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Do it yourself lookdown constructions: It is safe to build them at
home

1. Modeling with generators

2. Sums of generators are generators

3. Hidden variables

4. Modeling deaths

5. Modeling births

6. Event based models

Etheridge and Kurtz (2015)
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How to specify a Markov model

An E-valued process is Markov wrt {Ft} if

E[f(X(t+ s))|Ft] = E[f(X(t+ s))|X(t)], f ∈ B(E)

Ordinary differential equations: Ẋ = F (X)

X(t+ ∆t) ≈ X(t) + F (X(t))∆t

Stochastic differential equations:

X(t+ ∆t) ≈ X(t) + F (X(t))∆t+G(X(t))∆W
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Infinitesimal specification

Deterministic (ode) case:

f(X(t+ ∆t)) ≈ f(X(t)) + F (X(t)) · ∇f(X(t))∆t

f(X(t+ r))− f(X(t)) =
∑

f(X(ti+1))− f(X(ti))

≈
∑

F (X(ti) · ∇f(X(ti))(ti+1 − ti)

which suggests

f(X(t+ r))− f(X(t))−
∫ t+r

t

F (X(s)) · ∇f(X(s))ds = 0
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Martingale properties

“Infinitesimal changes of distribution”

E[f(X(t+ ∆t))|Ft] ≈ f(X(t)) + Af(X(t))∆t

or
E[f(X(t+ ∆t))− f(X(t))− Af(X(t))∆t|Ft] ≈ 0

which suggests

E[f(X(t+ r))− f(X(t))−
∫ t+r

t

Af(X(s))ds|Ft] = 0

f(X(t))− f(X(0))−
∫ t

0

Af(X(s))ds a martingale
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Examples of generators: Jump processes

Poisson process (E = {0, 1, 2 . . .}, D(A) = B(E))

Af(k) = λ(f(k + 1)− f(k))

Markov chain (E discrete,D(A) = {f ∈ B(E) : f has finite support})

Af(k) =
∑
l

qk,l(f(l)− f(k))

Pure jump process (E arbitrary)

Af(x) = λ(x)

∫
E

(f(y)− f(x))µ(x, dy)

Lévy process

Af(x) =

∫
Rd

(f(x+ z)− f(x)− 1{|z|≤1}z · ∇f(x))ν(dx)
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Examples of generators: Continuous processes

Standard Brownian motion (E = Rd)

Af =
1

2
∆f, D(A) = C2

c (Rd)

Diffusion process (E = Rd, D(A) = C2
c (Rd))

Af(x) =
1

2

∑
i,j

aij(x)
∂2

∂xi∂xj
f(x) +

∑
i

bi(x)
∂

∂xi
f(x)

Reflecting diffusion (E ⊂ Rd)

D(A) = {f ∈ C2
c (E) : η(x) · ∇f(x) = 0, x ∈ ∂E}

Af(x) =
1

2

∑
i,j

aij(x)
∂2

∂xi∂xj
f(x) +

∑
i

bi(x)
∂

∂xi
f(x)
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The martingale problem for A
X is a solution for the martingale problem for (A, ν0), ν0 ∈ P(E), if
PX(0)−1 = ν0 and

f(X(t))− f(X(0))−
∫ t

0

Af(X(s))ds

is an {FX
t }-martingale for all f ∈ D(A).

Theorem 1 If any two solutions of the martingale problem forA satisfying
PX1(0)−1 = PX2(0)−1 also satisfy PX1(t)

−1 = PX2(t)
−1 for all t ≥ 0,

then the f.d.d. of a solution X are uniquely determined by PX(0)−1

If X is a solution of the MGP for A and Ya(t) = X(a + t), then Ya is a
solution of the MGP for A.

