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Fitness landscapes

• Genotypes are binary sequences σ = (σ1,σ2, ...,σL) with σi ∈ {0,1}
(presence/absence of mutation).

• Together with the Hamming distance d(σ ,σ ′) = ∑L
i=1 1−δσi,σ ′

i
this defines

the Hamming space H
L
2 which is the L-dimensional hypercube

• A fitness landscape is a real-valued function f (σ) on H
L
2

• Interactions between the fitness effects of different mutations may induce
multiple adaptive peaks:
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Hypercubes



Example: The Aspergillus niger fitness landscape

J.A.G.M. de Visser, S.C. Park, JK, American Naturalist 174, S15 (2009)

• Combinations of 5 individually deleterious marker mutations

• Arrows point towards higher fitness

• For a survey of other examples see J.A.G.M. de Visser, JK, Nat. Rev. Gen. 2014



Evolutionary accessibility

“In a rugged field of this character, selection will easily carry the species to the
nearest peak, but there will be innumerable other peaks that will be higher but
which are separated by valleys...”

S. Wright, 1932

• Accessibility of fitness landscapes can be quantified by the number of local
fitness peaks or the number of fitness-monotonic pathways

⇒ see talk by Éric Brunet

• However, even if uphill pathways exist it is not clear if populations can find
them

• Here we take a dynamic viewpoint and consider populations navigating a
rugged fitness landscape through adaptive walks with local rules

• Such walks also serve as a tool for exploring large-scale fitness data sets
e.g. Kouyos et al., PLoS Genetics 2012



SSWM dynamics

• SSWM = Strong Selection/Weak Mutation Gillespie 1983, Orr 2002

• Weak mutation: Each new mutation goes to fixation or is lost before the
next one arrives

• Strong selection: The fixation probability of a mutation of selective
advantage s is

π(s,N) ≈
1− exp[−2s]

1− exp[−2Ns]
≈ 1− exp[−2s] ≈ 2s

for s > 0 and π = 0 for s ≤ 0

• Under these conditions the population performs an uphill adaptive walk in
sequence space that terminates at a local fitness maximum

• Formally, an adaptive walk is a Markov chain on H
L
2 with absorption at local

maxima



Adaptive walks

• Four flavors of adaptive walks differing in their transition probabilities:

True Adaptive Walk (TAW)
Transition rate is proportional to the fitness difference between the
resident and mutant genotype Gillespie 1983, Orr 2002

Random Adaptive Walk (RAW) Macken & Perelson 1989

All fitter genotypes are chosen with equal probability

Greedy Adaptive Walk (GAW) Orr 2003

The most fit genotype is chosen deterministically

Reluctant Adaptive Walk (RELAW)
The least fit among the fitter genotypes is chosen deterministically

Bussolari et al. 2003

• Of interest is the length ℓ (= mean number of steps) and height f ∗

(= mean achieved fitness) of such walks



Walk length in uncorrelated landscapes

In the uncorrelated House-of-Cards/Mutational Landscape model fitness
values are i.i.d. random variables. The following results refer to walks starting
at a low fitness genotype:

• RAW: ℓ ≈ ln(L)+1.1 for large L Flyvbjerg & Lautrup 1992

• GAW: ℓ → ∑∞
k=1

1
k! = e−1 ≈ 1.71828... Orr 2003

• RELAW: ℓ → L+O(1) É. Brunet, JK, 2015

• TAW length asymptotics depends on the extreme value index κ of the
fitness distribution according to J. Neidhart & JK 2011, Jain 2011

ℓ ≈
1−κ
2−κ

ln(L)+ cκ for κ < 1.

