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Abstract
Continuous environmental change—such as slowly rising temperatures—may create
permanent maladaptation of natural populations: Even if a population adapts evolu-
tionarily, its mean phenotype will usually lag behind the phenotype favored in the
current environment, and if the resulting phenotypic lag becomes too large, the pop-
ulation risks extinction. We analyze this scenario using a moving-optimum model, in
which one ormore quantitative traits are under stabilizing selection towards an optimal
value that increases at a constant rate. We have recently shown that, in the limit of
infinitely small mutations and high mutation rate, the evolution of the phenotypic lag
converges to an Ornstein–Uhlenbeck process around a long-term equilibrium value.
Both themean and the variance of this equilibrium lag have simple analytical formulas.
Here, we study the properties of this limit and compare it to simulations of an evolving
populationwith finitemutational effects.We find that the “small-jumps limit” provides
a reasonable approximation, provided themean lag is so large that the optimum cannot
be reached by a single mutation. This is the case for fast environmental change and/or
weak selection. Our analysis also provides insights into population extinction: Even
if the mean lag is small enough to allow a positive growth rate, stochastic fluctuations
of the lag will eventually cause extinction. We show that the time until this event
follows an exponential distribution, whose mean depends strongly on a composite
parameter that relates the speed of environmental change to the adaptive potential of
the population.
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1 Introduction

With global change threatening the survival of many species, an increasing number
of theoretical and empirical studies focuses on the potential role of “rapid evolution”
and “evolutionary rescue” in preventing extinction (reviewed in, e.g., Hairston et al.
2005; Gonzalez et al. 2013; Kopp and Matuszewski 2014). An important parameter
in these studies is the mode of environmental change, which a given population may
experience as either sudden or gradual (e.g., Gomulkiewicz and Holt 1995). Here,
we focus on gradual change, as experienced, for example, by oceanic phytoplankton
exposed to increases in surface temperature and acidity (e.g., Collins et al. 2014). This
scenario can be addressed in the so-called moving-optimum model, which assumes
that one or more quantitative characters are subject to stabilizing selection towards an
optimal value that increases (or decreases) over time. If the optimummoves at constant
speed, an evolving population will follow at a certain phenotypic distance or “lag”,
whose size depends on the speed of environmental change, the strength of selection
and the available genetic variation (reviewed in Kopp and Matuszewski 2014). In a
seminal study, Bürger and Lynch (1995, see also Lynch and Lande 1993) derived a
“critical rate of environmental change”, beyond which the lag becomes too large for
the population to tolerate and extinction is inevitable. Their model (and subsequent
extensions, e.g., Gomulkiewicz and Holt 1995; Jones et al. 2004; Gomulkiewicz and
Houle 2009; Chevin et al. 2010) uses a quantitative-genetics approach, that is, it
assumes that adaptation occurs fromstandinggenetic variation, the trait under selection
is determined by many loci with small individual effects, and genetic variance is
constant (although the latter assumption can be relaxed in simulations).

In contrast, Kopp and Hermisson (2007, 2009a) focused on adaptation from new
mutations, and investigated how the moving optimum affects the probability and time
of fixation for alleles of both small and large effect. Following this work, Kopp and
Hermisson (2009b) formulated an “adaptive-walk approximation”, which neglects
fixation time and assumes that the population evolves via a stochastic jump process,
where an “adaptive jump” (or “step”) occurs whenever a beneficial mutation arrives
and escapes loss due to genetic drift (see the strong-selection-weak-mutation model
introduced by Gillespie 1983a, b). They showed that the characteristics of the adaptive
walk (in particular, its step-size distribution) depend crucially on a composite param-
eter γ , which can be interpreted as the ratio of the speed of environmental change to
the “adaptive potential” of the population. Small γ (slow change/high adaptive poten-
tial) corresponds to an “environmentally-limited regime”, in which the population
stays close to the optimum and only small-effect mutations contribute to adaptation.
In contrast, large γ defines a “genetically-limited regime”, in which the phenotypic
lag is large and the adaptive walk is shaped primarily by the distribution of incoming
mutations.

Matuszewski et al. (2014) extended this model to account for a multidimensional
phenotype with universal pleiotropy (meaning that each mutation affects every trait).
This amounts to amoving-optimumversionofFisher’swell-known“geometricmodel”
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(Fisher 1930), which was originally introduced to argue for the pre-eminence of small
mutations in adaptive evolution, but later has been shown to provide empirically accu-
rate predictions under a wide range of conditions (e.g., Orr 1998, 2005; Martin and
Lenormand 2006; Tenaillon 2014). A key feature of Fisher’s model is a “cost of
complexity”, since an increase in the number of phenotypic dimensions decreases the
proportion of beneficial mutations and, hence, the rate of adaptation (Orr 2000). Under
a moving optimum, this translates into a larger phenotypic lag and an adaptive walk
that proceeds via rarer (but larger) steps (Matuszewski et al. 2014).

The adaptive-walk approximation to the moving-optimum model also poses some
interestingmathematical problems,whichhavebeen covered in depth byNassar (2016)
and Nassar and Pardoux (2017). Recently, Nassar and Pardoux (2018) developed a
“small-jumps limit” to the adaptive-walk approximation, by assuming that infinitely
small mutations arrive at an infinitely high rate (similar to the “canonical equation”
of adaptive dynamics, e.g. Geritz et al. 1998; Champagnat et al. 2002; Champagnat
2006; Boettiger et al. 2010). In this limit, the evolution of the phenotypic lag converges
to an Ornstein–Uhlenbeck process around a long-term equilibrium, providing simple
analytical predictions for its mean and variance. The aim of the present paper is to use
this small-jumps limit as an approximation to adaptive walks with finite step sizes, as
well as to more genetically explicit models of polygenic adaptation under a moving
optimum.We show that the approximationworkswell in part of the genetically-limited
regime. For the environmentally-limited regime, we obtain some scaling relations
based on a different approximation fromMatuszewski et al. (2014). Finally, we exploit
the above-mentioned Ornstein–Uhlenbeck process to gain some insight into the long-
term extinction risk of populations in slowly-changing environments.

2 Themodel

Following Matuszewski et al. (2014), our model is set up as follows: A population of
constant size N is subject to Gaussian stabilizing selection towards a (d-dimensional)
moving optimum that changes linearly with speed vector v. That is, at time t , the
phenotypic lag displayed by an individual with trait vector z equals x = vt − z, and
the corresponding fitness is

W (x) = exp
(
−x′Σ−1x

)
, (1)

where the positive definite matrix Σ describes the shape of the fitness landscape (and
′ denotes transposition). Without loss of generality (Matuszewski et al. 2014), we set

v = ve1 with v > 0, and (2)

Σ = σ 2I, (3)

where e1 is the unit vector (1, 0, . . .)′ and I the identity matrix in Rd . In other words,
v is a horizontal vector and Σ is isotropic. Note that, in the following, we will retain
boldface notation for the lag x even in the one-dimensional case (d = 1), whereas
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we will generally refer to the speed of environmental change as v (the only non-zero
element of v). We will also refer to σ−2 as a measure for the strength of stabilizing
selection.

For the adaptive-walk approximation, the population is assumed to be monomor-
phic at all times (i.e., its state is completely characterized by x). Mutations arise at
rate Θ/2 = Nμ (where μ is the per-capita mutation rate and Θ = 2Nμ is a standard
population-genetic parameter), and their phenotypic effects α are drawn from a dis-
tribution p(α). In this paper p(α) always is a multivariate normal with mean 0 and
positive definite covariance matrixM, that is

p(α) = 1√
(2π)d det(M)

exp

(
−1

2
α′M−1α

)
, (4)

even though some of the results by Nassar and Pardoux (2017, 2018) are valid under
more general conditions. In the isotropic case, M = ω2I, where ω2 is the variance of
mutational effects. For general M, we define

ω̄2 = d
√
det(M), (5)

which is the geometric mean of the eigenvalues of M and can be loosely inter-
preted as the average variance of mutational effects across phenotypic directions (see
Matuszewski et al. 2014).

