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Abstract

The goal of this paper is to study the lookdown model with selection in the case
of a population containing two types of individuals, with a reproduction model which
is dual to the Λ-coalescent. In particular we formulate the infinite population “Λ-
lookdown model with selection”. When the measure Λ gives no mass to 0, we show
that the proportion of one of the two types converges, as the population size N tends to
infinity, towards the solution of a stochastic differential equation driven by a Poisson
point process. We show that one of the two types fixates in finite time if and only
if the Λ-coalescent comes down from infinity. We also consider the general case of a
combination of the Kingman and the Λ-lookdown model.

Subject classification 60G09, 60H10, 92D25.

Keywords Look-down with selection, Lambda coalescent, Fixation and non fixa-
tion.

1 Introduction

In this paper we consider the lookdown (which is in fact usually called the “modified
lookdown”) model with selection when we replace the usual reproduction model by a
population model dual to the Λ-coalescent. We first recall the models from [15] and [9],
and then we will describe the variant which will be the subject of the present paper.

Pitman [15] and Sagitov [16] have pointed at an important class of exchangeable
coalescents whose laws can be characterized by an arbitrary finite measure Λ on [0, 1].
Specifically, a Λ-coalescent is a Markov process (Πt, t ≥ 0) on P∞ (the set of partition
of N) started from the partition 0∞ := {1, 2, . . . } and such that, for each integer

n ≥ 2, its restriction (Π
[n]
t , t ≥ 0) to Pn (the set of the partition of {1, 2, . . . , n}) is a

continuous time Markov chain that evolves by coalescence events, and whose evolution
can be described as follows.
Consider the rates

λk,` =

∫ 1

0
p`−2(1− p)k−`Λ(dp), 2 ≤ ` ≤ k. (1.1)
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Starting from a partition in Pn with k non-empty blocks, for each ` = 2, . . . , k, every
possible merging of ` blocks (the other k−` blocks remaining unchanged) occurs at rate
λk,`, and no other transition is possible. This description of the restricted processes
Πn determines the law of the Λ-coalescent Π.
Note that if Λ({0}) = Λ([0, 1]) > 0, then only pairwise merging occur, and the cor-
responding Λ-coalescent is just a time rescaling (by Λ(0)) of the Kingman coalescent.
When Λ({0}) = 0 which we will assume except in the very last section of this paper,
a realization of the Λ-coalescent can be constructed (as in [15]) using a Poisson point
process

m =
∞∑
i=1

δti,pi (1.2)

on R+×(0, 1] with intensity measure dt⊗ν(dp) where ν(dp) = p−2Λ(dp). The measure
ν(dp) may have infinite total mass. Each atom (t, p) of p influences the evolution as
follows :

• for each block of Π(t−) run an independent Bernoulli (p) random variable;

• all the blocks for which the Bernoulli outcome equals to 1 merge immediately

into one single block, while all the other blocks remain unchanged.

In order to obtain a construction for a general measure Λ, one can superimpose onto
the Λ-coalescent independent pairwise merges at rate Λ({0}).

The lookdown construction was first introduced by Donnely and Kurtz in 1996 [9].
Their goal was to give a construction of the Fleming-Viot superprocess that provides
an explicit description of the genealogy of the individuals in a population. Donnelly
and Kurtz subsequently modified their construction in [10] to include more general
measure-valued processes. Those authors extended their construction to the selective
and recombination case [11].

We are going to present our model which we call Λ-lookdown model with selection.
An important feature of our model is that we will describe it for a population of infinite
size, thus retaining the great power of the lookdown cosntruction. As far as we know,
this has not yet been done in the case of models with selection except in our previous
publication [3], where we considered a model dual to Kingman’s coalescent.

We consider the case of two alleles b and B, where B has a selective advantage over
b. This selective advantage is modelled by a death rate α for the type b individuals.
We will consider the proportion of b individuals. The type b individuals are coded by 1,
and the type B individuals by 0. We assume that the individuals are placed at time 0
on levels 1, 2, . . . , each one being, independently from the others, 1 with probability x,
0 with probability 1−x, for some 0 < x < 1. For each i ≥ 1 and t ≥ 0, let ηt(i) ∈ {0, 1}
denote the type of the individual sitting on level i at time t. The evolution of (ηt(i))i≥1
is governed by the two following mechanisms.

1. Births Each atom (t, p) of the Poisson point process m corresponds to a birth
event. To each (t, p) ∈ m, we associate a sequence of i.i.d Bernoulli random
variables (Zi, i ≥ 1) with parameter p. Let

It,p = {i ≥ 1 : Zi = 1}.
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and
`t,p = inf{i ∈ It,p : i > min It,p}

At time t, those levels with Zi=1 and i ≥ `t,p modify their label to ηt−(min It,p).
In other words, each level in It,p immediately adopts the type of the smallest level
participating in this birth event. For the remaining levels reassign the types so
that their relative order immediately prior to this birth event is preserved. More
precisely

ηt(i) =


ηt−(i), if i < `t,p

ηt−(min It,p), if i ∈ It,p \ {min It,p}
ηt−(i− (#{It,p ∩ [1, . . . , i]} − 1)), otherwise

We refer to the set It,p as a multi-arrow at time t, originating from min It,p,
and with tips at all other points of It,p. This procedure is usually referred to
as the modified lookdown construction of Donnelly and Kurtz. In the original
construction, the types of the levels in the complement of It,p remained unchanged
at time t, hence the types ηt−(i), for i ∈ It,p \ {min It,p} got erased from the
population at time t.

2. Deaths Any type 1 individual dies at rate α, his vacant level being occupied by his
right neighbor, who himself is replaced by his right neighbor, etc. In other words,
independently of the above arrows, crosses are placed on all levels according to
mutually independent rate α Poisson processes. Suppose there is a cross at level
i at time t. If ηt−(i) = 0, nothing happens. If ηt−(i) = 1, then

ηt(k) =

{
ηt−(k), if k < i;

ηt−(k + 1), if k ≥ i.

We refer the reader to Figure 1 for a pictural representation of our model. Note that
the type of the newborn individuals are found by “looking down”, while the type of
the individual who replaces a dead is found by looking up. So maybe our model could
be called “look-down, look-up”.

Since we have modelled selection by death events, the evolution of the N first
individuals ηt(1), . . . , ηt(N) depends upon the next ones, and XN

t = N−1(ηt(1) +
. . . ηt(N)) is not a Markov process. We will show however that for each t > 0 the
collection of r.v.’s {ηt(k), k ≥ 1} is well defined (which is not obvious in our setup)
and constitutes an exchangeable sequence of {0, 1}–valued random variables. We can
then apply de Finetti’s theorem, and prove that XN

t → Xt a.s for any fixed t ≥ 0,
and in probability locally uniformly in t, where Xt is a [0, 1]–valued Markov process,
solution of the stochastic differential equation

Xt = x− α
∫ t

0
Xs(1−Xs)ds+

∫
[0,t]×]0,1[2

p(1u≤Xs− −Xs−)M̄(ds, du, dp), (1.3)

where M̄(ds, du, dp) = M(ds, du, dp)− p−2dsduΛ(dp), and M is a Poisson point mea-
sure on R+×]0, 1[×]0, 1] with intensity dsdup−2Λ(dp). Xt represents the proportion of
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Figure 1: The graphical representation of the Λ-lookdown model with selection of size N = 9.
Solid lines represent type B individuals, while dotted lines represent type b individuals.

type b individuals at time t in the infinite size population. Note that uniqueness of a
solution to (1.3) is proved in [8].

The paper is organized as follows. We both construct our process, and establish
the crucial exchangeability property satisfied by the Λ-lookdown model with selection
in section 2. In section 3 we establish the convergence of XN to the solution of (1.3).
In section 4 we show that one of the two types fixates in finite time if and only if the
Λ-coalescent comes down from infinity. Moreover, in the case of no fixation, we show
that Xt → X∞ ∈ {0, 1} as t→∞, and give both a condition ensuring that X∞ = 0 a.s
and a condition ensuring that P(X∞ = 1) > 0. Finally, we extend our results to the
case Λ({0}) > 0 in the last section 5.

In this paper, we use N to denote the set of positive integers {1, 2, . . .}, and [n] to
denote the set {1, . . . , n}. We suppose that the measure Λ fulfills the condition

0 < Λ((0, 1)) <∞, Λ({1}) = 0, (1.4)

and in all the paper except section 5, we assume that Λ({0}) = 0 .

2 The lookdown process, exchangeability

2.1 Some results for general Λ

Throughout the paper, the notation

µr :=

∫
[0,1]

prΛ(dp)
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is used for the rth moment of the finite measure Λ on [0, 1] for arbitrary real r. Note
that µr is a decreasing function of r with ∞ > µ0 ≥ µr > 0 for r ≥ 0, while µr
may be either finite or infinite for r < 0. For r = 0, 1, · · · observe from (1.1) that
µr = λr+2,r+2 is the rate at which Πn jumps to its absorbing state {[n]} from any
state with r + 2 blocks. Let X denote a random variable with distribution µ−10 Λ,
defined on some background probability space (Ω,F ,P) with expectation operator E,
so E(Xr) = µr/µ0. From (1.1), the transition rates of the Λ-coalescent are

λk,` = µ0E(X`−2(1−X)k−`) for all 2 ≤ ` ≤ k.

For any partition with a finite number n ≥ 2 of blocks, the total rate of transitions
of all kinds in a Λ-coalescent equals

λn : =
n∑
`=2

(
n

`

)
λn,` =

∫ 1

0

1− (1− p)n − np(1− p)n−1

p2
Λ(dp)

= µ0E

[
1− (1−X)n − nX(1−X)n−1

X2

]
.

By monotone convergence,

λn ↑ µ−2 =

∫
[0,1]

p−2Λ(dp) as n ↑ ∞.

2.2 Construction of our process

In this section, we will construct the process {ηt(i), i ≥ 1, t ≥ 0} corresponding to a
given initial condition (η0(i), i ≥ 1) defined in the Introduction.

Recall the Poisson point process m defined in (1.2). For each n ≥ 1 and t ≥ 0 , let

I(n, t) = {k ≥ 1 : tk ∈ [0, t] and #{Itk,pk ∩ [n]} ≥ 2}.

