of a sampling distribu-
tion of data sets generated by a tree model (with fixed
character evolution parameters) converges to a point
on the character pattern simplex as the size of the
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sample (the number of characters) increases. There-
fore, if we have infinite sized data sets, we can identify
the collection of such infinite-sized data sets for a given
tree topology with the model manifold itself. Given the
view of tree estimation methods as partitions of the
simplex, a tree estimation method is consistent if every
tree model manifold is completely contained in the tree
estimation partition of that particular tree (Fig. 9, top).
Otherwise, the parts of the tree model manifold that
“stick out” of the partition are model conditions that
result in the wrong estimate (Fig. 9, bottom). (The part
that is sticking out is labeled as a different tree since it
is in a different partition.)

From this geometrical picture, it is easy to gain in-
tuition about various different scenarios. Immediately
from the geometry it can be seen that consideration of
the “borders” of the model manifolds is critical for the
consistency property. That is, the method partition
must “cleanly cut” through the borders of the method
manifolds to separate the models. This means that we
need to examine what happens to these borders, the
model conditions at which two tree topologies meet—
namely, the tree topologies with zero length internal

FIG. 9. A tree model is consistently estimated if its model point
s completely contained within the estimation method partitions. If
he entire manifold is completely contained inside the partitions, the
ree topology is consistently estimated (top figure). If a part of the
odel manifold extrudes outside the estimation method partition

ike Tree 3 in the lower figure, a wrong tree is estimated (with
nfinite data) for those model conditions (Tree 3 is estimated as Tree

in this figure).
branches have infinite length (see previous section on
model manifolds). For example, it has been noted that
a maximum-likelihood tree with the “wrong” model can
be inconsistent (e.g., Kim, 1998). An easy geometrical
proof can be given. Suppose that the data are gener-
ated under model X and estimated with a different
model Y. By geometrical reasoning, the maximum like-
lihood estimate will be consistent if and only if the
model manifold for the borders given by model Y is
either identical to or completely contained in the bor-
ders given by model Y. This will only happen if the
model manifold for X is a subset of the model manifold
for Y. Otherwise, the maximum-likelihood estimate us-
ing the wrong model will be an inconsistent estimate.

For another example, suppose that the estimation
partition was not a convex partition (e.g., the standard
maximum-likelihood method). The tree manifold for
the usual character evolution model is also not a con-
vex collection of points. Suppose there is a method
partition that completely contains a tree manifold (and
therefore consistent), but not convex. It is easy to con-
jecture that a mixture model consisting of some com-
bination of models from different points in the tree
model manifold might not be consistently estimated
because it can be made to stick out (Fig. 10). Of course,
nonconvex geometrical objects (the method partition)
can completely contain convex geometrical objects (the
collection of mixture models) and more exact proofs
and examples are given in Steel et al. (1994) and Chang
(1996b). I noted above that general mixture models are
contained in the convex hull of the model manifold.
Since the convex hull is a much larger object than the
original object it is natural to conjecture that general
mixture models will not be consistently estimated,
which in fact is the case because different tree models
can not be separated (Steel et al., 1994), something I
discuss next.

The consideration of the consistency property led to a
direct examination of the geometry of the tree model

FIG. 10. If the estimation method partition is nonconvex, a mix-
ture model can be inconsistently estimated (see text) even when the
pure models are consistently estimated.
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seems to raise a question that is more fundamental
than the questions concerning consistency: namely,
can two different tree topologies yield exactly the same
probability model on the character patterns? Geomet-
rically, we are asking whether two tree model mani-
folds intersect one another in the character simplex in
a nontrivial manner (there is always a trivial intersec-
tion since two tree topologies can be made exactly the
same with appropriate zero length branches). Since the
points of the character simplex define the probability of
each kind of character pattern, the points of intersec-
tion of two tree model manifolds represent model con-
ditions where the two trees define exactly the same
probability and, therefore, cannot be distinguished by
any estimation method. For obvious reasons it would
be desirable if such intersections do not exist. When
such intersections can be ruled out the tree topologies
are separable and estimable by some reconstruction
method. Chang (1996) gives comprehensive treatment
of such a separable class of models. On the other hand,
from the discussion of the convex hull of model mani-
folds it can be imagined that it is not so easy to sepa-
rate the convex hull of two (or more) tree models. In
fact, Steel et al. (1994) has shown that for a certain
general class of mixture models, all tree topologies
intersect in a nontrivial manner. Many of the interest-
ing questions concerning estimable models and consis-
tency can be reduced to questions about intersections
of the geometry of tree models.