Theorem 2 If the conclusion of the above theorem holds, then any solution
of the martingale problem for A is a Markov process.
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Sums of generators are generators
Suppose A and B are generators Let Xn be a stochastic process such
that for k = 0, 2, 4, . . . Xn evolves as if it has generator A on the
time interval [kn ,

k+1
n ) and as if it has generator B on the time inter-

val [k+1
n , k+2

n ). Then for f ∈ D̂ = D(A) ∩ D(B),

f(Xn(t))−f(Xn(0))−
∫ t

0

(
1 + (−1)[ns]

n
Af(Xn(s)) +

1− (−1)[ns]

n
Bf(Xn(s))

)
ds

is a martingale. Letting n → ∞, at least along a subsequence Xn

should converge to a process such that

f(X(t))− f(X(0))−
∫ t

0

1

2
(A+B)f(X(s))ds

is a martingale for f ∈ D̂. (True, for example, if E is compact, A,B ⊂
C(E)× C(E), and D̂ is dense in C(E).)
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Hidden variables
A model X corresponding to a generator A.

“Hidden variables” U influence X but are not observable.

E[f(U(t))|FX
t ] = E[f(U(t))] = αf =

∫
f(u)α(du)

(X,U) corresponds to A

f(X(t), U(t))− f(X(0), U(0))−
∫ t

0

Af(X(s), U(s))ds

is a {FX,U
t }-martingale, so

E[f(X(t), U(t))|FX
t ]− E[f(X(0), U(0))|FX

0 ]−
∫ t

0

E[Af(X(s), U(s))|FX
s ]ds

= αf(X(t))− αf(X(0))−
∫ t

0

αAf(X(s))ds

should be a {FX
t }-martingale, that is, Aαf = αAf .
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Primary goal: High density limits

We want an infinite population limit in which we can identify in-
dividuals and their relationships to other individuals, for example,
their genealogies.

General principle: Keep U and α as simple as possible.
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Population models
Modeling finite or infinite populations in which each individual has
a location and/or type in E.

Individuals may move and/or mutate (change type).

Must specify how individuals die and how they give birth, and change
type.

Assign each individual to a “level” so that observations of X up to
time t give no information about the levels at time t.

Assign levels so that in the pre-limiting model, the levels are iid uni-
form on [0, λ].
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Elements in the domain
State of the process η =

∑
δ(xi,ui), a counting measure on E × [0, λ],

and η =
∑
δxi.

f(η) =
∏

(x,u)∈η

g(x, u)

0 ≤ g ≤ 1 plus regularity as needed

g(x) = λ−1

∫ λ

0

g(x, u)du

so
E[f(ηt)|Fη

t ] =
∏
x∈ηt

g(x)
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High density limits
A high-density limit corresponds to λ→∞while λ−1ηλt (C)→ Ξ(t, C).

If g(x, u) = 1 for u ≥ ug and, perhaps, x /∈ Kg, then assuming ηλt ⇒ ηt
in the vague, or perhaps weak, topology, then∏

(x,u)∈ηλt

g(x, u)→
∏

(x,u)∈ηt

g(x, u).

Since the original levels were iid uniform [0, λ], the limiting ηt must
be conditionally Poisson with Cox measure Ξ(t). In particular

E[
∏

(x,u)∈ηt

g(x, u)|Ξ(t)] = e−
∫
E

∫∞
0

(1−g(x,u))duΞ(t,dx).

In practice, we want to condition on FΞ
t .
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Modeling deaths
For each (x, u) ∈ η, multiply the u by ρ > 1 and kill off all particles
with ρu ≥ λ.

If the u are independent and uniformly distributed on [0, λ] and in-
dependent of the x, and ρu < λ, then u′ = ρu is uniformly distributed
on [0, λ] and independent of the x.

P{ρu ≥ λ} = P{u > λρ−1} = 1− ρ−1 =
ρ− 1

ρ

Let 0 ≤ g(x, u) ≤ 1 and g(x, u) = 1 for u ≥ λ. Set g(x) = λ−1
∫ λ

0 g(x, u)du.
Then

λ−1

∫ λ

0

g(x, ρu)du = λ−1ρ−1

∫ ρλ

0

g(x, v)dv = ρ−1g(x) + ρ−1(ρ− 1)

E[
∏

(x,u)∈ηt−

g(x, ρ(x)u))|ηt−] =
∏
x∈ηt−

(g(x)
1

ρ(x)
+
ρ(x)− 1

ρ(x)
)
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Thinning

f(η) =
∏

(x,u)∈η g(x, u)

Athf(η) = β(η)

∫
U
(
∏

(x,u)∈η

g(x, uρ(x, z))− f(η))µ(η, dz),

for some ρ(x, z) ≥ 1. Let p(x, z) = ρ(x,z)−1
ρ(x,z) . Then

αAthf(η) = β(η)

∫
U
(
∏
x∈η

((1− p(x, z))g(x) + p(x, z))− αf(η))µ(η, dz),

When a thinning event of type z occurs individuals are indepen-
dently eliminated with (type-dependent) probability p(x, z).
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High density limit

For the high density limit, assume

λ−1η → Ξ implies βλ(η)→ β(Ξ).

