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Pattern & Process

• Design probabilistic models of evolutionary
processes...

• ...Generating similar patterns as those observed
in nature, and...

• ...Allowing for the inference of these processes
from real data...

• ...Assuming the data is a phylogeny (gene tree,
species tree,...) already inferred from MSA.
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Reconstructed tree

• « Reconstructed tree » or « reduced tree » at height T
= remove all lineages extinct by T (fixed time).

• The reduced tree is one-to-one with...

• ...The sphere of radius T {x : d(root,x) = T}
= particles alive at time T (yellow dots)

• The sphere is ultrametric : d(x,z)≤max(d(x,y),d(y,z)).
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Comb metric (1)

Let I be a compact interval and f : I→ R+.

Definition
The mapping f is called a comb if for any ε > 0, {f ≥ ε} is finite.
For any s, t ∈ I, define df by

df (s, t) = 2 sup
(s∧t,s∨t)

f .

Then df is an ultrametric distance on {f = 0} (properly quotiented) called
the comb metric.
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Comb metric (2)

When the comb has finite support,

the comb metric space

is one-to-one with...
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Comb metric (3)

When the comb has finite support,

the comb metric space

is one-to-one with...

An « ultrametric tree »

What about the general case ?



Properties of « Ultrametric Trees » Examples & applications A Non-Exchangeable Coalescent Model Simulations and Inference

A representation theorem

Theorem (L. 2015)
Any compact, ultrametric space with no isolated point is isometric to a
(properly completed) comb metric space.

In particular, any sphere {x ∈ t : d(root,x) = T} of a locally compact real
tree (t,d) having no isolated point, is isometric to a comb metric space.

The spheres of the Brownian tree can be represented by a comb whose graph
is a Poisson point process with intensity dx y−2 dy (properly stopped).

For Lévy trees, see L. & Popovic, Ann. Appl. Prob. (2013).
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Expl1. The p−adic comb
• U := Non stationary sequences of 0’s and 1’s with Hamming distance

dH(x,y) = 2−min{n:xn 6=yn}

• (xn) 7→ ∑xn2−n maps (U,dH) to the dyadic comb (see fig)

• Blue dot = (1,0,0,1, . . .) Red dot = (1,0,1,1, . . .)
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Expl 2. Exchangeable coalescents
...and Aldous’ construction

Let f be a comb on [0,1] and (Vi) i.i.d. random variables uniform in (0,1).
Define the partition Rf (t) on N induced by the equivalence relation ∼t

i∼tj⇔ df (Vi,Vj)≤ t.

The process (Rf (t); t > 0) is an exchangeable coalescent process.

For example, take
f = ∑

j≥1
τj1Uj ,

where the (Uj) are i.i.d. uniform on (0,1) and τj = ∑k≥j+1 ek, where ek are
independent exponential r.v. with parameter k(k−1)/2, then the process
(Rf (2t); t ≥ 0) has the same law as the Kingman coalescent.
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Expl3. The coalescent point process
(Popovic 2004, Aldous & Popovic 2005)

• Coalescent Point Process = CPP
= Depths H1,H2, . . . , form a
sequence of iid random variables
killed at its first value larger than T .

• More general definition via Poisson
point processes (cf Brownian tree)
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b = b(t) and d = d(t,a) always produce CPP
L.& Stadler, TPB, 2013

Consider a birth–death process started at time 0 with 1 particle and
• Birth rate b = b(t), where t is time
• Death rate d = d(t,a), where a is any non-heritable trait (e.g. age).

Theorem (L. & Stadler 2013)
The reconstructed tree at time T is a CPP with typical node depth H, where
the function F = 1/P(H > ·) is the unique solution to a linear
integro-differential equation with initial condition F(0) = 1.

If b and d are time-homogeneous, F can also be obtained by inverting an
explicit Laplace transform.

The result still holds with bottlenecks/partially sampled tips.

⇒ Likelihoods in product form⇒ Applications...
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Appl.1 « Do species age ? »
Alexander, L., Stadler, Systematic Biology (2015 ?)

Gamma distributed lifetime (k,s > 0), with mean m := ks

g(a) = Γ(k)−1 s−k ak−1 e−a/s

• Test on simulations : accurate MLEs of b and m
• MLE on Aves phylogeny = 9993 extant bird sp

(Jetz et al Nature 2012)
• Exponential model rejected (p = 10−15)
• Shape parameter k� 1 : extinction rate

increases with age
• Average lifetime m = 15.26 My
• Speciation rate b = 0.108 My−1
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Appl.2 « How long does speciation take ? »
Etienne, Morlon, L., Evolution (2014)

• Speciation takes time

= new populations take time to diverge from
mother pop until total reproductive isolation

• Test on simulations : efficient inference of
duration of speciation

• Left : duration of speciation inferred in 46
bird clades (in My)
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Other models of reconstructed trees ?

• Advantages of CPP as models of phylogenies :
• Process-based

• Mathematically tractable

• Likelihood-based methods available Stadler (2011), Morlon, Parsons & Plotkin

(2011), L. & Stadler (2013), Etienne, Morlon & L. (2014), L., Morlon & Etienne (2015),

Alexander, L. & Stadler (2015)...