Accuracy, Power, and Complexity of the Model

The accuracy of an estimation method for a particu-
lar tree model can also be given a simple geometric
interpretation. Fix a tree model by choosing a tree
topology and the various character evolution parame-
ters. Therefore, as discussed previously, this is a point
in the character simplex. This point induces a sam-
pling distribution on the (rational) points of the sim-
plex. Now, if an estimation method is chosen, the ac-
curacy of the estimation method for this particular tree
model is determined by how much of the sampling
distribution’s probability mass is contained within the
method partition of this estimation method for this tree
(Fig. 11). That is, let this particular tree topology be
called T and let the method partition for T by the
estimation method X be called PX(T). Then, PX(T) rep-
resents the set of data sets that X will estimate as T.
Therefore, the accuracy of the method X for this tree
model is related to how much of its sampling distribu-
tion is in PX(T). (I use the word “related” rather than
“determined” because notions of accuracy can be var-
ied; cf. Kim, 1998.)

The above discussion of accuracy assumed a partic-
ular fixed set of parameter values for the character
evolution over the tree topology. Normally it would be
desirable to discuss these concepts for the entire family
of character evolution models over the tree topology
and speak of, say, the accuracy for the entire tree
topology. It is obvious this cannot be done (at least
using a probabilistic language) unless a distribution
assumption over the family of character evolution mod-
els is imposed. The difficulty with choosing appropriate
distributions has been discussed extensively in the lit-
erature (Hillis, 1995; Huelsenbeck and Hillis, 1993;
Kim, 1998; Strimmer and von Haeseler, 1996), espe-
cially, with respect to how it can bias the assessment of
the performance of a given estimation method. How-
ever, it may still be desirable to roughly answer ques-
tions like how the complexity of the character evolution
model relates to the performance of the estimation
methods. (In the following, I use loose language for an
intuitive picture.)

I first note that regardless of the estimation method,
estimation would be easier if the sampling distribu-
tions of the data sets have “minimal overlap” under
alternative tree models. That is, suppose there were
only two possible tree models, say A and B and two
possible data sets X and Y. Suppose under A,
ProbA(X) 5 1 and ProbA(Y) 5 0; similarly under B,
ProbB(X) 5 0 and ProbB(Y) 5 1. Under this scenario we
can imagine being able to construct a well-performing
estimation method, namely, the one that estimates A
for the first of the data sets and estimates B for the
second of the data sets. On the other hand, if all data
sets are equally probable by either of the tree models,
no method could be expected to perform well. Now fix a
tree topology and suppose that we have two character
evolution models, “Simple” and “Complex,” where
“Simple” is a geometric subset of “Complex.” Then the
sampling distribution of the data sets for this tree
topology is obtained by integrating the conditional
sampling distribution over the possible parameter set
for each model. Except for pathological cases, the sam-
pling distribution of a more complex model will have a
higher variance than that of a simpler model. This

FIG. 11. The accuracy of an estimation method for a particular
model (represented by a point) is proportional to the probability mass
of the sampling distribution that falls inside of the estimation
method partition for the tree topology of the model.
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gives a geometrical interpretation of why one class of
models can be harder to estimate than another class of
models; if one model class is more “space filling” than
another class, it can “smear” the sampling distribution
more severely. This intuition holds well when one
model is a subset of another model. It is harder to make
similar statements precisely when we do not have such
subset relationships.

Consistency and efficiency are large-sample proper-
ties statistical estimators (Kim, 1998). More often the
behavior of estimators at finite sample sizes is the
more interesting property. The geometric insight can
be also used to explore questions of how the estimators
behave with respect to increasing amounts of charac-
ters within a finite range. As usual, extreme cases are
easier to explore and I use one pathological case to
demonstrate geometric reasoning. Again, recall that a
tree model of character evolution induces a sampling
distribution over the simplex. As the sample size (num-
bers of characters) increases, the sampling distribution
becomes increasingly “dense” around the model point,
eventually becoming a point mass at the model point.
Suppose we were to draw a 95% confidence interval of
the sampling distribution around the model point (in a
suitable manner, e.g., using the minimum volume).
This can be visualized as a kind of an amoeba-like
outline surrounding the model point (Fig. 12a). As the