Then

Athf(η) = β(Ξ)

∫
U
(
∏

(x,u)∈η

g(x, uρ(x, z))− f(η))µ(Ξ, dz),

and the projected operator becomes

αAthf(Ξ) = β(Ξ)

∫
U
(e−

∫
E

1
ρ(x,z)h(x)Ξ(dx) − αf(Ξ))µ(Ξ, dz),

where h(x) =
∫∞

0 (1− g(x, u))du and αf(Ξ) = e−
∫
E
h(x)Ξ(dx).
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Pure death generators

For d0(x) ≥ 0,

Apdf(η) =
∑

(x,u)∈η

f(η)d0(x)u
∂ug(x, u)

g(x, u)
.

which says the levels satisfy u̇ = d0(x)u

αApdf(η) = αf(η)
∑
x∈η

1

g(x)
λ−1

∫ λ

0

d0(x)u∂ug(x, u)du .

Since

λ−1

∫ λ

0

u∂ug(x, u)du = λ−1u(g(x, u)− 1)
∣∣λ
0
−λ−1

∫ λ

0

(g(x, u)−1)du = 1−g(x),

αApdf(η) = αf(η)
∑
x∈η

d0(x)(
1

g(x)
− 1), (1)

which is the generator of a pure death process.
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Modeling births

Acbf(η) = f(η)
∑

(x,u)∈η

r(x)
[2

λ

∫ λ

u

(g(x, v)− 1)dv +Gλ
1(u)

∂ug(x, u)

g(x, u)

]
= f(η)

∑
(x,u)∈η

[2r(x)(λ− u)

λ

1

λ− u

∫ λ

u

(g(x, v)− 1)dv

+r(x)Gλ
1(u)

∂ug(x, u)

g(x, u)

]
For each x ∈ η, write ηx for η\x. Then

αAcbf(η) =
∑
x∈η

r(x)f(ηx)
[1

λ

∫ λ

0

g(x, u)
2

λ

∫ λ

u

(g(x, v)− 1)dvdu

+
1

λ

∫ λ

0

Gλ
1(u)∂ug(x, u)du

]
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Calculations

2

λ2

∫ λ

0

g(x, u)

∫ λ

u

g(x, v)dvdu =

(
1

λ

∫ λ

0

g(x, u)du

)2

.

1

λ

∫ λ

0

(
Gλ

1(u)∂ug(x, u)− 2(λ− u)

λ
g(x, u)

)
du. (2)

Take
Gλ

1(u) = λ−1(λ− u)2 − (λ− u) = λ−1u2 − u

Then integrating by parts, (2) reduces to − 1
λ

∫ λ
0 g(x, u)du and

αAcbf(η) = αf(η)
∑
x∈η

r(x)(g(x)− 1).
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A branching process Kurtz and Rodrigues (2011)

Af(η) = f(η)
∑

(x,u)∈η

r(x)
[2

λ

∫ λ

u

(g(x, v)− 1)dv +Gλ
1(u)

∂ug(x, u)

g(x, u)

]
+f(η)

∑
(x,u)

f(η)d0(x)u
∂ug(x, u)

g(x, u)

= f(η)
∑

(x,u)∈η

[2r(x)

λ

∫ λ

u

(g(x, v)− 1)dv

+(r(x)Gλ
1(u) + d0(x)u)

∂ug(x, u)

g(x, u)

]
and

αAf(η) = αf(η)
∑
x∈η

(r(x) [g(x)− 1] + d0(x)(
1

g(x)
− 1))
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Critical levels

Suppose r and d0 are constants. Then

u̇ = λ−1ru2 + (d0 − r)u

If d0 < r, then uc = λ(r−d0)
r

If the lowest initial level is below uc, then the population lives for-
ever. If the lowest initial level is above uc, then the population dies
out.
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Discrete birth events

The event is determined by

• The number of new particles k.