We neglect the possibility of fixation for deleterious mutations. Yet even beneficial
mutations have a significant probability of being lost due to the effects of genetic
drift while they are rare. For a mutation with effect α that arises in a population with
phenotypic lag x, we assume that its probability of fixation is

g(x,α) =
{
1 − exp(−2s(x,α)) if s(x,α) > 0,

0 otherwise
(6)

where

s(x,α) = W (x − α)

W (x)
− 1 ≈ (2x − α)′Σ−1α (7)

is the selection coefficient. Equation (6) is a good approximation to the fixation prob-
ability derived under a diffusion approximation (Malécot 1952; Kimura 1962), as
long as the population size N is not too small. Note that Matuszewski et al. (2014)
used the even simpler approximation g(x,α) ≈ 2s(x,α) (Haldane 1927; for more
exact approximations of the fixation probability in changing environments, see Uecker
and Hermisson 2011; Peischl and Kirkpatrick 2012). Once a mutation gets fixed, it
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Fig. 1 Three example realizations of an adaptive walk in one dimension (d = 1), showing the evolution
of the lag Xt between the population phenotype z and a linearly moving optimum vt , for three different
speeds of environmental change v. In a, b the process is recurrent, whereas in c it is transient. a corresponds
to the environmentally-limited regime and b to the genetically-limited regime (see main text). Results are
from simulations of Eq. (A1) (“adaptive-walk simulations”) with ω2 = 1, Θ = 1 and σ = 0.1

is assumed to do so instantaneously, and the phenotypic lag x of the population is
updated accordingly. We call the resulting stochastic process Xt an “adaptive walk”.
Three example realizations are illustrated in Fig. 1.

In a rigorous mathematical treatment of the above model, Nassar (2016) and Nassar
and Pardoux (2017) have formalized the process Xt—describing the evolution of the
phenotypic lag via the quasi-instantaneous fixation of beneficial mutations—bymeans
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of a stochastic differential equation, which we here repeat in Appendix A (Eq. A1).
For the univariate case (d = 1), they show that Xt is (Harris) recurrent if v < m (see
Fig. 1a, b) and transient if v > m (Fig. 1c), where

m = Θ

2

∫

R+
α p(α)dα = Θω/

√
8π (8)

is the rate of adaptation that is attainedwhen every beneficial mutation goes to fixation.
(The behavior in the limiting case v = m depends on additional technical conditions.)
For d > 1, we conjecture that the above criterion remains valid in the case of isotropic
mutations (M = ω2I), whereas in the presence of mutational correlations, simulations
suggest that the value of v at the boundary to the transient case is less than m.

The aim of this paper is to better understand the behaviour of the processXt by using
the small-jumps limit developed in Nassar and Pardoux (2018) as an approximation.
To assess the performance of this approximation, we will compare its predictions to
the results of two types of simulations, using methods developed inMatuszewski et al.
(2014).

First, “adaptive-walk simulations” (like those shown in Fig. 1) are performed by
a straightforward implementation of Eq. (A1), that is, by repeatedly (i) drawing the
waiting time for a new mutation from an exponential distribution with intensity Θ/2;
(ii) drawing the size of the mutation from its distribution p(α) (Eq. 4); and (iii)
accepting the mutation with its fixation probability g(x,α) (Eq. 6); note that, except
for the simulation of extinction times, we used the approximate expression for the
selection coefficient s given on the right-hand side of Eq. (7), which causes fewer
numerical problems at high values of v. The calculation of summary statistics for
these simulations is described in Appendix B.

Second, individual-based simulations represent a much more realistic model, in
which fixations are not instantaneous andmultiplemutationsmay segregate simultane-
ously.Briefly,wemodel an initiallymonomorphic population of N haploid individuals,
which are characterized by L genetic loci that additively determine the multivariate
phenotype z and, hence, the lag x. Generations are discrete and non-overlapping. Each
generation comprises (i) viability selection (individuals are removed with probability
1− W (x), Eq. 1), (ii) population regulation (random individuals are removed as long
as the population size exceeds a carrying capacity K ) and (iii) sexual reproduction
(surviving individuals are randomly assigned to mating pairs by sampling without
replacement, and each pair produces B offspring; offspring genotypes are derived
from parental genotypes by taking into account recombination at rate r between adja-
cent loci [where r = 0.5 means free recombination] and mutation at per-locus rateμ).
In all simulations reported here, we used L = 10, K = 1000, ω = 1, μ = 5 × 10−5

or μ = 5 × 10−4 (yielding a population-wide mutation rate Θ = 2NLμ = 1 or
Θ = 10 and mutational variance Vm = Lμω2 = 0.0005 or Vm = 0.005), and B = 2
or B = 8; in this particular model, the effective population size Ne ≈ 2BN/(2B − 1)
(Bürger and Lynch 1995); for more details, see Matuszewski et al. (2014). Note that
individual-based simulations will be applied only to a subset of parameter combina-
tions investigated by means of adaptive-walk simulations.
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3 Results

3.1 Evolution of the phenotypic lag

Nassar and Pardoux (2018) have studied a small-jumps limit of the process Xt , which
is obtained bymultiplying the jump sizes by ε, dividing the rates by ε2, and then letting
ε → 0 (for details, see Appendix A). In particular, they show that the rescaled process
Xε
t (Eq. A2) converges in probability towards a deterministic solution X̄t , given by

the differential equation
dX̄t

dt
= v − σ−2ΘMX̄t . (9)

For x0 = 0, its solution is

X̄t =
(
1 − exp(−σ−2ΘMt)

) M−1v
Θσ−2 , (10)

which converges exponentially to the equilibrium value

X̄t −−−→
t→∞ X̄∞ = M−1v

Θσ−2 . (11)

Using Eqs. (2) and (5), Eq. (11) can be rewritten as

X̄∞ = γ ω̄

(
M
ω̄2

)−1

e1, (12)

where

γ = v/ω̄

Θ(σ/ω̄)−2 (13)

is the scaled rate of environmental change defined inMatuszewski et al. (2014), whose
denominator can be interpreted as the “adaptive potential” of the population (see Kopp
and Hermisson 2009b). In the univariate case, ω̄2 = M = ω2, and the adaptive
potential is equal to the constant factor in the second term on the right-hand side of
Eq. (9), which describes phenotypic change in the population due to mutation and
selection. Furthermore, in this case, X̄∞/ω = γ , that is, the equilibrium mean lag,
when measured in units of the typical size of mutations, is simply given by γ . In the
multivariate case, the additional term (M/ω̄2)−1e1 corresponds to the first column of
the inverse of the scaledmutationmatrix. Its entries are related to the partial correlation
coefficients between the effects ofmutations on trait 1 (whoseoptimumvalue is directly
affected by v) and each of the other traits (i.e., the partial correlation between trait 1

and trait i is given by−m−1
1i /

√
m−1

i i m−1
11 , where them

′s are the elements of the matrix
M). Thus, the equilibriummean lag depends only on γ and the structure of mutational
correlations in the direction of the moving optimum. We note that an alternative way
of rewriting Eq. (11) is

X̄∞ = γ1ω

(
M
ω2

)−1

e1, (14)

123



M. Kopp et al.

where ω2 is the variance of new mutations in the direction of the optimum (i.e., the
first entry of the matrix M) and γ1 is equal to γ in the one-dimensional case. The
difference to Eq. (12) is that γ1 does not capture the genetic constraints imposed by
mutational correlations (as reflected in the quantity ω̄2, Eq. 5).

