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e Antibiotic resistance = search for novel methods
to combat bacterial infections

e Directed evolution



=

Lysins have evolved to kill host cell from inside and
not harm future hosts

potential for using lysins to “kill from the outside”
(Fischetti, Nelson)

promising as antimicrobials: only harm bacterial cells;
specific bacterial targets; no bacterial resistance

obstacles to therapeutic use: short half life, etc.



e Mathematical models: explore feasibility of
experimentally evolving better lysins (longer half life,
toxicity, diffusivity, adsorption, ...)

e Goal: Improve killing of pathogen R (e.g., group A
strep) by lysin/toxin

e *Experimental setup: rigged so that “producer” strain
benefits from enhanced killing of competitor R



Two possible delivery systems

e toxin (that kills R) carried on gene in

Bacterial DNA Plasmids

— plasmid in G
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— phage that infects G ° —



e co-culture R + WT G and/or mutant strain(s)
(standing genetic variation)
— select or screen for G’
— 10 incubation cycles involving R + (G and/or
G")
— Selection: after each incubation, collect G-types

(or phage) together and resample to start next
round of competitions with R

— Screening: only keep samples with “enough G”
(fluorescence for sorting)

**¥* simulation



e Some type of spatial structure needed to localize the
benefit; in liquid, G and G’ would both benefit from
improved toxin in G’

— emulsion droplets (< 100 cells, G+R or G'+R)
for mini competitions




Mathematical Models

Emulsion droplets (endpoint analysis, ODEs): mean ¢
Poisson distribution for initializing G-types in droplets —
ratio of G' to G after one incubation cycle is
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Plate growth (spatial agent-based models):
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Ignore details of what goes on in droplets. Focus on
outcome of each incubation:

e Droplets with only G (+R) produce h G during
incubation

e Droplets with only G' (+R) produce i’ G during
incubation

e Assume (for now) ... only these “pure” droplets
Let po = initial frequency of G’ and p; = frequency at the

end of cycle k of G’ among all ‘G-types’ (G’ + G) in the
population. Evolutionary dynamics has a simple form:



for the first cycle, and
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after k cycles. Relevant measure of mutant fitness (W) in
this protocol is simply
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Mean ¢ Poisson distribution for initializing G-types in
droplets = ratio of G’ to G after one incubation cycle is
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Not a problem when pg small. Previous result is a good

approximation.



How many incubation cycles?
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To go from initial frequency of 1077 to detectable levels (0.01 blue; 0.1 red)



Dynamics within droplet for plasmid model
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Dynamics within droplet for phage model
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FAILURE: Phage reproduction much faster than bacterial
growth. G can't take advantage of removed R.

For phage-delivered lysin to work, need real spatial
structure (plates).



Individual-based models of plate growth

Phage model

***¥simulation
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Amplification in number of phage as a function of lysin toxicity and duration for fast (top) and slow (bottom)
phage reproduction; 1.7-1.9X increase. [0 point == no lysin]



Individual-based models of plate growth

Plasmid model
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Amplification in number of G. Select for faster toxin diffusion, enhanced production, higher adsorption rate.
Overall amplification 2.8X.
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Amplification in number of G as function of toxicity. Overall amplification 2.7X.
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Amplification in number of G as function of toxin half life. Larger dynamic range with lower initial cell densities
and more R than G. Overall amplification 2.8-4.3X.
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