• The choice of parent with relative chance r(x).

• The placement of the offspring determined by a transition func-
tion q(x, dy) from E to Ek.
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Mechanism for lookdown construction
The race to become parent

k points are chosen independently and uniformly on [0, λ]. These
will be the levels of the offspring of the event. v∗ denotes the lowest
of the chosen levels.

For (x, u) ∈ η with u > v∗ and r(x) > 0, let τx be defined by

e−r(x)τx =
λ− u
λ− v∗

.

λ−u
λ−v∗ is uniform [0, 1], so τx is exponential with parameter r(x).

For (x, u) ∈ η satisfying u < v∗ and r(x) > 0, let τx be defined by

e−r(x)τx =
u

v∗

Again, τx is exponentially distributed with parameter r(x).
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Probability of being the parent

The τx are independent. Let (x∗, u∗) be the point in η with
τx∗ = min(x,u)∈η τx. Then

P{x∗ = x′} =
r(x′)∫

r(x)η(dx)
, x′ ∈ η.

The new configuration

Assign types (y1, . . . , yk) with joint distribution q(x∗, dy) uniformly at
random to the k new levels and transforming the old levels so that

γk,r,qη = {(x, λ− (λ− u)er(x)τx∗) : (x, u) ∈ η, τx > τx∗, u > v∗}
∪{(x, uer(x)τx∗) : (x, u) ∈ η, τx > τ ∗x , u < v∗}

∪{(yi, vi), i = 1, . . . , k}.

Notice that the parent has been removed from the population and
that if r(x) = 0, the point (x, u) is unchanged.
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Uniformity of levels

For (x, u) ∈ η, (x, u) 6= (x∗, u∗), let hλr (x, u, η, v∗) denote the new level,
that is,

hλr (x, u, η, v
∗) = 1{u>v∗}(λ− (λ− u)er(x)τx∗) + 1{u<v∗}ue

r(x)τx∗

= 1{u>v∗}(ue
r(x)τx∗ − λ(er(x)τx∗ − 1)) + 1{u<v∗}ue

r(x)τx∗ ,

and
f(γk,r,qη) =

∏
(x,u)∈η,u6=u∗

g(x, hλr (x, u, η, v
∗))
∏

g(yi, vi).

Lemma 3 Conditional on {(yi, vi)} and η, {hλr (x, u, η, v∗) : (x, u) ∈ η, u 6=
u∗} are independent and uniformly distributed on [0, λ].
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Limit as λ goes to∞

Suppose λ→∞, λ−1η → Ξ, and λ−1k → ζ . Then, in the limit:

The new levels in a birth event form a Poisson process with intensity
ζ .

v∗ will be exponentially distributed with parameter ζ .

u∗ > v∗ and τλx∗ → 0.

For u > u∗, hλr (x, u, η, v∗)→ u− (u∗ − v∗) r(x)
r(x∗) .
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Event based models cf. Berestycki, Etheridge, and Hutzenthaler (2009)

Etheridge (2000); Barton, Etheridge, and Véber (2010); Véber and Wakolbinger (2015)

A discrete event birth generator will be of the form

Adbf(η) =

∫
U
(Hz(g, η)− f(η))µ(dz),

where

Hz(g, η) = λ−k(z)

∫
[0,λ]k(z)

∏
(x,u)∈η,u6=u∗(η,v∗)

g(x, hλr(·,z)(x, u, η, v
∗))

×
k(z)∏
i=1

∫
E

g(yi, vi)q(x
∗(η, v∗), z, dyi)dv1 . . . dvk(z).