To calculate the variance of the lag in the small-jumps limit, Nassar and Pardoux
(2018) consider the process

Uε
t = Xε

t − X̄t√
ε

. (15)

They show that, for ε → 0, this process converges to an Ornstein–Uhlenbeck process

dUt = −σ−2ΘMUtdt + Λ
1
2 (X̄t )dBt . (16)

The first termon the right-hand side of Eq. (16) describes the tendency of the process
to return to itsmean. It is equal to themutation-selection term inEq. (9) (and, for d = 1,
also to the adaptive-potential term in the denominator of γ ; Eq. 13). The second term
describes the tendency of the process to fluctuate around the mean, where Bt is a
d-dimensional standard Brownian motion and the matrix Λ(X̄t ) is the infinitesimal
variance of the process (defined inAppendix C, Eq. C1). An explicit expression for this
term can be obtained only for the special case of isotropic mutations (i.e.,M = ω2I) in
the limit of large time (when X̄t converges to X̄∞). For this case, we show in Appendix
C that the infinitesimal variance is 4vω/

√
2π in the direction of the optimum, and

half this value in all other directions (covariances are zero). Thus, the infinitesimal
variance reflects the factors that drive the process away from the mean, that is, the rate
of environmental change and the typical size of mutations (and, hence, jumps). The
variance-covariance matrix of the process Ut is given by its second moment, which
for the limit t → ∞, we denote by S̄2 (Eq. C4). In the isotropic case, it is given by
Eq. (C14), which shows that the asymptotic variance around the mean lag is

S̄21 = 2v√
2πΘσ−2ω

= 2ω2γ√
2π

(17a)

in the direction of the optimum and

S̄2i>1 = v√
2πΘσ−2ω

= ω2γ√
2π

(17b)

in all other directions, with all covariances equal to zero. Note that the standard devi-
ation of the lag in the direction of the optimum is very close to its mean: S̄1 ≈ 0.9X̄1
(Eq. 12, 17a; here and in the following, we abusively denote by X̄i the i’th element of
the vector X̄∞, and by S̄2i the i’th diagonal element of the matrix S̄2).

Since Ut is an Ornstein–Uhlenbeck process, its stationary distribution is Gaussian
with mean 0 and covariance matrix S̄2. Similarly, for ε � 1 and large t , the process
Xε
t ≈ X̄t+√

εUt , andhenceXε
t ∼ N (X̄∞, εS̄2).Wenote that in contrast to the original

process Xt , the limiting process Xε
t is symmetric and no longer reflects the inherent

asymmetry of the original model (where the first element of Xt increases gradually
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Fig. 2 The long-term steady state of the normalized phenotypic lag Xt/ω in the one-dimensional case
(d = 1). The figure compares results from adaptive-walk simulations (averaged over 106 adaptive steps)
to the predictions from the small-jumps limit. a The mean phenotypic lag X̄/ω (relative to the mutational
standard deviation ω), as a function of the scaled rate of environmental change v/(ωΘ) for various values
of the scaled strength of selection σ−2ω2. The dotted lines represent the analytical prediction from Eq. (12)
(from top to bottom for the same values of σ−2ω2 as the simulation data). To reduce the number of
parameters, we focus (here and in the following figures) on the variable Xt/ω, which depends only on
the scaled rate of environmental change v/(ωΘ) and the scaled strength of selection σ−2ω2 (this can be
shown by measuring the phenotype in units of ω and time in units of Θ−1). b The standard deviation of
the scaled lag. The dotted lines represent the analytical predictions from Eq. (17). c The standard deviation
as a function of the mean lag. The dotted line marks the analytical prediction according to Eqs. (12) and
(17). The solid line marks the main diagonal. d The coefficient of variation (standard deviation over mean)
of the lag, with the dotted lines again marking the analytical predictions. The vertical line in (a–d) marks
the boundary between the recurrent and transient cases (v = m = Θω/

√
8π ⇔ v/(ωΘ) = 1/

√
8π )

due to environmental change and decreases suddenly due to fixations). For the original
process Xt with finite jumps, Eqs. (12) and (17) are approximate predictions for the
long-term mean and variance of the phenotypic lag X if we abusively approximate
Xt by X̄t + Ut (i.e., set ε = 1). It is this approximation that we investigate in the
following.

Figure 2 compares the predictions from the small-jumps limit to results from
adaptive-walk simulations, for the case of a single evolving trait (d = 1). As can be
seen, the predictions from the small-jumps limit are fairly accurate if X̄∞/ω = γ � 1
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(and very good for γ � 10), provided v is not too close to m. In other words, the
approximation is good if the mean lag is larger than the size of a typical mutation
(such that adaptive jumps are small relative to the lag, see Fig. 1b), but the system is
not too close to the boundary of the transient case. For γ � 1 or v → m, in contrast,
Eqs. (12) and (17) underestimate both the mean size of the lag and its variance, but the
reasons are different in the two cases. For v → m, the approximation does not capture
the divergence of the phenotypic lag as the process approaches transience. The reason
is that Eq. (9) assumes weak selection, and in particular, that the fixation probability
g(x,α) ≈ 2s(x,α), whereas the real fixation probability of finitely-sized mutations is
lower (see Eq. 6) and saturates at 1 as Xt → ∞. For γ � 1, the small-jumps approxi-
mation is invalid because adaptive jumps are large relative to the mean lag (and often
overshoot the optimum, leading toXt < 0, see Fig. 1a). Indeed, simulations show that
the mean lag is significantly larger than predicted by Eq. (12). The reason is that, for
γ � 1, adaptive jumps are relatively rare (because only fewmutations are beneficial),
and the lag will continue to increase until a successful mutation arrives. Figure 2c
shows, in addition, that for small γ the variance of the lag converges to the square of
the mean, such that the coefficient of variation is close to 1 (Fig. 2d; see discussion
after Eq. 17). Finally, the results from adaptive-walk simulations are in very close
agreement with those from individual-based simulations (Fig. S1, S2), at least as long
as recombination is high and/or the population-wide mutation rate is not too large. In
contrast, for Θ 
 1 and recombination rate r → 0 (such as in asexual organisms
with large population sizes), the lag increases, most likely because co-segregating
beneficial mutations compete for fixation.

The above results remain largely valid also in the multivariate case (see Fig. S3 for
the case of d = 4 traits). In particular, with isotropic mutations (M = ω2I), the mean
lag in the direction of the optimum (X̄1) is almost identical to the one in the univariate
case (except for high values of the scaled selection strength (σ/ω)−2 = σ−2ω2, where
the lag is slightly increased; Fig. S3A). The lag in all other directions fluctuates around
zero (not shown), with a variance that is predicted to be half as large as the one in
the direction of the optimum (Eq. 17). However, this prediction holds true only for
a limited range of parameter values (that is, those for which the mean lag fits the
prediction very well; Fig. S3B–D). For v → m, the variance in the direction of the
optimum explodes (Fig. S3B), whereas for small v (i.e., small γ ), the ratio of variances
Var(X1)/Var(X2) converges to a value that is close to

√
2 (rather than 2; Fig. S3D)—a

finding for which we have no analytical explanation.
When mutational effects on different traits are correlated (parameter ρ in Fig. S4),

the key prediction from the adaptive-walk approximation is a bias in those traits whose
optimum is not affected by environmental change. For example, in Fig. S4B, a positive
mutational correlation between traits 1 and 2 creates a positivemean lag in the direction
of trait 2 (while having relatively little effect on trait 1, unless ρ is close to 1). This is
the “flying-kite effect” described by Jones et al. (2004) andMatuszewski et al. (2014),
the idea being that moving-optimum selection on trait 1 ”pulls” the population and
makes it “rise” also in the direction of trait 2. Adaptive-walk simulations show that the
flying-kite effect is fully operational only if selection is rather weak and environmental
change is fast (such that γ1 � 10, Fig. S4B, S5B). In these cases, the variance of trait
2 approaches that of trait 1 (Fig. S4C–E, S5C–E), and the lags of the two traits are
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correlated (Fig. S4F, S5F). Note that both the ratio of variances and the correlation
depend only on the strength of mutational correlations (see Eq. C9).