We have

Lemma 2.1. For each n ≥ 1 and t ≥ 0,

#I(n, t) <∞ a.s

Proof : Each atom (t, p) of m affects the n first individuals with probability

1− (1− p)n − np(1− p)n−1 ≤
(
n

2

)
p2.

Consequently

E(#I(n, t)) ≤
(
n

2

)
t

∫ 1

0
Λ(dp) <∞.

The result follows. �
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2.2.1 Λ-lookdown model without selection

For each N ≥ 1, one can define the vector ξNt = (ξNt (1), . . . , ξNt (N)), t ≥ 0 with values
in {0, 1}N , by

1. ξN0 (i) := η0(i) for all i ≥ 1.

2. At any birth event (t, p) ∈ m and such that {It,p ∩ [N ]} ≥ 2, for each i ∈ [N ],
ξNt (i) evolves as follows

ξNt (i) =


ξNt−(i), if i < `t,p

ξNt−(min It,p), if i ∈ It,p \ {min It,p}
ξNt−(i− (#{It,p ∩ [1, . . . , i]} − 1)), otherwise.

Using the above lemma, we see that the process ξNt has finitely many jump on [0, t]
for all t > 0, hence its evolution is well defined. From this definition, one can easily
deduce that, the evolution of the type at level i depends only upon the types at levels
up to i. Consequently, if 1 ≤ N < M , the restriction of ξM to the first N levels yields
ξN , in other words :

{ξMt (1), . . . , ξMt (N), t ≥ 0} ≡ {ξNt (1), . . . , ξNt (N), t ≥ 0}.

Hence, the process η = ξ∞ is easily defined by a projective limit argument as a {0, 1}∞-
valued process.

2.2.2 Λ-lookdown model with selection

This section is devoted to the construction of the infinite population lookdown model
with selection.

For each M ≥ 1, we consider the process (ηMt (i), i ≥ 1, t ≥ 0) obtained by applying
all the arrows between 1 ≤ i < j < ∞, and only the crosses on levels 1 to M . Using
the fact that we have a finite number of crosses on any finite time interval, it is not
hard to see that the process (ηMt , t ≥ 0) is well defined by applying the model without
selection between two consecutive crosses, and applying the recipe described in the
Introduction at a death time. More generally, our model is well defined if we suppress
all the crosses above a curve which is bounded on any time interval [0, T ]. Note also
that, if we remove or modify the arrows and or the crosses above the evolution curve
of a type B individual, this does not affect her evolution as well as that of those sitting
below her.

At any time t ≥ 0, let Kt denote the lowest level occupied by a B individual. Of
course, if K0 = 1,Kt = 1, for all t ≥ 0. If for any T , sup0≤t≤T Kt < ∞ a.s, then the
process {Kt, t ≥ 0} is well defined by taking into account only those crosses below the
curve Kt, and evolves as follows. When in state n > 1, Kt jumps to

1. n+ k at rate
(
n+k−1
k+1

)
λn+k,k+1, k ≥ 1;

2. n− 1 at rate α(n− 1), α > 0.
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In other words, the infinitesimal generator of the Markov process {Kt, t ≥ 0} is given
by:

Lg(n) =

∞∑
k=1

(
n+ k − 1

k + 1

)
λn+k−1,k+1[g(n+k)−g(n)]+α(n−1)[g(n−1)−g(n)]. (2.1)

Now, we are going to show that the process {ηt(i), i ≥ 1, t ≥ 0} is well defined. For
this, we study two cases.

Case 1: Kt →∞, t→∞.
For each N ≥ 1, t ≥ 0, we define

KN
t = the level of the N− th individual of type B at time t.

and
TN∞ = inf{t ≥ 0 : KN

t =∞}.

We have T 1
∞ ≥ T 2

∞ ≥ · · · > 0. For each N ≥ 1, we define

HN = {(s, k); k ≤ KN
s }.

Consider first the event
A = {TN∞ =∞ , ∀ N ≥ 1}1.

Recall the Poisson point measure m defined in (1.2). Now, for each N ≥ 1, we define
the process(ηNt (i), i ≥ 1, t ≥ 0), with values in {0, 1}∞, by

1. ηN0 (i) := η0(i) for all i ≥ 1.

2. At any birth event (t, p) ∈ m, ηNt evolves as follows

ηNt (i) =


ηNt−(i), if i < `t,p

ηNt−(min It,p), if i ∈ It,p \ {min It,p}
ηNt−(i− (#{It,p ∩ [1, . . . , i]} − 1)), otherwise,

3. Suppose there is a cross on level j at time s. If (s, j) /∈ HN or (s, j) ∈ HN and
ηs−(j) = 0, nothing happens. If (s, j) ∈ HN and ηs−(j) = 1, then

ηNs (i) =

{
ηNs−(i), if i < j;

ηNs−(i+ 1), if i ≥ j.

In other words, the process {ηNt (i), i ≥ 1, t ≥ 0} is obtained by applying all the arrows
between 1 ≤ i < j < ∞, and only the crosses on levels 1 to KN

t . On the event A, we
have a finite number of crosses on any finite time interval, and (ηNt (i), i ≥ 1, t ≥ 0) is
constructed as explained above. Now, let

H = ∪NHN .
1We shall see below that P(A) = 1 if the Λ-coalescent does not come down from infinity and P(A) = 0

otherwise.
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By a projective limit argument, we can easily deduce that the process {ηt(i), i ≥ 1, t ≥
0} is well defined on the set H. Our model is defined on the event A.

Now we consider the event Ac. We first work on the event {T 1
∞ <∞}. This means

that the allele b fixates in finite time. It implies that for each N ≥ 2, TN∞ is finite as
well. Consider first the process {η1t (i), i ≥ 1, t ≥ 0} defined on H1, i.e we take into
account all the arrows between 1 ≤ i < j ≤ K1

t , and only the crosses on levels 1 to
K1
t . This process is well defined on the time interval [0, T 1

∞). However, on the interval
[T 1
∞,∞), η1t (i) = 1,∀i ≥ 1, hence the process is well defined in H1. We next consider

the process {η2t (i), i ≥ 1, t ≥ 0} defined on H2. This process is well defined on the time
interval [0, T 2

∞). But on the interval [T 2
∞,∞), there is at most one B, whose position is

completely specified from the previous step. Iterating that procedure, and using again
a projective limit argument, we define the full Λ-lookdown model with selection.

If T 1
∞ = +∞, but TN∞ < +∞ for some N , the construction is easily adapted to that

case. In fact some arguments in section 4 below show that this cannot happen with
positive probability.

Case 2 : Kt 9∞, t→∞.
Let

T1 = inf{t ≥ 0 : Kt = 1}.
It is not hard to deduce from the strong Markov property of the process Kt that
{T1 < ∞} a.s on the set {Kt 9 ∞, t → ∞}. In that case the idea is to show that
there exists an increasing mapping ψ : N → N such that a.s. for N large enough,
any individual sitting on level ψ(N) at any time never visits a level below N , with the
convention that if that individual dies, we replace him by his neighbor below. Once
this is true, the evolution of the individuals sitting on levels 1, 2, . . . , N is not affected
by deleting the crosses above level ψ(N). Hence it is well defined. If this holds for all
N large enough, the whole model is well defined.

Let
M = sup

0≤t<T1
Kt.

For each N ≥ M , let ϕ(N) = NeαSN (NeαSN + 1) + K0, where SN is defined below.
We want to show that an individual sitting on level ϕ(N) +N at any time t ≥ 0 never
visits a level below N . In order to prove this, we couple our model with the following
one.

On the interval [0, T1], we erase all the arrows pointing to levels above Kt, and
pretend that all individuals above level Kt, 0 ≤ t ≤ T1, are of type b, i.e coded by 1,
and we apply all the crosses above level Kt. This model is clearly well defined since
until T1 there is only one 0, all other sites being occupied by 1’s. We next extend this
model for t > T1 as follows :

For each t ≥ T1, let K̄t denote the lowest level occupied by a b individual. At time
T1, ηT1(1) = 0, ηT1(i) = 1, for all i ≥ 2. At any time t > T1, we shall have ηt(i) = 0 for
i < K̄t, and ηt(i) = 1 for i ≥ K̄t. Again all crosses are kept, and we keep only those
arrows whose tip hits a level j ≤ K̄t.

This model is well defined. For each N ≥ 1, we define by SN the first time where
all the N first individuals of this model are of type B. We have
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Lemma 2.2. If T1 <∞, then for each N ≥ 1,

SN <∞ a.s

Proof : The result follows from T1 <∞ and the fact that the process of arrows from
1 to 2 is a Poisson process with rate Λ((0, 1)).

�

Now, let {ξϕ(N)
t , t ≥ 0} denote the process which describes the position at time t

of the individual sitting on level ϕ(N) at time 0 in the present model.

The individual who sits on level ϕ(N) at time 0 will remain below the level ϕ(N)+N
on the time interval [0, SN ]. If she does not visit any level below N before time SN ,
she will never visit any level below N at any time, and moreover any individual who
visits level ϕ(N) +N before time SN will remain above the individual who was sitting
at level ϕ(N) at time 0 until SN , hence will never visit any level below N .

Since the “true” model has more arrows and less “active crosses” than the present
model, if we show that in the present model a.s. there exists N such that the individual
who starts from level ϕ(N) at time 0 never visits a level below N , we will have that in
the true model a.s. for N large enough the evolution within the box (t, i) ∈ [0,∞) ×
{1, 2, . . . , N} is not altered by removing all the crosses above ϕ(N) +N . A projective
limiting argument allows us then to conclude that the full model is well defined.

The result will follow from the Borel-Cantelli and the next lemma.

Lemma 2.3. If T1 <∞, then for each N ≥M ,

P̂N (∃0 < t ≤ SN such that ξ
ϕ(N)
t ≤ N) ≤ 2

N2
,

where P̂N [.] = P(. | SN )

Proof : It is clear from the definition of ξ
ϕ(N)
t that there exists a death process

(Dt, t ≥ 0), which is independent of (Kt, t ≥ 0) conditionally upon D0 = ϕ(N) −K0,
and such that

ξ
ϕ(N)
t = K̃t +Dt, ∀t ≥ 0,

where

K̃t =

{
Kt, 0 ≤ t ≤ T1;
K̄t − 1, t > T1.