• Shortcomings :
• Lineage-based : No insight at the ind level, no predictions at the

population level

• Topology always equivalent to Yule tree = Uniform over trees with ranked
node depths
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Goal

In this second part, our goal is to propose :

• A biologically reasonable model of phylogeny
• Individual-based

• Where species play different roles

• Mathematically tractable

• Fitting empirical patterns
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The Red Queen Hypothesis

• “Old species are continually replaced by younger, fitter species”

• Examples
• Key innovations, niche invasions
• Evolutionary arms races

• No parameterization of fitness = fitness mediated by order of
appearance
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Asymmetric multispecies model

Let λ > µ > 0, c > d > 0, and K = scaling parameter.

• Individual-based model with n species = multitype logistic branching
process (Ethier & Kurtz 1980, L. 2005)

• Per capita birth rate λ , death rate µ

• Death by competition at rate cij felt by each ind of sp i, from each ind
of sp j, where sp i is younger than sp j and cij = 0

cii = c/K
cji = d/K
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Large population limit

Now species have levels :
Species at level 1 = youngest species,
Species at level 2 = 2nd youngest species,...

If K−1Xi(0) converge as K→ ∞, then K−1(Xi)⇒ (xi) (Kurtz 1981)

ẋi =

(
λ −µ− cxi−d∑

j<i
xj

)
xi

which, letting κ := λ−µ

c and α := 1− d
c has equilibrium state

lim
t→∞

xi(t) =: xi = κα
i−1.

⇒ Younger species are more abundant.
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Speciation by point mutation

Each newborn is a mutant with probability εK , where for all V > 0,

e−VK � εK �
1

K lnK

Separation of timescales as K→ ∞ :

Theorem
Set TN := first time when the number of species exceeds N.

Let (Nt; t ≥ 0) be a pure-birth process with birth rate ρn = λ
(
1− µ

λ

)
∑

n
i=1 xi.

Then, as K→ ∞, the process K−1(Xi)
(

1
KεK

(t∧TN)
)

converges (fdd) to the

process (x1,x2, . . . ,xNt−1,0, . . . ,0).
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Speciation in forward time...
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A non-exchangeable coalescent process

In the new timescale, at constant rate

ρ =
κ

1−α

(
1− µ

λ

)

• Speciation occurs from the sp at level i, with proba (1−α)α i−1

• All species simultaneously “shift up” their level by +1

• The new species occupies the newly vacated bottom level = youngest
species.

• Backwards-in-time picture = Shift-Down/Look-Up Coalescent
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...Coalescence in backward time
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Intertwining (Rogers & Pitman 1981)

Let ((Xt,Yt), t ≥ 0) a Markov process with state-space E×F with generator
Ĝ and K a probability kernel from E to F with associated operator

Kf (x) =
∫

F
K(x,dy) f (x,y).

Theorem (Rogers & Pitman 1981)
If there exists a generator G of a Markov process in E such that for each
f : E×F→ R in the domain of Ĝ,

KĜ(f )(x) = GK(f )(x) x ∈ E,

then

1 P(Y0 ∈ dy|X0) = K(X0,dy) a.s. implies that for each t > 0,

P(Yt ∈ dy|(Xs,0≤ s≤ t)) = K(Xt,dy) a.s.

2 (Xt, t ≥ 0) is a Markov process.
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The weight measure (1)

Weight = 1+ Number of coalescences ‘from below’ since last visit of level 1
= Number of ‘delayed’ lineages (i.e., coal. only when leaving level 1)
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Intertwining (1)

Wt(`) = weight of level ` = number of ‘delayed’ lineages at level `

Nt := Wt(N) = number of ‘delayed’ lineages.

Theorem
(Nt; t ≥ 0) is a δ1−α coalescent process and conditional on (Ns;0≤ s≤ t),

Wt =
Nt

∑
i=1

δGi ,

where the Gi’s are i.i.d. Geom(α) random variables.
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Intertwining (2)

Wt(`) = weight of level ` = number of ‘delayed’ lineages at level `

Bt(w) = number of lineages with weight w.

Theorem
(Bt; t ≥ 0) is a Markov process and conditional on (Bs;0≤ s≤ t),

Wt = ∑
w≥1

Bt(w)

∑
i=1

δYwi ,

where the Ywi’s are independent Geom(αw) random variables, conditioned
to be pairwise distinct.
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Simulated trees with 20 tips

α = 0.1
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Simulated trees with 20 tips

α = 0.7
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Simulated trees with 20 tips

α = 0.99
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Convergence to the Kingman coalescent

Recall α = 1−d/c and κ = (λ −µ)/c = abundance of youngest species.

Theorem
As α → 1, the process (Bt/(1−α); t ≥ 0) converges (fdd) to Ntδ1, where
(Nt; t ≥ 0) is a pure-death process with death rate Cn(n−1)/2, where
C = (1−µ/λ )κ (replacement rate).
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MCMC inference (1) : Caterpillar tree
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MCMC inference (2) : Very imbalanced tree
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MCMC inference (3) : Balanced tree
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MCMC inference (4) : Very balanced tree
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Conclusion and perspectives

• A simple model of phylogeny based on an individual-based model of
evolution under the Red Queen hypothesis see also Chisholm & O’Dwyer (2014)

• Reduction of state-space for fast simulation of the phylogeny of a
sample of species

• Convergence to Kingman coalescent as α → 1

• Likelihood computation after data augmentation : MCMC inference
algorithm

• WIP : Distributions of β and γ vs α

• WIP : Inference in the transient phase, inference under models of niche
colonisation (Verónica Miró Pina)



Properties of « Ultrametric Trees » Examples & applications A Non-Exchangeable Coalescent Model Simulations and Inference
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