3.2 Population survival and extinction

A question of considerable interest for conservation is how much environmental
change a population can compensate by adaptive evolution without going extinct
(e.g., Bürger and Lynch 1995; Kopp and Matuszewski 2014). While our model does
not include explicit population dynamics—and, hence, cannot be used to study extinc-
tion directly—a simple approach is to assume that extinction risk is strongly elevated
once the phenotypic lag exceeds a critical threshold Xcrit. For example, if individuals
that survive selection have, on average, B > 1 offspring, population size will start
declining once the population (mean) fitness W (Xt ) (Eq. 1) drops below 1/B, that is,
once the total size of the lag ||Xt || = √

X′
tXt > Xcrit, where

Xcrit =
√

σ 2 ln B. (18)

Extinction will usually follow rapidly (Bürger and Lynch 1995), even though “evolu-
tionary rescue” (Gonzalez et al. 2013) is still possible by the timely arrival and fixation
of a beneficial mutation (Orr and Unckless 2008; Uecker and Hermisson 2011; Orr
and Unckless 2014). If the process Xt is transient (see Eq. 8) the lag will reach the
critical size after at most Xcrit/(m−v) generations. In contrast, if the process is recur-
rent, it may spend most of its time below Xcrit. Note, however, that even in this case,
eventual extinction is certain, because the lag has a non-zero probability of reaching
any arbitrarily large size. The key question is, therefore: For how long will the size of
the lag typically remain below Xcrit? Neglecting the possibility of evolutionary rescue,
we will call this the “time to extinction” and denote it by Te.

Obviously, the time to extinction strongly depends on the rate of environmental
change (Fig. 3). Typically, extinction risk is negligible if the mean lag in the direction
of the optimum is less than one mutational standard deviation (γ < 1, corresponding
to v/(ωΘ) < σ−2ω2 in Fig. 3), unless the fitness effect of a single mutation is very
high (σ−2ω2 close to 1, Fig. 3e, f). For γ > 1, we can gain additional insights from
the small-jumps limit.

First, extinction risk should certainly be high if the mean size of the lag at equi-
librium, ||X̄∞||, is greater than Xcrit. It follows immediately from Eq. (12) that this is
the case if v exceeds the “critical rate of environmental change” (Bürger and Lynch
1995)

vcrit = Θ
√

σ−2 ln B

||M−1e1|| . (19)

Note that, in the absence ofmutational correlations, this expression simplifies to vcrit =
XcritΘσ−2ω2, that is, the product of the critical lag and the “adaptive potential”.

If v > vcrit, the time to extinction might be estimated by setting the right-hand side
of Eq. (10) equal to Xcrite1 and solving for t (seeBürger andLynch 1995).However, the
solution diverges as v → vcrit, and generally overestimates the real time to extinction,
because it neglects stochastic fluctuations. Indeed, simulations show that, for v > vcrit,
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the time to extinction is typically of order Xcrit/v, that is, it is only slightly prolonged
by the fixation of beneficial mutations (Fig. 3; see also Gomulkiewicz et al. 2017).
If, on the contrary, v < vcrit, we can use the fact that the process converges to an
Ornstein–Uhlenbeck process around X̄∞ (Eq. 16). The time to extinction can then
be decomposed into the time for Xt to go from 0 to X̄∞ and the additional time
from X̄∞ to the boundary of the region defined by ||Xt || ≤ Xcrit. Unless v is close
to vcrit, the first part will be much shorter than the second and can be approximated
(and slightly underestimated) by X̄∞/v. The second part is highly stochastic and can
be approximated by the exit time T f of the process X̄∞ + Ut from the region with
||Xt || ≤ Xcrit when starting at X̄∞. Thus, in summary,

Te ≈
{
X̄∞/v + T f if v ≤ vcrit,

Xcrit/v if v > vcrit.
(20)

To the best of our knowledge, analytical results are available only for d = 1, when
the exit time corresponds to the first-passage time of the one-dimensional Ornstein–
Uhlenbeck process by the point Xcrit. Following Thomas (1975) and Ricciardi and
Sato (1988, see also Finch 2004), T f has mean

E(T f ) =
√

π/2

δ

∫ X̃crit

0

(
1 + erf

(
t√
2

))
exp

(
t2

2

)
dt

= 1

2δ

∞∑
k=1

(√
2X̃crit

)k

k! Γ

(
k

2

) (21)

and variance

Var(T f ) =
√
2π

δ2

∫ X̃crit

0

∫ t

−∞

∫ X̃crit

s

(
1 + erf

(
r√
2

))
exp

(
r2 + t2 − s2

2

)
dr ds dt − E(T f )

2

= E(T f )
2 − 1

2δ2

∞∑
k=1

(√
2X̃crit

)k

k! Γ

(
k

2

) (
φ

(
k

2

)
− φ(1)

)
,

(22)
where δ = Θσ−2ω2 is the denominator of γ (“adaptive potential”), X̃crit = (Xcrit −
X̄∞)/S̄ is the normalized mean lag, φ(·) is the digamma function, and erf(x) =
2/

√
π

∫ x
0 e−t2dt is the Gauss Error Function.

Figure 3 compares these predictions to results from adaptive-walk simulations. As
long as σ−2ω2 ≤ 0.01, the mean time to extinction is well approximated by Eqs. (20)
and (21), even though it is slightly underestimated in the region where v ≈ vcrit
(because we neglect adaptive steps before Xt reaches X̄∞ or Xcrit, respectively) and
for small values of v/(ωΘ) (probably as a result of the finite intervals between jumps
in our simulations). Similarly, the variance is well approximated by Eqs. (20) and
(22), as long as v < vcrit (whereas we lack a prediction for the variance in the opposite
case v > vcrit). Note that, in Fig. 3, the predictions were improved (in particular for
σ−2ω2 = 0.01) by replacing the mean lag X̄∞ according to Eq. (12) by the value
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Fig. 3 The time Te (relative to the mean interval between new mutations, Θ−1) until the population mean
fitness W (Xt ) drops below 1/B = 1/2 for the first time (“time to extinction ”), as a function of the scaled
rate of environmental change v/(ωΘ) for various values of the scaled strength of selection σ−2ω2, in the
one-dimensional model (d = 1). Circles show the mean and crosses the standard deviation from 1000
replicated adaptive-walk simulations. The solid line shows the analytical prediction for the mean, (Eqs. 20
and 21, where X̄∞ from Eq. 12 has been replaced by the mean lag from simulations, see Fig. 2). The
prediction for the standard deviation (square root of Eq. 22) is not shown, because it is very close to the
prediction for the mean, except for v → vcrit (Eq. 19, vertical dotted line), where it converges to 0 (because
our approximation Eq. 20 considers stochasticity only after the process has reached its long-term mean
X̄∞, and at this value, the population is already extinct)

found in simulations (see Fig. 2). Also note that, for small v/(ωΘ), the mean and
standard deviation of the time to extinction are nearly identical, suggesting that Te
follows an exponential distribution. Finally, for σ−2ω2 > 0.01, the approximation
(20) breaks down, because γ < 1 even for large v/(ωΘ) and, hence, the small-
jumps approximation does not apply. Extinction is nevertheless fast, because even a
small deviation from the optimum (relative to the mutational standard deviation) has
dramatic fitness consequences.

The above results are largely confirmed by individual-based simulations (Fig. S6).
In particular, for σ−2ω2 ≤ 0.001, results from individual-based simulations are very
close to those from adaptive-walk simulations. In contrast, for σ−2ω2 ≥ 0.01 (and
most clearly forσ−2ω2 ≥ 0.1), extinction takes longer in individual-based simulations
than in adaptive-walk simulations. This might seem surprising, since the assumption
of instantaneous fixations in the adaptive-walk simulations should be favorable for
adaptation. However, rapid fixation of a single mutation might also prevent the estab-
lishment of other mutations that arise slightly later, thus reducing the total number
of mutations that contribute to adaptation. Individual-based simulations further show
that for σ−2ω2 ≥ 0.1, “real” extinction times are substantially larger than the times
needed for mean fitness to drop below 1/B, showing that (temporary) evolutionary
rescue is common in this regime.
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Finally, some simple scaling relations can be obtained for v < vcrit by applying a
further approximation to the first-passage time T f . Indeed, for X̃crit � 1.5, the mean
E(T f ) (Eq. 21) is well approximated by

E(T f ) ≈
√
2π

δ X̃crit
exp

(
X̃2
crit

2

)
, (23)

(Ricciardi and Sato 1988) and the variance Var(T f ) (Eq. 22) by the square of this
value (showing again that, for small v, Te converges to an exponential distribution).
For most values of X̃crit, the approximation (23) is dominated by the exponential term

exp

(
X̃2
crit

2

)
= exp

(
(Xcrit − X̄∞)2

2S2

)

= exp

⎡
⎣

√
2πΘωσ−2

4v

(√
ln B

σ−2 − v

Θω2σ−2

)2
⎤
⎦

= exp

[√
2π

4γ

(
Xcrit

ω
− γ

)2
]

.