On the other hand, we have

{ inf
0≤t≤SN

ξ
ϕ(N)
t > N} ⊃ { inf

0≤t≤SN
Dt > N} ⊃ {DSN > N}.

All we need to prove is that

P̂N (DSN ≤ N) ≤ 2

N2
.
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The process (Dt, t ≥ 0) is a jump Markov death process which takes values in the space
{0, 1, . . . , ϕ(N)−K0}. When in state n, Dt jumps to n− 1 at rate αn. In other words
the infinitesimal generator of {Dt, t ≥ 0} is given by

Qf(n) = αn[f(n− 1)− f(n)].

Let f : N→ R. the process (Mf
t )t≥0 given by

Mf
t = f(Dt)− f(D0)− α

∫ t

0
Ds[f(Ds − 1)− f(Ds)]ds (2.2)

is a martingale. Applying (2.2) with the particular choice f(n) = n, there exists a
martingale (M1

t )t≥0 such that M1
0 = 0 and

Dt = D0 − α
∫ t

0
Dsds+M1

t , t ≥ 0. (2.3)

We note that {M1
t , t ≥ 0} is a martingale under P̂N [.]. This is due to the fact that the

Poisson process of crosses above Kt is independent of Kt. We first deduce from (2.3)
that ÊN (Ds) = D0e

−αs.
Using the fact that Dt is a pure death process, we obtain the identity

[M1]t = D0 −Dt,

which, together with (2.3), implies

< M1 >t= α

∫ t

0
Dsds.

From (2.3), it is easy to deduce that

Dt = e−αt(ϕ(N)−K0) +

∫ t

0
e−α(t−s)dM1

s ,

which implies that

P̂N (DSN ≤ N) ≤ P̂N

(
|
∫ SN

0
e−α(SN−s)dM1

s | ≥ N2eαSN
)

= P̂N

(
|
∫ SN

0
eαsdM1

s | ≥ N2e2αSN
)

≤ 1

N4e4αSN

∫ SN

0
αe2αsÊN (Ds)ds

≤ 2

N2
.

The result is proved .
�

From now on, we equip the probability space (Ω,F ,P) with the filtration defined
by Ft = σ{ηs(i), i ≥ 1, 0 ≤ s ≤ t}. Any stopping time will be defined with respect to
that filtration.
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2.3 Exchangeability

In this subsection, we will show that the Λ-lookdown model with selection preserves
the exchangeability property, by an argument similar to that which we developed in
[3].

Let Sn denote the group of permutations of the set {1, 2, . . . , n}. For all π ∈ Sn
and a[n] = (ai)1≤i≤n ∈ {0, 1}n, we define the vectors

π−1(a[n]) = (aπ−1(1), . . . , aπ−1(n)) = (aπi )1≤i≤n

π(ξ
[n]
t ) = (ξt(π(1)), . . . , ξt(π(n))

We should point out that π(ξ
[n]
t ) is a permutation of (ξt(1), . . . , ξt(n)) and it is clear

from the definitions that

{π(ξ
[n]
t ) = a[n]} = {ξ[n]t = π−1(a[n])}, for any π ∈ Sn. (2.4)

The main result of this subsection is

Theorem 2.4. If (η0(i))i≥1 are exchangeable random variables, then for all t > 0,
(ηt(i))i≥1 are exchangeable.

We first establish two lemmas

Lemma 2.5. For any finite stopping time τ , any N–valued Fτ–measurable random

variable n∗, if the random vector η
[n∗]
τ = (ητ (1), . . . , ητ (n∗)) is exchangeable, and T is

the first time after τ of an arrow pointing to a level ≤ n∗ or a death at a level ≤ n∗, then
conditionally upon the fact that T = ti0, for some i0 ≥ 1 and Iti0 ,pi0 ∩ [n∗] = k, where

k ≥ 2, the random vector η
[n∗−1+k]
ti0

=
(
ηti0 (1), . . . , ηti0 (n∗ − 2 + k), ηti0 (n∗ − 1 + k)

)
is exchangeable.

Proof : For the sake of simplifying the notations, we condition upon n∗ = n, ti0 = t,
pti0 = p and Iti0 ,pi0 ∩ [n∗] = k. We start with some notation.

A
j0,...,jk−1

t := {the k levels selected by the point (t, p) between levels 1 and n are

j0, j1, . . . , jk−1}.

We define
P̂t,n[.] = P(.|ti0 = t, n∗ = n, It,p ∩ [n] = k).

Thanks to (2.4), we deduce that, for π ∈ Sn−1+k, a[n−1+k] ∈ {0, 1}n−1+k,

P̂t,n(π(η
[n−1+k]
t ) = a[n−1+k])

=
∑

1≤j0<j1<···<jk−1≤n
P̂t,n

(
{η[n−1+k]t = (aπ1 , . . . , a

π
n−1+k)}, A

j0,...,jk−1

t

)
(2.5)

On the event A
j0,...,jk−1

t , we have :

ηt(i) =


ηt−(i), if 1 ≤ i < j1

ηt−(j0), if i ∈ {j1, j2, . . . , jk−1}
ηt−(i− (#{{j1, j2, . . . , jk−1} ∩ [i]})), if j1 < i ≤ n− 1 + k, i /∈ {j2, . . . , jk−1}.

11



This implies that

A
j0,...,jk−1

t ∩ {η[n−1+k]t = (aπ1 , . . . , a
π
n−1+k)} ⊂ {aπj0 = aπj1 = aπj2 = · · · = aπjk−1

}.

For 1 < j1 < j2 < · · · < jk−1 ≤ n, define the mapping ρj1,j2,...,jk−1
: {0, 1}n+k−1 −→

{0, 1}n by :

ρj1,j2,...,jk−1
(b1, . . . , bn−1+k) = (Bj1 , . . . , Bjk−1

),

where

Bj1 = (b1, . . . , bj1−1),

Bjm = (bjm−1+1, bjm−1+2, . . . , bjm−1), 2 ≤ m ≤ k − 1

Bjk−1
= (bjk−1+1, bjk−1+2, . . . , bn−1+k).

In other words, ρj1,j2,...,jk−1
(z) is the vector z from which the coordinates with indices

j1, . . . , jk−1 have been suppressed. The right hand side of (2.5) is equal to

∑
1≤j0<j1<···<jk−1≤n

1{aπj0=a
π
j1
···=aπjk−1

}P̂t,n

(
{η[n]
t− = ρj1,j2,...,jk−1

(π−1(a[n−1+k]))}, Aj0,...,jk−1

t

)
,

It is easy to see that the events (η
[n]
t− = ρj1,j2,...,jk−1

(π−1(a[n−1+k]))) and A
j0,...,jk−1

t are
independent. Thus

P̂t,n(π(η
[n−1+k]
t ) = a[n−1+k]) =

∑
1≤j0<j1<···<jk−1≤n

1{aπj0=a
π
j1
···=aπjk−1

}

× P̂t,n

(
η
[n−1+k]
t− = ρj1,j2,...,jk−1

(π−1(a[n−1+k]))
)
P̂t,n(A

j0,...,jk−1

t )

=

(
n

k

)−1 ∑
1≤j0<j1<···<jk−1≤n

1{aπj0=a
π
j1
···=aπjk−1

}

× P̂t,n

(
η
[n−1+k]
t− = ρj1,j2,...,jk−1

(π−1(a[n−1+k]))
)
.

On the other hand, we have

#{1 ≤ j0 < · · · < jk−1 ≤ n : aj0 = · · · = ajk−1
} = #{1 ≤ j0 < · · · < jk−1 ≤ n : aπj0 · · · = aπjk−1

}

Let `0 < `1 < · · · < `k−1 be the increasing reordering of the set {π(j0), π(j1), · · · , π(jk−1)}.
If aj0 = aj1 = · · · = ajk−1

, then we have aπ`0 = aπ`1 · · · = aπ`k−1
= aj0 = aj1 = · · · =

ajk−1
, and consequently ρj1,j2,...,jk−1

(a[n−1+k]) and ρ`1,`2,...,`k−1
(π−1(a[n−1+k])) contain

12



the same number of 0’s and 1’s. Since η
[n]
t− is exchangeable,

P̂t,n(π(η
[n−1+k]
t ) = a[n]) =

(
n

k

)−1 ∑
γ∈{0,1}

∑
1≤`0<`1<···<`k−1≤n

1{aπ`0=a
π
`1
···=aπ`k−1

=γ}

× P̂t,n

(
η
[n]
t− = ρ`1,`2,...,`k−1

(π−1(a[n−1+k]))
)

=

(
n

k

)−1 ∑
γ∈{0,1}

∑
1≤j0<j1<···<jk−1≤n

1{aj0=aj1 ···=ajk−1
=γ}

× P̂t,n

(
η
[n]
t− = ρj1,j2,...,jk−1

(a[n−1+k])
)

= P̂t,n(η
[n−1+k]
t = a[n−1+k]).

The result follows. �

Lemma 2.6. For any finite stopping time τ , any N–valued Fτ–measurable random

variable n∗, if the random vector η
[n∗]
τ = (ητ (1), . . . , ητ (n∗)) is exchangeable, and T

is the first time after τ of an arrow pointing to a level ≤ n∗ or a death at a level
≤ n∗, then conditionally upon the fact that T is the time of a death, the random vector

η
[n∗−1]
T = (ηT (1), . . . , ηT (n∗ − 1)) is exchangeable.

Proof : To ease the notation we will condition upon n∗ = n and T = t. Let π ∈ Sn−1
be arbitrary. We consider the events :

Bi
t := {the level of the dying individual at time t is i}.

Let P̂t,n[.] = P(.|T = t, n∗ = n). We have

P̂t,n(π(η
[n−1]
t ) = a[n−1]) =

∑
1≤i≤n

P̂t,n

(
η
[n−1]
t = π−1(a[n−1]), Bi

t

)
=
∑

1≤i≤n
P̂
(
ηt(1) = aπ1 , . . . , ηt(n− 1) = aπn−1, B

i
t

)
.

Define

cπ,ni = (aπ1 , . . . , a
π
i−1, 1, a

π
i , . . . , a

π
n−1), cni = (a1, . . . , ai−1, 1, ai, . . . , an−1).