FIG. 12. A hypothetical scenario for the behavior of an estimation
xpected accuracy of the estimation method can be visualized with a
e.g., 95% interval). The confidence interval is drawn as a contour aro
ontracts around the model point (b). Even if the model point is such t
ecause the relative amount of the contour “captured” by the meth
ontour as in contracts.
sample size increases, this amoeba will contract even-
tually to a point (see Fig. 1). The manner of this con-
traction will determine the finite sample behavior of
the accuracy of the estimators. Suppose we have a tree
model that is inconsistently estimated by an estima-
tion method, say maximum parsimony. This implies
that if we have infinite amounts of data, we will con-
verge on the wrong tree; i.e., the probability of estimat-
ing the correct tree will go to zero. But, does this mean
that it will monotonically go to zero? Doodling with
pictures, it can be imagined that if the “amoeba” con-
tracts in the manner shown in Fig. 12b, the corre-
sponding probability of the correct tree can increase for
a finite range of values before decreasing. Figure 13
shows an example of a six-taxon tree. By algebraic
calculations this tree is definitely in the “Felsenstein’s
zone” and the estimate will converge to the wrong tree
(shown on the right). However, for finite numbers of
characters, the probability of obtaining the correct es-
timate goes up with increasing numbers of character
for a finite period (it will eventually start decreasing
toward 0). (The figure shows two plots with the prob-
ability of correct estimate computed including multiple
most-parsimonious tree as correct and computed as
incorrect.) It can also be imagined that the converse
situation might happen. A consistently estimated tree

ethod with increasing amounts of data. For a given data set size, the
fidence interval for the sampling distribution from the model point

d the model point (a). As the data set size increases, the contour line
it will be inconsistently estimated, accuracy can increase for a while

partition can increase for a while depending on the “shape” of the
m
con
un
hat
od
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model might be estimated with decreasing accuracy for
a finite range of sample sizes.

Lack of Power in Phylogenetic Invariants

As the final example of geometric reasoning, I will
examine the problem of power in using phylogenetic
invariants for tree estimation. Cavender (1978) first
proposed phylogenetic invariants as a method for es-
tablishing confidence intervals for tree estimates. Lake
(1987b) derived a set of linear invariants for the
Kimura two-parameter model (no linear invariants
with phylogenetic information exists for a Jukes-Can-
tor type of model) and suggested estimating trees by
asking whether the expected invariant quantities are
indeed invariant when computed with the observed
data. Subsequent studies have noted that Lake’s linear
invariants result in consistent but very weak estimates
(Huelsenbeck and Hillis, 1993). An easy geometrical
reason can be found as to why, in fact, little power
should be expected with the linear invariants.

FIG. 13. A pathological example where accuracy increases for a
while with increasing numbers of characters even for a model tree
that is inconsistently estimated with the maximum-parsimony
method. The model tree is shown on the top left. With infinite
amounts of characters, the tree shown on the top right is a shorter
tree. The graph on the bottom shows the probability of obtaining the
correct estimate as a function of the numbers of characters. The open
boxes represent the results when we allow multiple most-parsimo-
nious trees to count as correct. The closed boxes represent the results
when only a single most-parsimonious tree is considered correct.
These lines will eventually decrease down to zero but in this patho-
logical example accuracy is still increasing for ;64,000 characters.
implicit function form of the parametric tree model
functions. The set of points comprising the roots of the
phylogenetic invariants contains the model manifold.
Often, describing a geometrical object as the root set of
equations requires more than one equation. For exam-
ple, suppose we were to describe the two points {1/=2,
1/=2} and {21/=2, 21/=2} as the roots of equations in
two dimensions. Then one possibility is to write this as
the simultaneous roots of

Hx 2 1 y 2 2 1 5 0
x 2 y 5 0 . (***)

hat is, the two points are described as the intersec-
ions of a unit circle and the line y 5 x. Suppose that
e are given a point, say {p, q}, and we want to know
hether this point is one of the above two points. We

an insert the test point, {p, q}, first into the unit circle
quation and ask whether p2 1 q2 2 1 equals zero. If

it does, then we can insert it into the next equation and
ask whether p 2 q equals zero. Suppose that p2 1
q2 2 1 equals zero but p 2 q is not zero. Then we

now that the point {p, q} lies somewhere in the unit
circle but is not one of the original two points we were
interested in. The purpose of this example is to show
that when we are interested in a geometric object de-
scribed as the simultaneous roots of many equations,
satisfaction of one (or a subset) of the equations is
insufficient to “nail it down” to the actual object. This is
the situation in using Lake’s linear invariants. The
actual tree model manifold is contained in the inter-
section of the roots of several different equations.
Lake’s invariants are only one subset of such equa-
tions. Therefore, just like this toy example (***), satis-
fying the linear invariants is like knowing that the unit
circle equation has been satisfied but not knowing
where in the circle the actual points lie. To use phylo-
genetic invariants as an estimation method, we need to
have on hand all the invariants, not just a subset of the
invariants. Otherwise, an incomplete description of the
model tree results and we can well expect the lack of
power in our estimates.