(24)

In particular, as long as v � vcrit, the difference Xcrit − X̄∞ (the squared term in the
exponent) depends only weakly on v,Θ andω. To a first approximation, therefore, the
mean time to extinction in this case scales with exp(Θω/v) (second line of Eq. 24). In
contrast, the dependence onσ−2 ismore complex, sinceσ−2 affects both Xcrit and X̄∞,
leading to a non-monotonic relation if v is intermediate (Fig. 4). The reason is that, for
both low and high σ−2, the mean time to extinction approaches the minimum Xcrit/v.
For small σ−2, selection is soweak that, even though Xcrit is large, almost nomutations
get fixed. For large σ−2, Xcrit is so small that the population has a high probability of
going extinct before the first fixation can occur. In contrast, for intermediate σ−2, Xcrit
is sufficiently large and selection sufficiently efficient to prevent population extinction
over long periods due to the fixation of beneficial mutations. Finally, the last line of
Eq. (24) shows that if Xcrit � X̄∞ is treated as a constant and is measured relative to
ω then the time to reach this value scales with exp(γ −1).

As mentioned above, no analytical results are available for extinction times in
the multidimensional model (d > 1). Not only do we lack an approximation for
exit times in the multidimensional Ornstein–Uhlenbeck process, but the small-jumps
limit also fails to capture a crucial effect of multidimensionality, the so-called “cost
of complexity” (Orr 2000). As first noted by Fisher (1930), increasing dimension-
ality causes a decrease in the proportion of beneficial mutations, making adaptation
more difficult, but this effect vanishes as mutational effect sizes tend to zero (where
there are always 50% beneficial mutations). To study the effect of multidimension-
ality with finite mutations, we therefore must resort to simulations. Figure S7 shows
results for uncorrelated mutations. Simulated extinction times are still very close to
the theoretical predictions from the one-dimensional model as long as selection is
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Fig. 4 The time Te (relative to the mean interval between new mutations, Θ−1) until the population mean
fitness W (Xt ) drops below 1/B = 1/2 for the first time (“time to extinction”), as a function of the scaled
strength of selection σ−2ω2 for an intermediate rate of environmental change v/(ωΘ) = 0.02. The dashed
line marks the minimal time Xcrit/v. Note that for σ−2ω2 < 0.001, the rate of environmental change
v > vcrit. For further details, see Fig. 3

weak (σ−2ω2 ≤ 10−4). In contrast, extinction times are somewhat shorter for moder-
ate selection strengths, σ−2ω2 = 10−3 or 10−2, and they are strongly reduced under
strong selection σ−2ω2 ≥ 10−1, where they are often close to the theoreticalminimum
Xcrit/v. These adaptive-walk results are again confirmed by individual-based simula-
tions (colored symbols in Fig. S7). In summary, the effects of multidimensionality are
strongest under strong selection (see Fig. S8).

When mutational effects are correlated (and the dominant eigenvector of the M-
matrix does not point in the direction of the optimum), extinction occurs faster than
without correlation (Fig. S9), especially when selection is weak (σ−2ω2 small). The
reason is that correlations reduce the amount of independent genetic variation that is
created in the direction of the optimum, and this limits the response to selection when
the lag is large, whereas it is less important when the lag is small (i.e., under strong
selection).

4 Discussion

We have studied a stochastic process describing an “adaptive-walk” of an evolving
population following a moving phenotypic optimum via the quasi-instantaneous fixa-
tion of beneficial mutations. In particular, we used a recently developed small-jumps
limit (Nassar and Pardoux 2018), which allowed us to derive analytical approximations
for the long-termmean and variance of the phenotypic lag in multiple dimensions, and
for the mean and variance of the time to extinction in the univariate case. Even though
valid only in part of parameter space, these approximations are highly instructive and
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allow us to place our results in the context of previous studies of the moving optimum
model. They also provide new insight into the long-term extinction risk of populations
in slowly-changing environments.

4.1 Evolution of the phenotypic lag

Our analytical results show that the evolution of the phenotypic lag depends strongly
on the composite parameter γ (Eq. 13; see Kopp and Hermisson 2009b; Matuszewski
et al. 2014), which scales the rate of environmental change relative to the “adaptive
potential” of the population (see Eqs. 9, 16). Indeed, in the small-jumps limit, γ is
equal to the long-term mean of the lag, X̄∞, when the latter is measured in units of the
mutational standard deviation ω (and mutational correlations are absent). Comparison
to simulations (Figs. 2, S3) shows that the predictions from the small-jumps limit
perform reasonably well as long as γ � 1, that is, as long as the mean lag exceeds the
effect size of a typicalmutation (and, in addition, environmental change is not too close
to the boundary of the transient case, inwhich continued adaptation is impossible). This
observation conforms nicely to the classification introduced in Kopp and Hermisson
(2009b), who stated that for γ � 1, the adaptive process is “environmentally-limited”,
whereas for γ 
 1, it is “genetically-limited”. The idea is that for γ � 1, themean lag
is so small (X̄∞ � ω) that large mutations are usually selected against (as they would
overshoot the optimum by too much), and hence, which mutations are fixed depends
primarily on the rate of environmental change. In contrast, for γ 
 1, the mean lag is
large (X̄∞ 
 ω), so most mutations that have effects in the direction of the optimum
(α1 > 0) are positively selected and their rate of fixation depends primarily on genetic
factors (i.e., their rate of appearance; for a discussion of the boundary between these
two regimes, see Supporting Information 3 in Matuszewski et al. 2014). It is, thus, in
part of the genetically-limited regime (i.e., the part with intermediate v) that the small-
jumps approximation ismost accurate.More precisely, the small-jumps approximation
requires that σ−2ω̄2 is small and v/(ω̄Θ) has intermediate values. This means either
weak selection (small σ−2) or small mutations (small ω̄2) in combination with slow
environmental change or a high mutation rate. We note that realistic values of σ−2ω̄2

are probably in themiddle of the rangewe investigated. For example, Bürger andLynch
(1995), based on published empirical estimates, assumed ω̄2 = 0.05 and considered
values of σ−2 between 0.005 and 0.5, implying σ−2ω̄2 between 0.00025 and 0.025
(or 0.0125 if selection is “diluted” by non-genetic phenotypic variation).

In the environmentally-limited regime (γ � 1), the small-jumps approximation
fails, because most mutations are large relative to the phenotypic lag. Indeed, Kopp
and Hermisson (2009b) and Matuszewski et al. (2014) proposed a different approxi-
mation for this case: Since most large mutations are selected against, the successful
mutations resulting in adaptive jumps come from the center of the distribution of new
mutations, which can be approximated by a uniform distribution with appropriate
density. Unfortunately, this approximation did not allow us to obtain results about
the long-term behavior of the lag. However, some scaling relations can be obtained
by focusing on the first jump of the adaptive walk, using results from Matuszewski
et al. (2014). In particular, immediately before and after the first jump, the mean lag in
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Table 1 The long-term behavior of the phenotypic lag in the genetically- and environmentally-limited
regime, respectively

Genetically-limited regime
(unless close to transient
case)

Environmentally-limited
regime

Parameter range γ � 1 γ � 1

With isotropic mutation

Mean of X1/ω Equal to γ Proportional to γ 1/(d+3)

Variance of X1/ω Proportional to γ Proportional to γ 2/(d+3)

CV of X1/ω Proportional to 1/
√

γ Close to 1

Ratio of variances X1 to X2 Equal to 2 Close to
√
2

With correlated mutations

Flying kite effect Present Weak or absent

Correlation within lag Present Weak or absent

Xi stands for the lag in the direction of trait i . CV is the coefficient of variation (standard deviation over
mean)

the direction of the optimum is proportional to γ 1/(d+3) and its variance to γ 2/(d+3),
which explains the initial slope of the curves for σ−2ω2 = 1 in Figs. 2a, b and S3A,
B (for further details, see Appendix D). A comparison between the environmentally-
and genetically-limited regimes is given in Table 1.