The last term in the previous relation is equal to∑
1≤i≤n

P̂t,n

(
η
[n]
t− = cπ,ni , Bi

t

)
=
∑

1≤i≤n
P
(
η
[n]
t− = cπ,ni

)
P̂t,n

(
Bi
t | η

[n]
t− = cπ,ni

)
=

1

1 +
∑n−1

j=1 a
π
j

∑
1≤i≤n

P
(
η
[n]
t− = cπ,ni

)
.

Thanks to the exchangeability of (ηt−(1), . . . , ηt−(n)), we have

P̂t,n(π(η
[n−1]
t ) = a[n−1]) =

1

1 +
∑n−1

j=1 aj

∑
1≤i≤n

P
(
η
[n]
t− = cni

)
,

13



since
∑n−1

j=1 a
π
j =

∑[n−1]
j=1 aj and cπ,ni is a permutation of cπi . The result follows. �

We can now proceed with the

Proof of Theorem 2.4 For each N ≥ 1, let {V N
t , t ≥ 0} denote the N–valued

process which describes the position at time t of the individual sitting on level N at
time 0, with the convention that, if that individual dies, we replace him by his neighbor
below. The construction of our process {ηt(i), i ≥ 1, t ≥ 0} in section 2.2 shows that
inft≥0 V

N
t →∞, as N →∞.

It follows from Lemma 2.5 and 2.6 that for each t > 0, N ≥ 1, (ηt(1), . . . , ηt(V
N
t ))

is an exchangeable random vector.

Consequently, for any t > 0, n ≥ 1, π ∈ Sn, a[n] ∈ {0, 1},

|P(η
[n]
t = a[n])−P(η

[n]
t = π−1(a[n]))| ≤ P(V N

t < n),

which goes to zero, as N →∞. The result follows.

�

For each N ≥ 1 and t ≥ 0, denote by XN
t the proportion of type b individuals at

time t among the first N individuals, i.e.

XN
t =

1

N

N∑
i=1

ηt(i). (2.6)

We are interested in the limit of (XN
t )t≥0 as N tends to infinity. For this, let us recall

the following useful result due to de Finetti (see e. g. [2]). In this statement, G denotes
the tail σ−field of the sequence {Xn, n ≥ 1}.

Theorem 2.7. An exchangeable (countably infinite) sequence {Xn, n ≥ 1} of random
variables is a mixture of i.i.d. r.v.’s, in the sense that conditionally upon G, the Xn’s
are i.i.d.

As a consequence, we have the following asymptotic property for fixed t of the
sequence (XN

t )N≥1 defined by (2.6)

Corollary 2.8. For each t ≥ 0,

Xt = lim
N→∞

XN
t exist a.s. (2.7)

3 Tightness and Convergence to the Λ-W-F SDE

with selection

3.1 Tightness of {XN , N ≥ 1, t ≥ 0}
In this part, we will prove tightness of (XN )N≥1 in D([0,∞[), where for each N ≥ 1
and t ≥ 0, XN

t is defined by (2.6). We start with some notations.
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For any N,n, r, p such that N ≥ 1, Nr ∈ N, r ∈]0, 1], p ∈ [0, 1], we define
Y (·, N, p) to be the binomial distribution function with parameterN and p; H(·, N, n, r)
the hypergeometric distribution function with parameter (N−1,n−1,Nr−1N−1 ); H̄(·,N, n, r)
the hypergeometric distribution function with parameter (N−1, n−1, Nr

N−1). For every
v, w ∈ [0, 1], let

FNp (v) = inf{s;Y (s,N, p) ≥ v},
GN,n,r(w) = inf{s;H(s,N, n, r) ≥ w},
ḠN,n,r(w) = inf{s; H̄(s,N, n, r) ≥ w}.

It follows that if V,W are U([0, 1]) r.v.’s, then the law of FNp (V ) is binomial with
parameter N, p. GN,n,r(W )(resp ḠN,n,r(W )) is hypergeometric with parameters N −
1, n − 1, Nr−1N−1 (resp N − 1, n − 1, Nr

N−1). Note that FNp (·) = Y −1(·, N, p), GN,n,r(·) =

H−1(·, N, n, r) and ḠN,n,r(·) = H̄−1(·, N, n, r). We recall that if X is hypergeometric
with parameters (N,n, p) such that Np ∈ N and p ∈ [0, 1], then

E(X) = np and V ar(X) =
N − n
N − 1

np(1− p).

Now, for every r, u, p, v, w ∈ [0, 1], let

ψN (r, u, p, v, w) =
1

N
1
FNp (v)≥2

[
1u≤r

(
FNp (v)− 1−GN,FNp (v),r(w)

)
− 1u>rḠN,FNp (v),r(w)

]
.

From the identity r(n− 1−E[GN,n,r(w)]) = (1− r)E[ḠN,n,r(w)], we deduce the

Lemma 3.1. For each N ≥ 1, r, p, v ∈ [0, 1] and t ≥ 0,∫
]0,1]2

ψN (r, u, p, v, w)dudw = 0.

Using the definition of the model, it is easy to see that

XN
t = XN

0 +

∫
[0,t]×]0,1]4

ψN (XN
s− , u, p, v, w)M0(ds, du, dp, dv, dw)

− 1

N

∫
[0,t]×[0,1]2

1u≤XN
s−
1v≥XN+1

s−
MN

1 (ds, du, dv)

where M0 and MN
1 are two mutually independent Poisson point processes. M0 is

a Poisson point process on R+ × [0, 1] × [0, 1] × [0, 1] × [0, 1] with intensity measure
µ(ds, du, dp, dv, dw) = dsdup−2Λ(dp)dvdw, MN

1 is a Poisson point process on R+ ×
[0, 1]× [0, 1] with intensity measure αNdsdudv. Now, let

M̄0 = M0 − µ, M̄N
1 = MN

1 − αNλ. (3.1)
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Using Lemma 3.1, we have

XN
t = XN

0 +

∫
[0,t]×]0,1]4

ψN (XN
s− , u, p, v, w)M̄0(ds, du, dp, dv, dw)

− 1

N

∫
[0,t]×[0,1]2

1u≤XN
s−
1v≥XN+1

s−
M̄N

1 (ds, du, dv)− α
∫ t

0
XN
s (1−XN+1

s )ds.

(3.2)

For each N ≥ 1, t ≥ 0, we define

MN
t =

∫
[0,t]×]0,1]4

ψN (XN
s− , u, p, v, w)M̄0(ds, du, dp, dv, dw)

NN
t =

1

N

∫
[0,t]×]0,1]2

1u≤XN
s−
1v≥XN+1

s−
M̄N

1 (ds, du, dv)

V N
t = −α

∫ t

0
XN
s (1−XN+1

s )ds.

MN
t and NN

t are two orthogonal martingales. It is easy to see that

XN
t = XN

0 + V N
t +MN

t −NN
t .

∀N ≥ 1, XN
0 ∈ [0, 1], which implies that it is tight. Moreover, we have

Proposition 3.2. The sequence (XN , N ≥ 1) is tight in D([0,∞]).

We first establish the lemma :

Lemma 3.3. For each N ≥ 1 and t ≥ 0,

〈MN 〉t = Λ((0, 1))

∫ t

0
XN
s (1−XN

s )ds

〈NN 〉t =
α

N

∫ t

0
XN
s (1−XN+1

s )ds

Proof : Using the fact thatMN and NN are pure-jump martingales, we deduce that

〈MN 〉t =

∫
[0,t]×]0,1]4

(ψN (XN
s , u, p, v, w))2dsdup−2Λ(dp)dvdw.

Let

AN (XN
s , p) =

∫
]0,1]3

(ψN (XN
s , u, p, v, w))2dudvdw

=
1

N2

∫
]0,1]2

1
FNp (v)≥2

[
XN
s

(
FNp (v)− 1−GN,FNp (v),XN

s−
(w)
)2

+ (1−XN
s )(ḠN,FNp (v),XN

s
(w))2

]
dvdw.
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Tedious but standard calculations yield∫
[0,1]

[
r
(
FNp (v)− 1−GN,FNp (v),r(w)

)2
dw + (1− r)

(
ḠN,FNp (v),r(w)

)2]
dw

=
N

N − 1
r(1− r)FNp (v)(FNp (v)− 1),

for every v, r ∈ [0, 1]2. Consequently

AN (XN
s , p) =

XN
s (1−XN

s )

N(N − 1)

∫
[0,1]

1FNp (v)≥2F
N
p (v)(FNp (v)− 1)dv

= p2XN
s (1−XN

s ).

We deduce that

〈MN 〉t =

∫
[0,t]×[0,1]

AN (XN
s , p)dsp

−2Λ(dp)

= Λ((0, 1))

∫
[0,t]

XN
s (1−XN

s )ds.

Similarly, we have

〈NN 〉t =
α

N

∫
[0,t]×[0,1]×[0,1]

1u≤XN
s−
1v≥XN+1

s−
dsdudv

=
α

N

∫
[0,t]

XN
s (1−XN+1

s )ds.

The lemma has been established. �

We can now proceed with the
Proof of Proposition 3.2 Let

ϕ(x, y) = −αx(1− y)

ΨN (x, y) =
[
Λ((0, 1))(1− x) +

α

N
(1− y)

]
x.

It follows from lemma 3.3 that for each t ≥ 0,

XN
t = X0 +

∫ t

0
ϕ(XN

s , X
N+1
s )ds+MN

t −NN
t

and

〈MN −NN 〉t = 〈MN 〉t + 〈NN 〉t =

∫ t

0
ΨN (XN

s , X
N+1
s )ds.

Moreover, ∀T ≥ 0

sup
0≤t≤T

sup
N≥1

(
| ϕ(XN

t , X
N+1
t ) | +ΨN (XN

t , X
N+1
t )

)
≤ C a.s. (3.3)
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Aldous’ tightness criterion (see Aldous [1]) is an easy consequence of (3.3). �

Now, from Proposition 3.2 and (2.7), it is not hard to show there exists a process
X ∈ D([0,∞)), such that for all t ≥ 0,

XN
t → Xt a.s, (3.4)

and

XN ⇒ X weakly in D([0,∞)).

