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• Antibiotic resistance =⇒ search for novel methods
to combat bacterial infections

• Directed evolution
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Phage lysins

• Lysins have evolved to kill host cell from inside and
not harm future hosts

• potential for using lysins to “kill from the outside”
(Fischetti, Nelson)

• promising as antimicrobials: only harm bacterial cells;
specific bacterial targets; no bacterial resistance

• obstacles to therapeutic use: short half life, etc.
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Evolving a better lysin

• Mathematical models: explore feasibility of
experimentally evolving better lysins (longer half life,
toxicity, diffusivity, adsorption, ...)

• Goal: Improve killing of pathogen R (e.g., group A
strep) by lysin/toxin

• *Experimental setup: rigged so that “producer” strain
G benefits from enhanced killing of competitor R
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Two possible delivery systems

• toxin (that kills R) carried on gene in

– plasmid in G

– phage that infects G
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Experimental system

• co-culture R + WT G and/or mutant strain(s) G’
(standing genetic variation)

– select or screen for G’

– 10 incubation cycles involving R + (G and/or
G’)

– Selection: after each incubation, collect G-types
(or phage) together and resample to start next
round of competitions with R

– Screening: only keep samples with “enough G”
(fluorescence for sorting)

**** simulation
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• Some type of spatial structure needed to localize the
benefit; in liquid, G and G’ would both benefit from
improved toxin in G’

– emulsion droplets (≤ 100 cells, G+R or G’+R)
for mini competitions

– agar plates
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Mathematical Models

Emulsion droplets (endpoint analysis, ODEs): mean q
Poisson distribution for initializing G-types in droplets =⇒
ratio of G’ to G after one incubation cycle is

G′
1

G1
=
h′

h
· G

′
0

G0
· 2 + q

2 + q + qG′
0(
h′

h − 1)

Plate growth (spatial agent-based models):
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Emulsion droplets: Endpoint analysis

Ignore details of what goes on in droplets. Focus on
outcome of each incubation:

• Droplets with only G (+R) produce h G during
incubation

• Droplets with only G’ (+R) produce h′ G’ during
incubation

• Assume (for now) ... only these “pure” droplets

Let p0 = initial frequency of G′ and pk = frequency at the
end of cycle k of G′ among all ‘G-types’ (G′ + G) in the
population. Evolutionary dynamics has a simple form:
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for the first cycle, and
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after k cycles. Relevant measure of mutant fitness (W ) in
this protocol is simply

W =
h′

h
. (3)
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accounting for mixed droplets

Mean q Poisson distribution for initializing G-types in
droplets =⇒ ratio of G’ to G after one incubation cycle is

p1
1− p1

=
h′

h
· p0
1− p0

· 2 + q

2 + q + qp0(
h′

h − 1)

Not a problem when p0 small. Previous result is a good
approximation.
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How many incubation cycles?

pN =
WNp0

WNp0 + 1− p0

N [ln(W)] = ln

[
pN (1− p0)
p0(1− pN )

]
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To go from initial frequency of 10−7 to detectable levels (0.01 blue; 0.1 red)
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Dynamics within droplet for plasmid model

Ġ = ψ
G
G(1− G+R

K
)

Ṙ = ψ
R
R(1− G+R

K
)− γRL

L̇ = αG(1− G+R

K
)− δL

G outgrows R if

L >
(ψ

R
− ψ

G
)(1− G+R

K )

γ
,

but both may be increasing. R decreases if

L >
ψ

R
(1− G+R

K )

γ
.
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Dynamics within droplet for phage model

Ṗ = −a1PG + ba1PτGτ

Ġ = −a1PG + ψ
G
G(1− G+R

K
)

Ṙ = ψ
R
R(1− G+R

K
)− a2LR

L̇ = Za1PτGτ − a2LR − δL
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Dynamics within droplet for phage model

Ṗ = −a1PG + ba1PτGτ

Ġ = −a1PG + ψ
G
G(1− G+R

K
)

Ṙ = ψ
R
R(1− G+R

K
)− a2LR

L̇ = Za1PτGτ − a2LR − δL

FAILURE: Phage reproduction much faster than bacterial
growth. G can’t take advantage of removed R.

For phage-delivered lysin to work, need real spatial
structure (plates).
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Individual-based models of plate growth

Phage model

****simulation

 

 

 

5000 
6000 
7000 
8000 
9000 

10000 
11000 
12000 
13000 
14000 

0 1/4 1/3 1/2 1 

A
m

pl
ifi

ca
tio

n 

Toxicity 

2                           
4           
6 

lysin duration 

5000 
6000 
7000 
8000 
9000 

10000 
11000 
12000 
13000 
14000 

0 1/4 1/3 1/2 1 

A
m

pl
ifi

ca
tio

n 

Toxicity 

2                 
4 
6 

lysin duration 

Amplification in number of phage as a function of lysin toxicity and duration for fast (top) and slow (bottom)
phage reproduction; 1.7-1.9X increase. [0 point =⇒ no lysin]
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Individual-based models of plate growth

Plasmid model
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Amplification in number of G. Select for faster toxin diffusion, enhanced production, higher adsorption rate.
Overall amplification 2.8X.
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Amplification in number of G as function of toxicity. Overall amplification 2.7X.
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Amplification in number of G as function of toxin half life. Larger dynamic range with lower initial cell densities
and more R than G. Overall amplification 2.8-4.3X.
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