4.2 Time to population extinction

We then applied our results to investigate the time until the population reaches a
dangerously high level of maladaptation, entailing a significant risk of extinction.
Following Lynch and Lande (1993) and Bürger and Lynch (1995), we calculated a
“critical rate of environmental change” vcrit, beyondwhich the equilibrium phenotypic
lag becomes too large for the population to tolerate. The result is very simple: In the
absence of mutational correlations, the critical rate of environmental change equals
the critical phenotypic lag times the adaptive potential of the population.

However, even below this critical rate, the population will ultimately go extinct
due to stochastic fluctuations. So far, the time until this event had been studied only
by simulations (e.g., Bürger and Lynch 1995). Here, we used the fact that, in the
small-jumps limit, the adaptive walk converges to an Ornstein–Uhlenbeck process
around the expected mean lag. We then used known results on the first-passage time
of this process to derive analytical predictions for the time to extinction, at least in the
univariate case. A simple approximation yields that the time to extinction is roughly
proportional to exp(Θω/v), that is, it is exponential in the mutation rate, mutational
standard deviation and the inverse of the speed of environmental change (e.g., Fig. 3).
In contrast, the dependence on the strength of stabilizing selection ismore complex and
non-monotonic, since this parameter influences not only the adaptive potential but also
the critical phenotypic lag (Fig. 4). Finally, the distribution of the time to extinction
is approximately exponential if v is sufficiently below vcrit. The best fit is reached
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for slowly changing environments, where extinction times are on a palaeontological
timescale. Indeed, there is empirical support for an exponential distribution of species
life times (Stenseth and Smith 1984; Pigolotti et al. 2005). The traditional explanation
goes back to Van Valen (1973), stating that Red Queen dynamics prevent any one
species from attaining a long-term fitness advantage, such that extinction is mostly
based on demographic stochasticity. Our model provides an alternative explanation:
species go extinct due to the eventual failure (even for large populations) of catching
up with an ever-changing (biotic or abiotic) environment. This should remain true
even if environmental change is non-linear (e.g., sinusoidal on a large timescale).

4.3 Effect of multidimensionality

An obvious draw-back of our small-jumps limit is its inability to capture the “cost
of complexity” (Orr 2000), since the latter vanishes as the phenotypic effect size of
mutations tends to zero: independently of the number of traits under selection, there
will always be 50% beneficial mutations. As a consequence, in the isotropic model,
the predicted mean lag in the direction of the optimum (as well as its variance) are
independent of the number of traits d. In contrast, adaptive-walk simulations with
finite mutations show that both the mean lag and its variance increase with d (compare
Figs. 2 and S3), and this effect is strongest if σ−2ω2 is large, that is, mutational effect
sizes are large or selection is strong (meaning that the fitness landscape has a strong
curvature). The same result holds for the time to extinction,which is strongly decreased
in complex organisms (large d) if selection is strong (or mutations are large) but not
if selection is weak (or mutations are small; Fig. S8).

Environmental change affecting a single trait also induces variation in other traits
that are pleiotropically affected by the same set of genes. If mutation is isotropic (no
correlation between the effects on different traits), the small-jumps approximation
predicts that these latter traits have a lag with mean zero and a variance that is exactly
half the variance of the lag of the first trait. If mutations are correlated, the lag in the
first trait induces a correlated lag in the other traits (Figs. S4, S5), a phenomenon that
has been called the “flying-kite effect” (Jones et al. 2004; Matuszewski et al. 2014).
Strong mutational correlations also increase the lag of the first trait (Fig. S4A) and
decrease extinction times (Fig. S9), showing that they function as a genetic constraint
to adaptation, analogous to the one caused by genetic correlations in the standing
genetic variation (Walsh and Blows 2009; Chevin 2012).

4.4 Comparison to previous models

Both the adaptive-walk approximation and its small-jumps limit are closely related to
approaches used in the theory of “adaptive dynamics” (a theory of mutation-limited
evolution mostly used to study eco-evolutionary dynamics and frequency-dependent
selection, e.g., Geritz et al. 1998). Indeed, our deterministic Eq. (9) for the mean lag
can be seen as a version of the “canonical equation” (e.g., Champagnat et al. 2002;
Champagnat 2006) of adaptive dynamics (even though it lacks a factor 1/2 that is
usually present in the latter). Similarly, our Eq. (17a) for the variance in the direction
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of the optimum follows from an instance of the “fluctuation equation” developed by
Boettiger et al. (2010). Our analysis and simulations thus provide some guidance for
when adaptive-dynamics type approximations yield quantitatively accurate predictions
for trait dynamics away from equilibria or “singular strategies” (Geritz et al. 1998)—
namely, when the optimal phenotype cannot be reached by a single mutation, but the
fixation probability is still approximately linear in the selection coefficient.

More generally, and independently of the small-jumps limit, the good fit between
adaptive-walk and individual-based simulations (Figs. S1, S2, S6, S7) shows that—at
least in the simple scenario studied here—long-term evolution of a polygenic trait can
be accurately predicted by just focusing on the selection gradient and the “incom-
ing” genetic variance (Θ/2)ω2 (which equals the product of the mutational variance
μω2 and the [effective] population size N ), while neglecting other genetic details.
This reflects results from Kopp and Hermisson (2009b), who had already shown that,
in the moving-optimum model, the adaptive-walk approximation produces accurate
predictions for the distribution of adaptive substitutions (i.e., jump sizes) even in sit-
uations with moderately high mutation rate. An exception occurs, however, when the
population-wide mutation rate is high (such that several beneficial mutations enter
the population each generation) and recombination is low or absent (e.g., in asexu-
als; Figs. S1, S2). It is well-known that, in this case, beneficial mutations that arise on
different genetic backgrounds compete for fixation (a phenomenon called clonal inter-
ference or Hill-Robertson effect; Hill and Robertson 1966; Gerrish and Lenski 1998),
which reduces the overall rate of adaptation and may strongly increase extinction risk
in temporarily variable environments (not investigated here, but already shown by
Bürger 1999).

Short-term adaptation, in contrast, occurs mainly from standing genetic variation
(Hermisson and Pennings 2005; Barrett and Schluter 2008; Matuszewski et al. 2015)
and is most often modelled using approaches from quantitative genetics (Lande 1976).
This includes most previous applications of the moving-optimum model to questions
about the phenotypic lag andpopulation extinction risk (Lynch andLande1993;Bürger
and Lynch 1995; Gomulkiewicz and Holt 1995; Chevin et al. 2010). These models
have the same gradient-structure as Eq. (9), and it is therefore not surprising that their
results for the mean lag X̄∞ and the critical rate of environmental change vcrit are
analogous to ours. In particular, in the model by Bürger and Lynch (1995) the mean
lag in the one-dimensional case is given by X̄∞ = v(σ 2

g + Vs)/σ 2
g , where σ 2

g is the
additive (standing) genetic variance, and Vs equals σ 2/2 in our notation. Replacing
σ 2
g by the “incoming” variance (Θ/2)ω2 yields X̄∞/ω = v/ω + γ . The difference

to our Eq. (12) (i.e., the term v/ω) stems from the fact that standing genetic variation
reduces the effective strength of selection (and, hence, increases the lag). Similarly, the
approximate expression for the critical rate of environmental change in the Bürger and
Lynch (1995) model, vcrit = σ 2

g
√
2 ln B/VS (see Eq. A6 in Kopp and Matuszewski

2014), is identical to Eq. (19) when again setting σ 2
g = (Θ/2)ω2.