We deduce for the above facts

Theorem 3.4. For all T > 0,

sup
0≤t≤T

|XN
t −Xt| → 0 in probability, as N →∞.

Proof : To each δ > 0, we associate n ≥ 1 and 0 = t0 < t1 < · · · < tn = T , such that
sup1≤i≤n(ti − ti−1) ≤ δ. We have, with the notation y ∧ z = inf(y, z),

sup
0≤t≤T

|XN
t −Xt| ≤ sup

i
sup

ti−1≤t≤ti
|XN

t −XN
ti−1
| ∧ |XN

t −XN
ti |+ sup

i
|XN

ti −Xti |

+ sup
i

sup
ti−1≤t≤ti

|Xt −Xti | ∧ |Xt −Xti−1 |

≤ w′′T (XN , δ) + sup
i
|XN

ti −Xti |+ w′′T (X, δ),

where

w′′T (x, δ) = sup
0≤t1<t<t2≤T,t2−t1≤δ

|x(t)− x(t1)| ∧ |x(t)− x(t2)|.

Since from (3.4),

sup
1≤i≤n

|XN
ti −Xti | → 0 a. s., as N →∞,

lim sup
N→∞

P
(

sup
0≤t≤T

|XN
t −Xt| > ε

)
≤ lim sup

N→∞
P
(
w′′T (XN , δ) > ε/2

)
+P
(
w′′T (X, δ) > ε/2

)
.

From the proof of Theorem 13.5 in [7], we know that tightness of XN implies that

lim
δ→0

lim sup
N→∞

P(w′′T (XN , δ) > ε/2) = 0.

Since X is cadlag a.s., for each ε > 0,

P(w′′T (X, δ) > ε/2)→ 0, as δ → 0.

The result follows. �
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3.2 Convergence to the Λ-Wright-Fisher SDE with selec-
tion

Our goal is to get a representation of the process Xt defined in (3.4) as the unique
weak solution of the stochastic differential equation (1.3).

Let (Ω,F , P) be a fixed probability space with a filtration (Ft)t≥0 satisfying the
usual conditions. Recall the Poisson point measure M =

∑∞
i=1 δti,ui,pi defined in the

Introduction, and for every u ∈]0, 1[ and r ∈ [0, 1], we introduce the elementary function

Ψ(u, r) = 1u≤r − r.

We rewrite equation (1.3) as

Xt = x− α
∫ t

0
Xs(1−Xs)ds+

∫
[0,t]×]0,1[2

pΨ(u,Xs−)M̄(ds, du, dp), t > 0, 0 < x < 1,

(3.5)
which we call the Λ-Wright-Fisher SDE with selection. Without loss of generality,
we shall assume that α > 0, which means that Xt represents the proportion of non-
advantageous alleles.

The proof of the following identity is standard and left to the reader.

Lemma 3.5. For each r ∈ [0, 1],∫
[0,1]4

(
ψN (r, u, p, v, w)− pΨ(u, r)

)2
dup−2Λ(dp)dvdw

= 2r(1− r)
[ N

N − 1

∫
[0,1]2

(1− up)N−1duΛ(dp)− Λ([0, 1])

N − 1

]
.

We are now in position to prove our main result.

Theorem 3.6. Suppose that XN
0 → x a.s., as N →∞. Then the [0, 1]−valued process

{Xt, t ≥ 0} defined by (3.4) is the (unique in law) solution of the Λ-W-F SDE with
selection (3.5).

Proof : Uniqueness of the solution of (3.5) follows from Theorem 4.1 in [8]. We now
prove that (Xt)t≥0 defined by (3.4) is a solution of the Λ-Wright-Fisher (3.5).

Since XN
t → Xt a.s., from (3.1), it suffices to show that for each t ≥ 0, as N →∞

V N
t +MN

t −NN
t → −α

∫ t

0
Xs(1−Xs)ds+

∫
[0,t]×[0,1]2

pΨ(Xs− , u)M̄(ds, du, dp)

in probability. Now using (3.4) and Lemma 3.3, it is easy to see that, for each t ≥ 0

V N
t → −α

∫ t

0
Xs(1−Xs)ds a.s, and NN

t → 0 in probability,

as N →∞. The main work is to show that

MN
t →

∫
[0,t]×]0,1[×]0,1[

pΨ(Xt− , u)M̄(ds, du, dp) in probability, as N →∞. (3.6)
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For each N ≥ 1 and t ≥ 0, let

hN (t) =

∫
[0,t]×[0,1]4

(
ψN (XN

s− , u, p, v, w)− pΨ(Xs− , u)
)
M̄0(ds, du, dp, dv, dw),

where M̄0 is defined by (3.1). hN (t) is a martingale, and

〈hN 〉t =

∫
[0,t]×[0,1]4

(
ψN (XN

s , u, p, v, w)− pΨ(Xs, u)
)2
dsdup−2Λ(dp)dvdw.

We have

〈hN 〉t ≤ 2

∫
[0,t]×[0,1]2

(
pΨ(u,XN

s )− pΨ(u,Xs)
)2
dsdup−2Λ(dp)

+ 2t sup
0≤s≤t

∫
[0,1]4

(
ψN (XN

s , u, p, v, w)− pΨ(u,XN
s )
)2
dup−2Λ(dp)dvdw

≤ 2

∫
[0,t]×[0,1]2

(
pΨ(u,XN

s )− pΨ(u,Xs)
)2
dsdup−2Λ(dp)

+ 2t sup
0≤r≤1

∫
[0,1]4

(
ψN (r, u, p, v, w)− pΨ(u, r)

)2
dup−2Λ(dp)dvdw.

Using the fact that XN
s → Xs a.s., it is not hard to show by the dominated convergence

theorem that as N →∞,∫
[0,t]×[0,1]2

p2
(
Ψ(u,XN

s )−Ψ(u,Xs)
)2
dsduΛ(dp)→ 0 a.s. (3.7)

Now from lemma 3.5 , it is easy to show that as N →∞,

sup
0≤r≤1

∫
[0,1]4

(
ψN (r, u, p, v, w)− pΨ(u, r)

)2
dup−2Λ(dp)dvdw → 0 (3.8)

Combining (3.7) and (3.8), we deduce that

∀t ≥ 0, 〈hN 〉t → 0 a.s, as N →∞.

On the other hand, we have

〈hN 〉t ≤ CtΛ([0, 1]), ∀N ≥ 2.

We deduce from the dominated convergence theorem that

lim
N→∞

E[hN (t)2] = 0 ∀t ≥ 0

i.e

MN
t =

∫
[0,t]×[0,1]4

ΨN (XN
s− , u, p, v, w)M̄0(ds, du, dp, dv, dw)

L2

−→
∫
[0,t]×[0,1]4

pΨ(Xs− , u)M̄(ds, du, dp)

as N →∞, in particularly

MN
t →

∫
[0,t]×[0,1]2

pΨ(Xs− , u)M̄(ds, du, dp) in probability , as N →∞ .

(3.6) is established.
�
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Remark 3.7. Uniqueness in law could also by proved as in [4], (where the case α = 0
is treated) by a duality argument, which we now sketch .

Recall the notation Ψ(u, y) = 1u≤y − y. For every y ∈ [0, 1] and every function
g : [0, 1]→ R of class C2, we set

Lg(y) =

∫
[0,1]×[0,1]

[
g(y+pΨ(u, y))−g(y)−pΨ(u, y)g′(y)

]
p−2Λ(dp)du−αg′(y)(1−y)y.

A solution (Yt)t≥0 of (3.5) is a Markov process with generator L. Hence for every
g : [0, 1]→ R of class C2, the process

g(Yt)−
∫ t

0
dsLg(Ys), t ≥ 0

is a martingale.
It is plain that for g(z) = zn

Lg(z) =

n∑
k=2

(
n

k

)
λn,k(z

n−k+1 − zn) + αn(zn+1 − zn). (3.9)

Let {Rt, t ≥ 0} be a N-valued jump Markov process which, when in state k, jumps
to

1. k − `+ 1 at rate
(
k
`

)
λk,`, 2 ≤ ` ≤ k;

2. k + 1 at rate αk, α > 0.

In other words, the infinitesimal generator of {Rt, t ≥ 0} is given by:

L∗f(k) =
k∑
`=2

(
k

`

)
λk,`[f(k − `+ 1)− f(k)] + αk[f(k + 1)− f(k)].

For every z ∈ [0, 1] and every r ∈ N, we set

P (z, r) = zr. (3.10)

Viewing P (z, r) as a function of r, we have

L∗P (z, r) =

r∑
k=2

(
r

k

)
λr,k[z

r−k+1 − zr] + αr[zr+1 − zr]

On the other hand, viewing P (z, r) as a function of z we can easily evaluate LP (z, r)
from formula (3.9), and we deduce that

LP (z, r) = L∗P (z, r). (3.11)

Now suppose that (Yt)t≥0 is a solution of (3.5), and let R0 = n. By standard argument
(see Section 4.4 in [12]) we deduce from (3.11) that

E[P (Yt, R0)] = E[P (Y0, Rt)],
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i.e
E[Y n

t |Y0 = x] = E[xRt |R0 = n].

Since this is true for each n ≥ 1 and Yt take values in the compact set [0, 1], this is
enough to identify the conditional law of Yt, given that Y0 = x, for all 0 ≤ x ≤ 1.
Since (Yt)t≥0 is a homogeneous Markov process, this implies that the law of (Yt)t≥0 is
uniquely determined.

If we prove a priori that (Xt)t≥0 defined by (3.4) is a Markov process, we can use
the following Remark to prove that Xt is a weak sense solution of the Λ-Wright-Fisher
SDE (3.5).

Remark 3.8. Suppose we know that Xt defined by (3.4) is a Markov process. Let us
look backwards from time t to time 0. For each 0 ≤ s ≤ t, we denote by Zn,ts the highest
level occupied by the ancestors at time s of the n first individuals at time t. We know
that conditionally upon Xt, the {ηt(i), i ≥ 1} are i.i.d Bernoulli with parameter Xt.
Consequently, for any n ≥ 1,

Xn
t = P(ηt(1) = · · · = ηt(n) = 1 | Xt),

this implies that

Ex[Xn
t ] = Ex[P(ηt(1) = · · · = ηt(n) = 1 | Xt)]

= Px(ηt(1) = · · · = ηt(n) = 1)

= Px(the 1 . . . Zn,t0 individuals at time 0 are all b)

= En[xZ
n,t
0 ].