• For relative initial fitness f0 ∈ [0,1] let L → (1− f0)L



Walk height in uncorrelated landscapes
S. Nowak, JK, JSTAT P06014 (2015)
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• For uniform fitness distribution the expected final fitness is of the form
1− f ∗ ≈ β

L with βRAW ≈ 0.6243.., βGAW ≈ 0.4003... and βRELAW = 1



Models of correlated fitness landscapes



Kauffman’s NK-model Kauffman & Weinberger 1989

• Each locus interacts randomly with K ≤ L−1 other loci:

f (σ) =
L

∑
i=1

fi(σi|σi1, ...,σiK)

fi: Uncorrelated RV’s assigned to each of the 2K+1 possible arguments

• K = 0: Non-interacting K = L−1: House-of-Cards

Rough Mount Fuji model Aita et al. 2000; Neidhart et al. 2014

• Smooth (“Mt. Fuji”) landscape perturbed by a random component:

f (σ) = −cd(σ ,σ ∗)+η(σ) c > 0

η : i.i.d. random variables σ ∗: reference sequence

• Landscape roughness is tuned by the ratio c/
√

Var(η)



“Genetic architecture” in Kauffman’s NK-model

• Different schemes for choosing the interaction partners (K = 2,L = 9):

1 Li j random 

adjacent

block/modular

• Which properties of the fitness landscape are sensitive to this choice?



Number of local maxima



Number of maxima in the NK-model

• For the uncorrelated HoC model M ≡ E(nmax) = 2L

L+1 by symmetry
Kauffman & Levine 1987

• Rigorous work on the NK-model with adjacent neighborhoods shows that,
for fixed K, M ∼ (2λK)L for L → ∞ with constants λK ∈ (1

2,1)
Evans & Steinsaltz 2002, Durrett & Limic 2003

• The exact result for the block model M = 2L

(K+2)L/(K+1) is of this form with

λK = (K +2)−
1

K+1 Perelson & Macken 1995

• Known explicit values for λK are remarkably close but not identical to the
block model result, e.g. for K = 1:

0.55463... ≤ λ1 ≤ 0.5769536... < 3−1/2 = 0.57735...

• When the limits L → ∞ and K → ∞ are taken simultaneously with γ = L/K
fixed, rigorous analysis shows that M ∼ 2L

Lγ , which is also true for the block
model. Limic & Pemantle 2004



Number of maxima in the Rough Mount Fuji model
J. Neidhart, I.G. Szendro, JK, Genetics 198, 699 (2014)

• A genotype at distance d from the reference sequence σ ∗ has d neighbors
in the ‘uphill’ direction and L−d neighbors in the ‘downhill’ direction

• The fitness distribution of uphill/downhill neighbors is shifted by ±c with
respect to the fitness distribution of the focal genotype

• Denoting by P(x) = P(η < x) the probability distribution of the random
fitness component and by p(x) = dP

dx the corresponding density, the
probability that a genotype at distance d is a local maximum is therefore

pmax(d) =

∫

dx p(x)P(x− c)dP(x+ c)L−d

and the expected total number of maxima is

M =
L

∑
d=0

(

L
d

)

pmax(d) =
∫

dx p(x)[P(x− c)+P(x+ c)]L



Classification in terms of tail behavior of P(x)

• For distributions with tail heavier than exponential (power law or stretched
exponential) M → 2L

L for L → ∞, which implies that the fitness gradient (c)
is asymptotically irrelevant

• For distributions with an exponential tail M → 2L

cosh(c)L for large L

• For distributions with tails lighter than exponential such as 1 − P(x) ∼
exp[−xβ ] with β > 1 the number of maxima behaves to leading order as

M ∼
2L

L
exp[−βc(lnL)

1− 1
β ]

• For distributions with bounded support on [0,1] and boundary singularity
1−P(x) ∼ (1− x)ν the asymptotic behavior is of the form

M ∼
(2− cν)L

Lν

for c < 1 and M = 1 for c > 1.



Adaptive walks on correlated landscapes



Walk length in the NK landscape

S. Nowak, JK, JSTAT P06014 (2015)
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• For the block model ℓ = L
K+1 ℓHoC(K +1) exactly



Reluctant walks in the NK landscape

S. Nowak, JK, JSTAT P06014 (2015)
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• Reluctant walks are longest for intermediate K....