It is tempting to use these similarities for a comparison of, for example, critical
rates of environmental change when adaptation is based on either new mutations or
standing genetic variation. However, such a comparison is problematic because the
amount of standing genetic variation is difficult to predict (which makes the results
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by Bürger and Lynch (1995) “deceptively simple” in the authors’ own words). If one
assumes that the environment was stable before t = 0 (i.e., the optimumwas stable for
a sufficiently long period before the onset of change), the amount of genetic variation
at mutation-selection-drift balance is bounded above by the variance of a neutral trait,
Θω2 = 2VmN (Lynch and Hill 1986), which is exactly twice the variance coming in
from new mutations (Θω2/2). This seems to suggest that, under weak selection, the
presence of standing genetic variation might increase the critical rate of environmental
change by at most a factor of 2. However, standing variance might be higher due to
some sort of balancing selection, and we did not assess the effect of its immediate
availability on the chances of evolutionary rescue under strong selection. Overall, the
role of standing variation versus new mutations in preventing population extinctions
is a topic that requires further study.

Unlike for the mean value of the lag, the predictions for its long-term variance
differ markedly between quantitative genetic models and ours (or those from adaptive
dynamics). In particular, a slightly simplified version of equation (8b) in Bürger and
Lynch (1995) states that limt→∞ Var(X̄) = Vs/(2N ) + σ 2

g /(2Vs), with σ 2
g and Vs as

defined above. This expression is independent of the speed of environmental change,
whereas our Eq. (17a) is linear in v. This difference likely reflects the fact that evolution
in quantitative genetic models (from standing genetic variation) is “smooth”, whereas
in our model, it happens in jumps, such that faster environmental change leads to
larger jumps (Kopp and Hermisson 2009b). Interestingly, this effect remains valid
even in the limit of infinitesimally small jumps. Furthermore, our individual-based
simulations (Fig. S2) show that the variance of the mean lag does indeed increase with
v (and that Eq. 17a is very accurate). The only exception occurs for weak selection
and slow change, where the variance of the mean lag becomes independent of v, and
indeed, approaches the value predicted for a constant optimum in quantitative-genetics
models (Vs/(2Ne), Bürger and Lande 1994; grey dashed lines in Fig. S2).

A key limitation of our model is its restriction to a deterministically and linearly
moving optimum. We suspect that mild non-linearities will not change our qualitative
conclusions, as long as the movement of the optimum remains monotonic. The effect
of stochastic or deterministic fluctuations around a linear trend will depend upon
their timescale. On the one hand, fluctuations that are faster than the time between
adaptive steps essentially dilute the effect of selection (Bürger and Lynch 1995), while
leaving the rest of the model unchanged. For example, if the dynamics of a one-
dimensional optimum are given by vt + εt , where the εt are i.i.d. random variables
drawn each generation from aGaussian distribution with mean 0 and variance σ 2

v , then
this essentially increases the selection parameter fromσ 2 toσ 2+σ 2

v (Bürger andLynch
1995; note, however, that large fluctuations will introduce additional demographic
stochasticity,which is likely to increase extinction risk).On the other hand, fluctuations
that are much slower than the time between adaptive steps will not alter the predictions
over intermediate timescales. In contrast, fluctuations at a timescale similar to that of
adaptive steps, or fluctuations without a trend (e.g. Bürger 1999), are likely to have
different effects, whose exploration is beyond the scope of this paper.
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5 Conclusions

The small-jumps limit to the adaptive-walk approximation provides easily inter-
pretable analytical results about long-term adaptation in gradually changing environ-
ments. In particular, evolution in such environments resembles anOrnstein–Uhlenbeck
process around an average phenotypic lag, which allows to make predictions about the
scaling of extinction risk on long (potentially palaeontological) timescales. The pre-
dictions are most accurate in parts of parameter space where selection is weak and the
speed of environmental change is intermediate. For very slow environmental change,
some additional insights can be gained from another approximation that assumes that
all beneficial mutations are equally likely. Beyond the small-jumps limit, the adaptive-
walk approximation itself, which neglects fixation time and co-segregation of alleles
and is very easy to simulate, provides accurate predictions over a very wide range of
parameters, provided that standing genetic variation is absent or has been depleted.

Acknowledgements We thank two anonymous reviewers for helpful comments on the manuscript.

6 Appendix A: Stochastic differential equations for the phenotypic
lag

According to Nassar (2016) and Nassar and Pardoux (2017), the evolution of the
phenotypic lag Xt of the population can be described by the stochastic differential
equation

Xt = x0 + vt −
∫

[0,t]×Rd×[0,1]
αΓ (Xs− ,α, ξ)N (ds, dα, dξ). (A1)

Here,N is a Poisson point process over R+ ×R
d × [0, 1] with intensity ds ν(dα) dξ

where

ν(dα) = Θ

2
p(α)dα

and
Γ (x,α, ξ) = 1{ξ≤g(x,α)}.

Recall that g(x,α) is the fixation probability of a mutation of size α that hits the
population when the lag is x, as defined by Eqs. (6) and (7). The points of the Poisson
point process (Ti ,Ai , Ξi ) are such that the (Ti ,Ai ) form a Poisson point process over
R+×R

d of themutations that hit the population with intensity dsν(dα), and theΞi are
i.i.d.U[0, 1], globally independent of the Poisson point process of the (Ti ,Ai ). Ti ’s are
the times whenmutations are proposed andAi ’s are the effect sizes of thosemutations.
The Ξi are auxiliary variables determining fixation: a mutation gets instantaneously
fixed if Ξi ≤ g(XTi ,Ai ), and is lost otherwise.

The rescaled process Xε
t (Nassar and Pardoux 2018) is given by

Xε
t = xε

0 + vt −
∫

[0,t]×Rd×[0,1]
εαΓ (Xε

s− , εα, ξ)Nε(ds, dα, dξ), (A2)
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where the intensitymeasure of the Poisson point process Nε is ε−2ds×ν(dα)×dξ , and
the small-jumps limit is obtained by letting ε → 0. An intuitive explanation for why
the intensity measure (and, hence, the mutation rate Θ) needs to be rescaled by ε−2 as
mutational effects (and, hence, jump sizes)α are rescaled by ε is that smallermutations
have a double effect on the rate of adaptation: Not only do they induce smaller phe-
notypic changes, but they also have lower fixation probability (approximately linear
in ε).

7 Appendix B: Summary statistics for adaptive-walk simulations

Summary statistics for adaptive-walk simulations depend on the evolution of the phe-
notypic lag between adaptive steps. Let tk be the time between steps k − 1 and k, ξ k
the size of the lag immediately after step k − 1 and ζ k = ξ k + vtk the size of the lag
just before step k. The mean lag over n steps is given by

X̄ =
∑n

k=1 tk (ξk + ζk) /2∑n
k=1 tk

,

and the variance is

Var(X1) =
∑

k |ξ3k,1 − ζ 3
k,1|

3v
∑

k tk
− X̄2

1

in the direction of the optimum (i.e., for trait 1), and

Var(Xi>1) =
∑

k tkξ
2
k,i∑

k tk
− X̄2

i

in all other directions. Covariances involving trait 1 are

Cov(X1, Xi>1) =
∑

k tkξk,i (ξk,1 + ζk,1)/2∑
k tk

− X̄1 X̄i

and those not involving trait 1 are

Cov(Xi>1, X j>1) =
∑

k tkξk,iξk, j∑
k tk

− X̄i X̄ j .

8 Appendix C: The large-time variance in the small-jumps limit

As shown in Nassar and Pardoux (2018), for ε → 0, the process Uε
t (15) converges to

the Ornstein–Uhlenbeck process (16), where the infinitesimal variance is given by

Λ(x) = 2Θσ−2
∫

(x|α)≤0
| (x | α) |α ⊗ α p(α)dα (C1)
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(here, (·|·) denotes the inner product of two vectors and ⊗ the outer product). Thus,

Ut =
∫ t

0
e−Θσ−2(t−s)MΛ

1
2 (X̄s)dBs, (C2)

and its second moment is given by

E(Ut ⊗ Ut ) =
∫ t

0
e−Θσ−2(t−s)MΛ(X̄s)e

−Θσ−2(t−s)Mds, (C3)

or, by a change of variables and writing A = Θσ−2M,

E(Ut ⊗ Ut ) =
∫ t

0
e−sAΛ(X̄t−s)e

−sAds. (C4)

We call S̄2 the limit of this second moment for t → ∞ (when X̄t → X̄∞):

S̄2 = lim
t→∞E(Ut ⊗ Ut ) =

∫ ∞

0
e−sAΛ(X̄∞)e−sAdt . (C5)

An alternative way of characterizing S̄2 is as the solution to the equation

AS̄2 + S̄2A = Λ(X̄∞) (C6)

(this follows from Eq. (C5) by noting that d/dt(e−tAΛe−tA) = −Ae−tAΛe−tA −
e−tAΛe−tAA and was used for the numerical calculation of predictions in Fig. S4 and
S5).