It is plain that the conditional law of Zn,t0 , given that (ηt(1) = · · · = ηt(n) = 1) equal
the conditional law of Rt, given that R0 = n. Consequently, for each n ≥ 1

E[Xn
t | X0 = x] = E[Y n

t | Y0 = x],

where (Yt)t≥0 is a solution of (3.5). But for all t > 0, r ∈ [0, 1], the conditional law of
Xt, given that X0 = x is determined by its moments, since Xt is a bounded r. v. So
Xt and Yt have the same transition densities, that is {Xt, t ≥ 0} is the unique weak
solution of (3.5).

4 Fixation and non-fixation in the Λ-W-F SDE

4.1 The CDI property of the Λ-coalescent

In this subsection, we recall a remarkable property of the Λ-coalescent (Πt)t≥0 defined in

the introduction. For each n ≥ 1, let #Π
[n]
t denote the number of blocks in the partition

Π
[n]
t (Π

[n]
t is the restriction of Πt to [n] ). Then let Tn = inf{t ≥ 0 : #Π

[n]
t = 1}. As

stated in (31) of [15], we have

0 = T1 < T2 ≤ T3 ≤ . . . ↑ T∞ ≤ ∞.
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We say the Λ-coalescent comes down from infinity (Λ ∈ CDI) if P(#Πt < ∞) = 1
for all t > 0, and we say it stays infinite if P(#Πt = ∞) = 1 for all t > 0. In terms
of the population model, this means that for any t > 0, we can find a finite number
of individuals in the initial population which generate the entire population at time
t. The coalescent comes down from infinity if and only if T∞ < ∞ a.s. We will show
that this is equivalent to fixation. Kingman showed that the δ0-coalescent comes down
from infinity.

A necessary and sufficient condition for a Λ-coalescent to come down from infinity
was given by Schweinsberg [17]: define

φ(n) =
n∑
k=2

(k − 1)

(
n

k

)
λn,k,

and
ν(dp) = p−2Λ(dp).

It is not hard to deduce from the binomial formula

φ(n) =

∫ 1

0
[np− 1 + (1− p)n]ν(dp).

Schweinsberg’s result [17] says that the Λ-coalescent comes down from infinity if and
only if

∞∑
n=2

1

φ(n)
<∞. (4.1)

The condition of convergence of this series is also necessary and sufficient for fixation
in finite time. Using the fact that the function fn(p) = (1 − p)n − 1 is decreasing for
any fixed n, we have∫ 1

0
(np− 1)ν(dp) ≤ φ(n) ≤ n

∫ 1

0
pν(dp), ∀n ≥ 1.

The last assertion together with (4.1), implies that if
∫ 1
0 pν(dp) < ∞ then the Λ-

coalescent stays infinite. The result has been proved by Pitman (see lemma 25 in
[15]).

Theorem 3.6 shows that Xt is a bounded supermartingale. Indeed, if (Xt)t≥0 is a
solution of 3.5 , then for all 0 ≤ t ≤ s,

E(Xt | Fs) ≤ x− α
∫ s

0
Xr(1−Xr)dr + E

[ ∫
[0,t]×]0,1[×]0,1[

pΨ(u,Xs−)M̄(ds, du, dp) | Fs
]

= Xs.

Consequently the following limit exists a.s

X∞ = lim
t→∞

Xt ∈ {0, 1}. (4.2)

Indeed, 0 and 1 are the only possible limit values.

23



4.2 Fixation and non-fixation in the Λ-W-F SDE

We assume that the initial proportion x of type B individuals satisfies 0 < x < 1. In
this section, we prove that if the condition (4.1) is satisfied, then we have fixation in
our model in finite time. Before establishing the main result of this section, we collect
some results which will be required for its proof

Lemma 4.1.
φ(n)

n
↑
∫ 1

0
pν(dp) as n ↑ ∞,

where ν(dp) = p−2Λ(dp).

Proof :

φ(n) =

∫ 1

0
[np− 1 + (1− p)n] ν(dp)

=

∫ 1

0

[
n

p

(
1−

∫ 1

0
(1− up)n−1du

)]
Λ(dp).

On the last line, we have made use of the identity

(1− p)n − 1 =

∫ 1

0
−np(1− up)n−1du.

For each p ∈]0, 1], let

fn(p) =
1

p

(
1−

∫ 1

0
(1− up)n−1du

)
.

We have,

n−1φ(n) =

∫ 1

0
fn(p)Λ(dp).

The result follows from the monotone convergence theorem.
�

We now deduce that

Lemma 4.2. The function φ increases, and

∞∑
n=2

1

φ(n)
<∞ ⇒

∞∑
n=2

1

φ(n)− αn
<∞.

Proof : We have

φ(n+ 1)− φ(n) =

∫ 1

0
[p+ (1− p)n+1 − (1− p)n]ν(dp)

=

∫ 1

0
p(1− (1− p)n)ν(dp)

≥ 0.
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Which implies the first claim. Now, we already know that if
∑∞

n=2
1

φ(n) < ∞, then∫ 1
0 pν(dp) =∞. Thus, the second assertion is a consequence of the last lemma and the

following relation

∞∑
n=2

1

φ(n)− αn
=

∞∑
n=2

α

φ(n)(n−1φ(n)− α)
+

∞∑
n=2

1

φ(n)
.

The lemma is proved.
�

For each t ≥ 0, we define again

Kt = inf{i ≥ 1 : ηt(i) = 0}.

and
T1 = inf{t ≥ 0 : Kt = 1}.

We have the following

Theorem 4.3. If Λ ∈ CDI, then one of the two types ( b or B) fixates in finite time,
i.e.

∃ ζ <∞ a.s : Xζ = X∞ ∈ {0, 1}

If Λ /∈ CDI, then
∀t ≥ 0, 0 < Xt < 1 a.s.

Proof : The proof has been inspired by [6] (see Section 4 ).
Step 1 : Suppose that Λ ∈ CDI. We consider two cases.

Case 1 : K0 = 1.
In this case, the allele B fixates in the population. Indeed, the individual at level 1
never dies and, he cannot be pushed to an upper level. Let

ζ = inf{t > 0 : ηt(i) = 0, ∀i ≥ 1}.

ζ is the time of fixation of allele B. We are going to show that ζ <∞ a.s.
Let N > 1 denote a fixed integer, and we define SN the first time when the N first

individuals are all of type B. As SN <∞ a.s, for all N ≥ 1, we wait until all the N first
individuals are of B type and we look backward in time, and let Z̄Nt denote the number
of ancestors at time t of the N first individuals at time SN (i.e of the individuals sitting
on levels 1, . . . , N at time SN ). The process (Z̄Nt )t≥0 is a jump Markov process with
state-space {1, 2, . . . , N}. When Z̄Nt = n, Z̄Nt is shifted to n− `+ 1, where 2 ≤ ` ≤ n,
at rate

(
n
`

)
λn,`. In other words, the infinitesimal generator QN of Z̄N is given by

QNf(n) =
n∑
`=2

(
n

`

)
λn,`[f(n− `+ 1)− f(n)].

Let
ζN = inf{t ≥ 0 : ZNt = 1}.
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ζN is also an upper bound for the time taken in the forward time direction, for the
progeny of a type B individual sitting on level 1, to invade all the levels {1, 2, . . . , N}.
The sequence (ζN )N≥1 increases and it is easy to see that limN→∞ ζN = ζ, where ζ is
the time of fixation of the type B. We already know that since Λ ∈ CDI,

∞∑
n=2

1

φ(n)
<∞. (4.3)

Now, for each n ≥ 1, we define

f(n) =
∞∑

k=n+1

1

φ(k)
.

We have for 2 ≤ ` ≤ n

f(n− `+ 1)− f(n) =
n∑

k=n−`+2

1

φ(k)
.

Recall lemma 4.2. Since 1/φ is decreasing, we have for 2 ≤ ` ≤ n,

f(n− `+ 1)− f(n) ≥ (`− 1)
1

φ(n)
,

and therefore

QNf(n) ≥ 1

φ(n)

n∑
`=2

(
n

`

)
(`− 1)λn,` = 1.

Using the fact that the process

f(Z̄Nt )− f(N)−
∫ t

0
QNf(Z̄Ns )ds, t ≥ 0

is a martingale, we obtain

E(ζN ) ≤ E

(∫ ζN

0
QNf(ζNs )ds

)
= f(1)− f(N)

≤ f(1)

The last assertion, together with the monotone convergence theorem, implies that

E(ζ) ≤ f(1) <∞.

Case 2 : K0 > 1.
If T1 <∞ then B fixates in finite time. Indeed, wait until T1 which is a stopping time
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at which the Markov process {ηt(i), i ≥ 1}t≥0 starts afresh, and then use the argument
from Case 1.

We suppose now that T1 = ∞, which implies that Kt → ∞, t → ∞, as already
noted in section 2.2.2. In other word, if T1 = ∞, then the allele B does not fixate in
the population. Let

n0 = inf{n ≥ 1 : φ(n)− αn ≥ 1}.
Such an n0 exists because since Λ ∈ CDI,

∫ 1
0 pν(dp) = +∞, hence by Lemma 4.1, we

have limn→∞ n
−1φ(n) = +∞. Let N ≥ n0 denote a fixed integer. We let

SN = inf{t ≥ 0 : ηt(1) = · · · = ηt(N) = 1}

Since Kt →∞, t→∞, we have that SN <∞ a.s. Now, we are going to use a similar
argument as in Case 1 . We wait until the N first individuals are all of b type and
we look backward in time, and we denote by ZNt the highest level occupied by the
ancestors at time t of the N first individuals at time SN . The process (ZNt )t≥0 is a
jump Markov process with state-space {1, 2, . . . ,∞}. When ZNt = n, ZNt jumps to
n − ` + 1, where 2 ≤ ` ≤ n, at rate

(
n
`

)
λn,`, and jumps to n + 1 at rate αn. The

infinitesimal generator QN of ZN is given by

QNf(n) =
n∑
`=2

(
n

`

)
λn,`[f(n− `+ 1)− f(n)] + αn(f(n+ 1)− f(n)).