µmay be σ-finite and has the interpretation that there exists a Poisson
random measure ξ with mean measure µ × ` on U × [0,∞), and if
(z, t) ∈ ξ, then at time t,

E[f(ηt)|ηt−] = Hz(g, ηt−).
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Birth event followed by thinning

Adb,thf(η) =

∫
U
(Hz(g, η)− f(η))µ(dz),

where

Hz(g, η) = λ−k(z)

∫
[0,λ]k(z)

∏
(x,u)∈η,u6=u∗(η,v∗)

g(x, ρ(x, z)hλr(·,z)(x, u, η, v
∗))

×
∫ k(z)∏

i=1

∫
E

g(yi, ρ(yi, z)vi)q(x
∗(η, v∗), z, dyi)dv1 . . . dvk(z).

Note that (x∗, u∗) is a function of η and v∗, and if and event z occurs
at time t, then

ηt =
∑

(x,u)∈ηt−,u6=u∗
1{ρ(x,z)hλr(·,z)(x,u,ηt−,v

∗)<λ}δ(x,ρ(x,z)hλr(·,z)(x,u,ηt−,v
∗))

+

k(z)∑
i=1

1{ρ(yi,z)vi<λ}δ(yi,ρ(yi,z)vi)
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Projected model

αAdb,thf(η) =

∫
U

∑
x∗∈η

r(x∗, z)∫
r(x, z)η(dx)

(Hz(g, η, x
∗)− αf(η))µ(dz)

where, setting p(x, z) = ρ(x,z)−1
ρ(x,z) and ηx∗ = η − δx∗,

Hz(g, η, x
∗) = λ−k(z)

∫
[0,λ]k(z)

∏
x∈ηx∗

((1− p(x, z))g(x) + p(x, z))

×
k(z)∏
i=1

∫
E

((1− p(yi, z))g(yi) + p(yi, z))q(x
∗, z, dyi).
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High density limit

µλ(dz) governs the appearance of events of the form

(k(z), r(x, z), q(x, z, dy), ρ(x, z))

Assume∫
U
h(
k(z)

λ
)ϕ(z)µ(dz)→

∫
U

∫ ∞
0

h(ζ)µζ(dζ, z)ϕ(z)µ(dz).
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Hz(g, η) = λ−k(z)

∫
[0,λ]k(z)

∏
(x,u)∈η,u6=u∗(η,v∗)

g(x, ρ(x, z)hλr(·,z)(x, u, η, v
∗))

×
∫ k(z)∏

i=1

∫
E

g(yi, ρ(yi, z)vi)q(x
∗, z, dyi)dv1 . . . dvk(z)

→
∫ ∞

0

∫ ∞
0

[
ζe−ζv

∗ ∏
(x,u)∈η,u6=u∗(η,v∗)

g(x, ρ(x, z)(u− 1{u>u∗}(u
∗ − v∗) r(x)

r(x∗)
))

×
∫
E

g(y, ρ(y, z)v∗)q(x∗, z, dy)

× exp{−ζ
∫
E

∫ ∞
v∗

(1− g(y, ρ(y, z)v)q(x∗, z, dy)dv)}
]
dv∗µζ(dζ, z)
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Projected generator

Therefore, αf(Ξ) = e−
∫
E
h(x)Ξ(dx) and setting

p(x∗,Ξ) =
r(x∗, z)∫

E r(x, z)Ξ(dx)

Hz(g,Ξ) =

∫ ∞
0

∫ ∞
0

[
exp{−

∫
E

1

ρ(x, z)
h(x)Ξ(dx)}

×
∫
E

p(x∗,Ξ) exp{−ζ
∫
E

1

ρ(y, z)
h(y)q(x∗, z, dy)dv)}Ξ(dx∗)

]
µζ(dζ, z)

where h(x) =
∫∞

0 (1− g(x, u))du,

αA∞bd,thf(Ξ) =

∫
U
(Hz(g,Ξ)− αf(Ξ))µ(dz)
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Abstract
Do it yourself lookdown constructions: It is safe to build them at
home

“Lookdown” constructions provide representations of population mod-
els in terms of countable systems of particles in which each particle
has a “type” which may record both spatial location and genetic type
and a “level” which incorporates the lookdown structure. At first
glance, the constructions may appear very mysterious and difficult
to apply. The goal of the talk will be to show how to break the popu-
lation model of interest into pieces, to show how a lookdown process
can be defined for each piece, and then to see that the pieces come to-
gether to give a lookdown construction for the full model. The talk
is based on a forthcoming paper with Alison Etheridge