We now write M = ω̄2M0 (see Eq. 5). Λ(X̄∞) can then be written as

Λ(X̄∞) = 2v

ω̄2

∫

(M−1
0 e1|α)≤0

|(M−1
0 e1|α)|α ⊗ α p(α)dα, (C7)

and hence

M0S̄2 + S̄2M0 = 2σ 2v

Θω̄4

∫

(M−1
0 e1|α)≤0

|(M−1
0 e1|α)|α ⊗ α p(α)dα. (C8)

Therefore,

S̄2 = σ 2v

Θω̄4Φ(M0), (C9)

where Φ(M0) is a matrix that depends only on M0, that is, only on the structure
of the mutation matrix. This explains, in particular, that in Fig. S4E, F where M =
ω2

(
1 ρ

ρ 1

)
, the ratio of variances of the lag in different dimensions and the correlations

between these lags depend only on ρ.
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Finally, an explicit expression for S̄2 is possible in the particular case where the
mutation matrix is isotropic (M = ω2I). In this case,

S̄2 = 1

2Θσ−2M
−1Λ

(
X̄∞

)
, (C10)

and the matrix Λ(X̄∞) evaluates to

Λ(X̄∞) = 2v

ω2

∫

Rd−1

∫ ∞

0
α1α ⊗ α p(α)dα

= 2v

(2π)
d
2 ωd+2

∫

Rd−1

∫ ∞

0
α1α ⊗ αe

− 1
2ω2

d∑
i=1

α2
i
dα.

(C11)

The first element of this matrix is

Λ1,1(X̄∞) = 2v√
2πω3

∫ ∞

0
α3
1e

− α21
2ω2 dα1 = 4vω√

2π
. (C12)

For i = 2, ..., d,

Λi,i (X̄∞) = 2v

2πω4

∫

R

α2
i e

− α2i
2ω2 dαi

∫ ∞

0
α1e

− α21
2ω2 dα1 = 2vω√

2π
.

For 2 ≤ i < j ≤ d,

Λi, j (X̄∞) = Λ j,i (X̄∞) = 2v

(2π)
3
2 ω5

×
∫

R

αie
− α2i

2ω2 dαi

∫

R

α je
− α2j

2ω2 dα j

∫ ∞

0
α1e

− α21
2ω2 dα1 = 0.

Similarly, for all i �= 1,
Λ1,i (X̄∞) = Λi,1(X̄∞) = 0.

Hence,

Λ(X̄∞) = 2vω√
2π

⎛
⎜⎜⎜⎜⎝

2 0 0 ... 0
0 1 0 ... 0
0 0 1 ... 0
... ... ... ... ...

0 0 0 ... 1

⎞
⎟⎟⎟⎟⎠

. (C13)

It follows that

S̄2 = v√
2πΘσ−2ω

⎛
⎜⎜⎜⎜⎝

2 0 0 ... 0
0 1 0 ... 0
0 0 1 ... 0
... ... ... ... ...

0 0 0 ... 1

⎞
⎟⎟⎟⎟⎠

= ω2γ√
2π

⎛
⎜⎜⎜⎜⎝

2 0 0 ... 0
0 1 0 ... 0
0 0 1 ... 0
... ... ... ... ...

0 0 0 ... 1

⎞
⎟⎟⎟⎟⎠

, (C14)
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because, forM = ω2I, ω̄ = ω.

9 Appendix D: The environmentally-limited regime

As argued in the main text, γ � 1 corresponds to the environmentally-limited regime,
in which the lag is small relative to the size of new mutations and the small-jumps
approximation fails. Matuszewski et al. (2014) (see also Kopp and Hermisson 2009b)
showed that in this regime the distribution of new mutations can be approximated by
a uniform distribution with density equal to p(0), the value of the density at α = 0.
Unfortunately, this approximation does not allow to calculate the long-term moments
of the process. We can, however, gain some insights from focusing on the lag before
and after the first adaptive substitution. In particular, it follows from Eq. (S18) and
(S28) in Matuszewski et al. (2014) that, just before the first substitution, the lag in the
direction of the optimum has the cumulative distribution function

P(X1−
1 ≤ x) = 1 − exp

(
−η(d)p(0)

γ
xd+3

)
(D1)

with mean

E(X1−
1 ) =

(
γ

η(d)p(0)

) 1
d+3

Γ

(
d + 4

d + 3

)
(D2)

and variance

Var(X1−
1 ) =

(
γ

η(d)p(0)

) 2
d+3

[
Γ

(
d + 5

d + 3

)
− Γ

(
d + 4

d + 3

)2
]

, (D3)

where

η(d) = π
d
2

(d + 3)Γ (2 + d
2 )

(D4)

and

p(0) =
(

1√
2πω̄2

)d

. (D5)

Obviously, the lag in all other directions is zero before the first jump. Immediately
after the first jump, the lag in any direction has mean 0 and variance

Var(X1+
i ) = 1

d + 4

(
γ

η(d)p(0)

) 2
d+3

Γ

(
d + 5

d + 4

)
(D6)

(equation S33 of Matuszewski et al. 2014). These results explain several patterns seen
in the environmentally-limited regime.

First, the mean lag in the direction of the optimum is proportional to γ 1/(d+3)

(Eq. D2). For the log-log plots in Figs. 2a and S3A, this explains the initial slope of
the curves for large σ−2ω2. Indeed, the slope between the first two values of v/(ωΘ)
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for σ−2ω2 = 1 (red curve) is 1/3.95 for d = 1 (Fig. 2a) and 1/6.32 for d = 4
(Fig. S3A). In contrast, in the genetically-limited regime, the slope equals 1, and close
to the boundary of the transient case, it tends towards infinity.

Similarly, the variance of the lag in the direction of the optimum both before and
after the first step is proportional to γ 2/(d+3) (Eqs. D3 and D6), and in consequence,
the standard deviation is proportional to γ 1/(d+3) (same as themean). This explains the
initial slope of the σ−2ω2 = 1 curves in Figs. 2b and S3B, which is 1/3.93 for d = 1
(Fig. 2b) and 1/6.67 for d = 4 (Fig. S3B). It also explainswhy, in the environmentally-
limited regime, the coefficient of variation (i.e., the standard deviation divided by the
mean) tends to be independent of γ , and when using Eq. (D3), why it is close to one
(Fig. 2c, d and Fig. S3C; note that the gamma functions in Eqs. D2 and D3 are close
to unity and can be neglected).

In contrast, in the multivariate case of the environmentally-limited regime, the
variance of the lag in the direction of the optimum seems to exceed the variance in
the other directions by about a factor of

√
2 if there are no mutational correlations

(Fig. S3D), but we do not have an analytical explanation for this observation. Note
that, due to symmetry, the variance of the lag is identical in all directions immediately
after the first jump (Eq. D6), but in between jumps, X1 increases while the other
components stay constant.

Finally, the above results can explain the dependence of extinction time on the
speed of environmental change in the case of very strong selection (the only case
where a non-negligible extinction risk exists in the environmentally-limited regime).
For very high σ−2ω2 (Fig. 3e, f), extinction times from simulations appear to be
approximately exponential in 1/v. This is in agreement with Eq. (D1), according to
which the probability that the process reaches Xcrit before the first jump (when starting
at 0) is given by exp(−X4

crit/(3
√
2πω2γ )), and hence, the time until this event occurs

for the first time should arguably scale with exp(1/v) (but not exp(1/γ ), since Xcrit
depends on σ 2).
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