Let
ζn0
N = inf{t ≥ 0 : ZNt ≤ n0}.

Now, we are going to show that the allele b fixates in finite time. For this, we need
only prove that ζ = limN→∞ ζ

n0
N <∞ a.s..

Recall lemma 4.2. For each n ≥ 1, we define

f(n) =

∞∑
k=n+1

1

(φ(k)− αk) ∨ 1
.

By Lemma 4.2, for each n ≥ 2, f(n) is finite. We have for 2 ≤ ` ≤ n

f(n− `+ 1)− f(n) =

n∑
k=n−`+2

1

(φ(k)− αk) ∨ 1
.

Since k → 1/(φ(k)− αk) ∨ 1 is decreasing, we obtain

f(n− `+ 1)− f(n) ≥ (`− 1)
1

(φ(n)− αn) ∨ 1
,

and therefore

QNf(n) ≥ 1

(φ(n)− αn) ∨ 1

n∑
`=2

(
n

`

)
(`− 1)λn,` −

αn

(φ(n+ 1)− α(n+ 1)) ∨ 1

=
φ(n)

(φ(n)− αn) ∨ 1
− αn

(φ(n+ 1)− α(n+ 1)) ∨ 1

≥ φ(n)

(φ(n)− αn) ∨ 1
− αn

(φ(n)− αn) ∨ 1
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hence QNf(n) ≥ 1, for each n ≥ n0. Using the fact that the process

f(ZNt )− f(N)−
∫ t

0
QNf(ZNs )ds, t ≥ 0

is a Martingale, we obtain

E(ζn0
N ) ≤ E

(∫ ζ
n0
N

0
QNf(ZNs )ds

)
= f(ZN

ζ
n0
N

)− f(N)

≤ f(1)

Since the sequences ζn0
N ↑ ζ as N ↑ ∞ , the last assertions, together with the monotone

convergence theorem, implies that

E(ζ) ≤ f(1) <∞,

and hence ζ <∞ a.s.
Step 2 : Suppose Λ /∈ CDI, that is the Λ-coalescent does not come down from

infinity. We have
∞∑
n=2

1

φ(n)
= +∞. (4.4)

We claim that (Kt, t ≥ 0) does not reach ∞ in finite time. The contrary would imply
that ∃T < ∞ such that KT = ∞ a.s., so the number of ancestors of the infinite
population at time T of the Λ-lookdown model would be finite and bounded by to
K0 − 1, which contradicts the fact that Λ /∈ CDI . Hence Kt < ∞ a.s. This implies
that Xt < 1, for all t ≥ 0. Indeed if Xt = 1, for some t > 0, by applying de Finetti’s
Theorem, we deduce that ηt(i) = 1,∀i ≥ 1, which contradicts the fact that Kt < ∞.
It remains to show that Xt > 0 for all t ≥ 0.

For any m ≥ 1, t > 0, we define the event

Amt = {The m first individuals of type b at time 0 are dead at time t}

We have
P(Amt ) = (1− e−αt)m,

and then
P(∩mAmt ) = 0 ∀t > 0.

From this, we deduce that ∃i ≥ 1 such that ηt(i) = 1. The same argument for the
proof of Xt < 1 shows that Xt > 0, for all t ≥ 0. �

4.3 The law of X∞

Let x be the proportion of type b individuals at time 0, where 0 < x < 1. As the
individual at level 1 cannot be pushed to an upper level, we have

{η0(1) = 0} ⊂ {X∞ = 0}, hence P(X∞ = 0) ≥ 1− x.
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If α = 0, Xt is a bounded martingale, so

P(X∞ = 1) = E(X∞) = E(X0) = x.

If α > 0, by using (3.5) together with (4.2), we deduce that

P(X∞ = 1) = EX∞ < x.

In this subsection we want to describe those cases where can we decide whether
P(X∞ = 1) > 0 or P(X∞ = 1) = 0. We first prove

Proposition 4.4. If Λ ∈ CDI, then

P(X∞ = 1) > 0.

Proof : Since Λ ∈ CDI, if all individuals at time 0 would be of type b, there would
be a level J such that the individual sitting on level J at time 0 reaches +∞ in finite
time. Now P(X∞ = 1) > 0 follows from the fact that P(K0 > J) > 0, where K0

denotes the lowest level occupied by a type B individual at time 0. �

In the rest of this subsection, we assume that Λ /∈ CDI, and want to decide whether
P(X∞ = 1) > 0 or P(X∞ = 1) = 0. We shall see that these two situations are possible.

We first consider the case of a population model dual to Bolthausen-Sznitman’s
coalescent, i.e Λ(dp) = dp. It is know that in that case the Λ-coalescent does not come
down from infinity.

For any partition with a finite number n ≥ 2 of blocks, the total rate of transitions
of all kinds in a Bolthausen-Sznitman coalescent equals

λn =
n∑
`=2

(
n

`

)
λn,` =

n∑
`=2

(
n

`

)∫ 1

0
p`−2(1− p)n−`dp

=
n∑
`=2

(
n

`

)
Γ(`− 1)Γ(n− `+ 1)

Γ(n)

=
n∑
`=2

n

`(`− 1)

= n− 1.

(4.5)

Recall the definition of Kt. For each n ≥ 1, we have

P(K0 = n) = (1− x)xn−1,

that is K0 follows the geometric distribution with parameter 1 − x. Hence, for each
x ∈]0, 1[,EK0 <∞. We have the following theorem

Proposition 4.5. If Λ(dp) = dp, then for any α ≥ 0,

P(X∞ = 1) > 0.
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Proof : It suffices to show that

P( lim
t→∞

Kt =∞) > 0. (4.6)

Denote by T1, T2, . . . the jumps times of the process Kt. Let

Xn = KTn for each n ≥ 1.

For each integer k ≥ 1, we define by Vk the size of the jump to the right of the
individual sitting on level k. Using (4.5), it is not hard to show that conditionally upon
Xn = k;

Xn+1 =

{
k + Vk, with probability 1

α+1

k − 1, with probability α
α+1 .

Now, we consider the model where we erase all the arrows pointing to levels above
Kt for each birth event (t, p) ∈ m (the Poisson point process m is defined by (1.2)).
We also define V ′k the size of the jump to the right of the individual sitting on level
k in this modified model. We can couple the process Xn with the Markov Chain Yn,
which jumps at the same birth and death time than Xn, and which evolves as follows

Y0 = X0 = K0,

and conditionally upon Yn = k;

Yn+1 =

{
k + V ′k ∧ C, with probability 1

α+1

k − 1, with probability α
α+1 ,

where C ≥ 2 is a constant to be chosen below.

Since the “true ” model has more arrows than the present model, we have

Yn ≤ Xn ∀n ≥ 1,

and

P( lim
n→∞

Yn =∞) ≤ P( lim
n→∞

Xn =∞) = P( lim
t→∞

Kt =∞).

Using the last statement, to prove (4.6), it suffices to show that

P( lim
n→∞

Yn =∞) > 0. (4.7)

For this, we will use Theorem 3.1 in [13]. Let k > 1 denote a fixed integer, and we
define

µ(k) = E(Yn+1 − Yn | Yn = k)

=
E(V ′k ∧ C)− α

1 + α
.
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and

v(k) = E
[
(Yn+1 − Yn)2 | Yn = k

]
=

E
[
(V ′k ∧ C)2

]
+ α

1 + α
.

Let us compute E(V ′k ∧ C). For each p ∈]0, 1] and k > C, we have

Ep(V
′
k ∧ C) = Ep(V

′
k;V ′k ≤ C) + CPp(V

′
k > C)

=

C∑
`=2

(`− 1)Pp(Z1 + · · ·+ Zk = `) + C

k∑
`=C+1

Pp(Z1 + · · ·+ Zk = `)

=
C∑
`=2

(`− 1)

(
k

`

)
p`(1− p)k−` + C

k∑
`=C+1

(
k

`

)
p`(1− p)k−`.

Next,

∫ 1

0
Ep(V

′
k ∧ C)ν(dp) =

C∑
`=2

(`− 1)

(
k

`

)∫ 1

0
p`−2(1− p)k−`dp+ C

k∑
`=C+1

(
k

`

)∫ 1

0
p`−2(1− p)k−`dp

=
C∑
`=2

(`− 1)

(
k

`

)
Γ(`− 1)Γ(k − `+ 1)

Γ(k)
+ C

k∑
`=C+1

(
k

`

)
Γ(`− 1)Γ(k − `+ 1)

Γ(k)

=
C∑
`=2

k

`
+ C

k∑
`=C+1

k

`(`− 1)

= k
C∑
`=1

1

`
− C.

We deduce that

E(V ′k ∧ C) =
1

λk

∫ 1

0
Ep(V

′
k ∧ C)ν(dp)

=
1

k − 1
(k

C∑
`=1

1

`
− C).

Using the last identity, we obtain

kµ(k)

v(k)
=
kE(V ′k ∧ C)− αk
E(V ′k ∧ C)2 + α

≥ k

C2 + α

[
E(V ′k ∧ C)− α

]
≥ k

C2 + α

[ 1

k − 1
(k logC − C)− α

]
.
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we choose C such that logC ≥ α, and deduce that

lim
k→∞

kµ(k)

v(k)
= +∞.

From Theorem 3.1 in [13], the result follows. �

In the rest of this subsection, we will give a condition under which P(X∞ = 0).
Recall the Poisson point measure m defined in the introduction. Let (t, p) be a point
of the measure m. Let us first give one possible description of the size of the jump to
the right of an individual sitting on level n at time t−.

Let Ln be a random variable with the binomial law B(n, p) and Wn
0 = (Ln − 1)+.

If Wn
0 = 0, then there is no jump. If Wn

0 ≥ 1, we put Wn
0 balls in a box B0. Each

of those Wn
0 balls, independently of the others and of the value of Wn

0 , is copied with
probability p, and all copies are put in a box B1. Let Wn

1 denote the number of balls in
B1. Again, each of those is copied with probability p, all copies being put in a box B2,
etc.... The just described r.v.’s (Wn

i , i ≥ 1) have the same joint law as the following
r.v.’s :

Wn
i =


#(It,p ∩ [1, . . . , n])− 1, if i = 0

#(It,p ∩ [n+ 1, . . . , n+Wn
0 ]), if i = 1

#
(
It,p ∩ [n+

∑i−2
k=0W

n
k + 1, . . . , n+

∑i−1
k=0W

n
k ]
)
, otherwise

The size of the jump equals
∑∞

i=0W
n
i . Let us compute

Ep

( ∞∑
i=0

Wn
i

)
.