Reluctant walks in the NK landscape

S. Nowak, JK, JSTAT P06014 (2015)
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• ...and may achieve higher fitness than GAW’s or RAW’s.



Random adaptive walks in the RMF landscape

S.-C. Park, I.G. Szendro, J. Neidhart, JK, Physical Review E 91, 042707 (2015)

• RAW’s starting at antipode (maximal distance L from reference sequence)

• Assume RAW takes only ‘uphill’ steps that decrease d(σ ,σ ∗), and draw
random fitness component from exponential distribution with mean 1

• Then the mean walk length can be computed analytically and displays a
phase transition at c = 1:

ℓ ∝











lnL/(1− c), c < 1

(lnL)2, c = 1,

O(L), c > 1.

• For tails thinner (fatter) than exponential, ℓ ∼ L (ℓ ∼ lnL) for all c > 0

• The same scenario applies to the TAW



Random adaptive walks in the RMF landscape
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• Numerical verification by simulations



Sketch of derivation

• Let Ql(yl,L) denote the probability to take at least l steps and arrive at
fitness −c(L− l)+ yl. This satisfies the recursion relation

Ql+1(y,L) = p(y)
∫ y+c

−∞
dxQl(y,L)

1−P(x− c)L−l

1−P(x− c)

which is explicitly solvable only for c = 0 Flyvbjerg & Lautrup 1992

• Therefore consider Ql(y) ≡ limL→∞ Ql(y,L) and estimate the stopping
condition for the walk from P(zl − c)L−l ≈ 1/e where zl is the mean of Ql(y)

• An explicit solution for Ql(y) can be found for p(x) = e−x, which reads

Ql(y) = −
d
dy

[

l

∑
n=0

y
(y+ cn)n−1

n!
e−y−cn

]

• Other distributions can be treated approximately through a self-consistent
equation for zl



Greedy adaptive walks in the RMF landscape

S.-C. Park, J. Neidhart, JK, in preparation

• For Gumbel-distributed random fitness components, the length of GAW’s
starting from the antipode of the reference sequence satisfies

Hl ≡ P(length ≥ l) =
l

∏
k=1

1− e−c

1− e−kc
=

1
[l]e−c!

where [n]q = 1−qn

1−q is the q-number and L → ∞ is implied.

• Correspondingly the mean walk length is given by the q-exponential

ℓ = expe−c(1)−1 → e−1 for c → 0

• For distributions with non-exponential tails the walk length is either
ℓ = ℓ(c = 0) = e−1 or ℓ = L asymptotically.



Mean GAW length (Gumbel case)
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GAW’s with general starting point

• If the walk starts at distance d = αL from the reference sequence with
α < 1, both uphill and downhill steps have to be taken into account

• Asymptotically for large L the distribution of walk lengths is then given by

Hl = ∑
{τi=±1}

l

∏
k=1

sτk

1+∑k−1
m=1 exp[−c∑m

j=1 τ j]

where τ1,τ2, ...,τl = ±1 encodes the sequence of uphill and downhill steps
and

s1 =
αec

αec +(1−α)e−c
, s−1 = 1− s1

• For α < 1
2 the walk length is non-monotonic in c, i.e. greedy walks on the

correlated landscapes can be shorter than on the uncorrelated landscape

• This is related to a similar non-monotonicity in the density of maxima near
the reference sequence



Minimum in walk length
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• α = 2−10....2−40, location of minimum varies as cmin ∼−1
3 ln(2α)



Summary

• The fitness landscape over the space of genotypes is a key concept in
evolutionary biology that has only recently become accessible to empirical
exploration

• Mathematical analysis of probabilistic models can help to extrapolate from
the low dimensionality of existing empirical data sets to genome-wide
scales

• Different walk types serve as caricatures of adaptive regimes and have
strikingly different properties

• Complementary view of evolutionary accessibility is provided by the
analysis of fitness-monotonic pathways (Éric Brunet)