Finally, consider the following two different set of
equations:

H f~x! 5 0
g~x! 5 0

(16)

f~x!g~x! 5 0. (17)

Equation (16) describes a geometrical object that is the
intersection of the set of points that make f(x) go to zero
and the set of points that make g(x) go to zero. On the
other hand, Eq. (17) goes to zero if either f(x) goes to
zero or if g(x) goes to zero. That is, the geometrical
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objects represented by f(x) 5 0 and g(x) 5 0. Suppose
we have a four-taxon tree with three possible tree
topologies. Also suppose that f(x) 5 0, g(x) 5 0, and
h(x) 5 0 are the phylogenetic invariants for each of
the trees respectively. (Of course, several equations are
required for each tree topology but I am simplifying
here for notational convenience.) Then the equation
f(x)g(x)h(x) 5 0 describes the model manifolds for all
three tree topologies simultaneously. In principle this
construction can be extended to any number of tree
topologies. While this still does not allow smooth pa-
rameterization of the tree topologies (because of the
singular points at the boundaries) it shows that we do
not necessarily have to treat different tree topologies
separately as discrete objects unlike the treatment
given in Yang et al. (Yang et al., 1995). (For example,
the equation form f(x)g(x)h(x) 5 0 can be used in a
Lagrange equation approach to maximizing the maxi-
mum-likelihood function with the assumption that the
solution does not lie inside the singular points. This
assumption can also be relaxed if we settle for an
approximate (but very close) maximum.)

Summary

In this paper, I showed how variously different prop-
erties and concepts found in phylogenetic estimation
can be put into a common geometric framework. This
geometric viewpoint allows a better understanding of
various complex relations that arise in phylogenetic
estimation. In addition, it gives precise form to one
estimation method, the phylogenetic invariants, such
that we can adopt existing techniques from mathemat-
ical geometry to further develop this method. I gave
several examples of how properties like consistency,
accuracy, power, and data mixtures can be given a
geometric interpretation. Many other cases can be
stated in these kinds of geometric pictures. One impor-
tant problem, which relates to the current questions
about large-scale phylogenies (see Kim, 1998), is how
the geometry of phylogenetic estimation for one num-
ber of species relates to another number of species. It is
clear that the number of dimensions increases as a
product, say from 24 5 16 for a two-state four-taxon
trees to 25 5 32 for a two-state five-taxon trees, sug-
gesting a tensor product space structure (this can also
be seen from the basis vectors). However, many details
must be worked out and it will be pursued in the
future.

Appendix

Assume that we have a binary unrooted tree with n
erminal vertices (leaves of the tree) and n 2 2 inter-
al vertices. Also assume that we have a k by k tran-

sition matrix (for k-state characters) attached to each
branch (edge) of the tree and we label the elements of
transition between jth and kth state. Let p 5 f(a) be
the vector valued function of character pattern proba-
bilities and a is the vector of parameters which are the
elements of the transition matrices. For notational con-
venience relabel the elements of the transition matrix
from 1 to z ( 5 k(k 2 1)(2n 2 3)) If we look at a row
of p, it has the form,

pi5a1a2 · · · ak 1ak11ak12 · · · ak1l · · · 1amam11 · · · az

2n 2 3 terms

k n 2 2 terms

.

There are 2n 2 3 terms within a product correspond-
ing to a particular state assignment of the vertices. I
will call a particular set of state assignments to the
vertices a Markov path. There are kn 2 2 terms in the
summation corresponding to the number of possible
state assignments at the internal vertices that lead to
the particular character pattern at the terminal verti-
ces. That is, there are kn 2 2 possible Markov paths that
lead to a particular character pattern.

The Jacobian matrix of p 5 f(a) is then

J 5 F ­

­a1
fW , . . . ,

­

­az
fW G .

I want to now show that the rank of J is z, the number
of parameters of the transition matrices. The rows of p
are all sums of monomials of the form a1a2 . . . am and
ach row has a unique combination of kn 2 2 terms with

(n 2 3)k(k 2 1) 1 n(k 2 1) different. The column
vectors of J are partial derivatives with respect to each
ai from 1 to z. Take the first row of p. Then if the
monomials in the first row of p contain ai, the ith
column of J is again a sum of monomials, otherwise it
is zero. Suppose that rank of J is less than z. Then we

ave

c1j1 1 c2j2 1 · · · 1 czjz

5 0 ~where jI are the column vectors of J!,

for some set of cI not all zero. Without loss of generality
suppose {j1, j2 . . . jp} are the subset of column vectors of
J with a monomial sum in the first row. Since the sum
of different monomials are linearly independent the
coefficients cI in front of these vectors must be zero and
only those columns of J with zero in the first row can
have non-zero coefficients. But, the columns with zeros
in the first row must also have monomial sums in some
of the rows and by same reasoning the coefficients for
those columns must also be zero. Therefore, cI 5 0 for
all i, and the rank of J is z.
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