EpW
n
0 =

n−1∑
k=1

(
n

k + 1

)
kpk+1(1− p)n−k−1 = np− 1 + (1− p)n.

It is plain that

Ep[W
n
i ] = pEp[W

n
i−1], i ≥ 1.

Indeed, conditionally upon Wn
i−1 = j,Wn

j is B(j, p) distributed. Consequently

Ep

( ∞∑
i=0

Wn
i

)
= (1− p)−1Ep[Wn

0 ] = (1− p)−1[np− 1 + (1− p)n].

Now the mean speed of the movement to the right, starting from n, equals the
above quantity integrated over ν, hence equals

Φ(n) =

∫ 1

0
Ep

( ∞∑
i=0

Wn
i

)
ν(dp) =

∫ 1

0
(1− p)−1[np− 1 + (1− p)n]ν(dp),
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where ν(dp) = p−2Λ(dp). Using the same argument as in the proof of Lemma 4.1, one
can easily show that

Φ(n)

n
↑
∫ 1

0

1

p(1− p)
Λ(dp) as n ↑ ∞. (4.8)

Recall that Λ /∈ CDI. We introduce the notation

µ =

∫ 1

0

1

p(1− p)
Λ(dp).

The second main result in this section is

Theorem 4.6. If µ < α, then

P(X∞ = 1) = E(X∞) = 0.

Proof : Suppose µ < α. It follows from lemma 25 of [15] that Λ /∈ CDI. Using
Theorem 4.3, we deduce that 0 < Xt < 1, for all t > 0. Let T1 be the first time when
the level 1 is occupied by a type B individual.

The Theorem is a consequence of the following lemma

Lemma 4.7. If µ < α, then
T1 <∞ a.s

Proof : Let
N0 = inf{n ≥ 1,Φ(n) ≤ α(n− 1)}.

From (4.8) and µ < α, it is plain that N0 < ∞. Recall the infinitesimal generator of
{Kt, t ≥ 0} defined in section 2. Applying (2.1) with the particular choice g(n) = n,
the process (Mt)t≥0 given by

Mt = Kt −K0 −
∫ t

0
[Φ(Ks)− α(Ks − 1)]ds

is a martingale. Let us show that Kt comes back below level N0 after any time t.
Suppose that K0 > N0 and define

S0 = inf{t,Kt ≤ N0}.

The process (Kt∧S0)t≥0 is a positive supermartingale. Consequently,

Kt∧S0 → K∞ ∈ {N0,∞} a.s.

and
E(Kt∧S0) ≤ E(K0) <∞, ∀t ≥ 0,

hence by Fatou’s lemma, EK∞ < ∞, consequently K∞ = N0 a.s. As the process
(Kt∧S0)t≥0 takes values in the set {N0, . . . ,∞}, it is easy to deduce that S0 < ∞ a.s.
We now define recursively Sk for k ≥ 1 by the formula

Sk = inf{t > Sk−1 + 1 : Kt ≤ N0}
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We have

PN0(K1 = 1) ≥ e−φ(N0)(1− e−α)N0−1. (4.9)

Indeed, for (Kt)t≥0 to reach the level 1 during the time interval [0, 1], it suffices that
during that time interval there are no arrows between the level 1 and N0 and during
the same time all the individuals between 1 and N0− 1 die. Using (4.9), we deduce by
the Markov property

P(KSk > 1) = E

(
k∏
i=1

KSi > 1

)
≤ (1− e−φ(N0)(1− e−α)N0−1)P(KSk−1

> 1)

≤
(

1− e−φ(N0)(1− e−α)N0−1
)k
.

The result follows by taking the limit as k →∞. �

5 Kingman and Λ-coalescent

In this last section we suppose that the measure Λ is general (i.e Λ({0}) > 0) and we
show that the proportion Xt of type b individuals at time t in the population of infinite
size is a solution of the stochastic differential equation with selection

Xt = x− α
∫ t

0
Xs(1−Xs)ds

+

∫ t

0

√
cXs(1−Xs)dBs

+

∫
[0,t]×]0,1[×]0,1[

p(1u≤Xs− −Xs−)M̄(ds, du, dp),

(5.1)

where c = Λ({0}), M̄ is the compensated measure M defined in section 3.2, and B
is a standard Brownian motion. Let {W (ds, du)} be a white noise on (0,∞) × (0, 1]
based on the Lebesgue measure dsdu. We remark that if Xt satisfies (5.1), then Xt is
a solution in law of the following stochastic differential equation

Xt = x− α
∫ t

0
Xs(1−Xs)ds

+
√
c

∫
[0,t]×]0,1[

(1u≤Xs −Xs)W (ds, du)

+

∫
[0,t]×]0,1[2

p(1u≤Xs− −Xs−)M̄(ds, du, dp).

We first define the model. Recall the process {ηt(i), i ≥ 1, t ≥ 0} defined in the
introduction. The evolution of the population is the same as that described in the case
Λ({0}) = 0 except that we superimpose single births, which are described as follows
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For any 1 ≤ i < j, arrows are placed from i to j according to a rate Λ({0}) Poisson
process, independently of the other pairs i′ < j′. Suppose there is an arrow from
i to j at time t. Then a descendent (of the same type) of the individual sitting on
level i at time t− occupies the level j at time t, while for any k ≥ j, the individual
occupying the level k at time t− is shifted to level k+1 at time t. In other words,
ηt(k) = ηt−(k) for k < j, ηt(j) = ηt−(i), ηt(k) = ηt−(k − 1) for k > j.

By coupling our model with the simplest lookdown model with selection defined in
[3], it is not hard to show that for N large enough, the individual sitting on level 2N
at time 0 never visits a level bellow N , that is the evolution within the box (t, i) ∈
[0,∞) × {1, 2, . . . , N} is not altered by removing all crosses above 2N . The process
{ηt(i), i ≥ 1, t ≥ 0} is well-defined.

For each N ≥ 1 and t ≥ 0, denote by XN
t the proportion of type b individuals at

time t among the first N individuals, i.e.

XN
t =

1

N

N∑
i=1

ηt(i). (5.2)

Combining the arguments in [3] and section 2.3 (see above), it is easy to show if
(η0(i))i≥1 are exchangeable random variables, then for all t > 0, (ηt(i))i≥1 are ex-
changeable. An application of de Finetti’s theorem, yields that

Xt = lim
N→∞

XN
t exist a.s. (5.3)

Using the definition of the model, it is easy to see that

XN
t = XN

0 +KNt +

∫
[0,t]×]0,1]4

ψN (XN
s− , u, p, v, w)M̄(ds, du, dp, dv, dw)

− 1

N

∫
[0,t]×[0,1]2

1u≤XN
s−
1v≥XN+1

s−
MN

1 (ds, du, dv),

where KNt is a martingale of jump size ± 1
N . We have

Lemma 5.1.

〈KN 〉t =

∫ t

0
ϕN (s)ds

where, ϕN (s) = Λ(0)XN
s (1−XN

s ).

Proof : For each 1 ≤ i < N , let P i be a Poisson process with intensity Λ(0)(N − i).
At time t ∈ P i, we have

∆XN
t =


1
N , if ηt−(i) = 1 and ηt−(N) = 0

− 1
N , if ηt−(i) = 0 and ηt−(N) = 1

0, otherwise.
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Now, let

Ai = {ηt(i) = 1, ηt(N) = 0},
Bi = {ηt(i) = 0, ηt(N) = 1}.

We have

P(Ai | XN
t ) = P(Bi | XN

t ) =
N

N − 1
XN
t (1−XN

t ),

from which, we deduce that

〈KN 〉t =
1

N2
Λ(0)

N(N − 1)

2

2N

N − 1
XN
t (1−XN

t )

= Λ(0)XN
t (1−XN

t )

The result is proved.

�

Now, let

Y N
t = XN

0 +

∫
[0,t]×]0,1]4

ψN (XN
s− , u, p, v, w)M̄(ds, du, dp, dv, dw)

− 1

N

∫
[0,t]×[0,1]2

1u≤XN
s−
1v≥XN+1

s−
MN

1 (ds, du, dv).

We have

XN
t = KNt + Y N

t , ∀t ≥ 0 (5.4)

From lemma 5.1, we have ∀T ≥ 0

sup
0≤t≤T

sup
N≥1
| ϕN (s) |≤ C a.s.

Using the last identity, we deduce by Aldous’ tightness criterion (see Aldous [1]) that

{KNt , t ≥ 0, N ≥ 1} is tight in D([0,∞)).

Since KN is tight, there exists a subsequence of the sequence KN such that

KN ⇒ K weakly in D([0,∞)),

where K is a continuous martingale (since the jumps of KN are of size ± 1
N ) such that

< K >t=
∫ t

0
cXs(1−Xs)ds, (5.5)

where c = Λ(0). The main result of this section is
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Theorem 5.2. Suppose that XN
0 → x a.s, as N →∞. Then the [0, 1]−valued process

{Xt, t ≥ 0} defined by (5.3) is the (unique in law) solution of the stochastic differential
equation

Xt = x− α
∫ t

0
Xs(1−Xs)ds

+

∫ t

0

√
Λ(0)Xs(1−Xs)dBs

+

∫
[0,t]×]0,1[2

p(1u≤Xs− −Xs−)M̄(ds, du, dp),

(5.6)

where M̄ is the compensated measure M defined in section 3.2, and B is a standard
Brownian motion.

The identification of the limiting equation is done similarly as in the proof of The-
orem 3.6. Strong uniqueness of the solution to (5.6) follows again from Dawson and Li
[8], and weak uniqueness could also be proved by a duality argument.

Since Kingman’s coalescent comes down from infinity, we have fixation in our new
model in finite time as soon as Λ(0) > 0.
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13453 Marseille cedex 13. bbah12@yahoo.fr

Etienne Pardoux (corresponding author) LATP/CMI, Aix–Marseille Université, 39,
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