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Pattern & Process

e Design probabilistic models of evolutionary
processes...

e ...Generating similar patterns as those observed
in nature, and...

e ...Allowing for the inference of these processes
from real data...

e ...Assuming the data is a phylogeny (gene tree,
species tree,...) already inferred from MSA.
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Outline

@ Properties of « Ultrametric Trees »
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Reconstructed tree

.

complete phylogeny reconstructed phylogeny

¢ «Reconstructed tree » or « reduced tree » at height 7
=remove all lineages extinct by T (fixed time).

e The reduced tree is one-to-one with...

e ...The sphere of radius 7" {x : d(root,x) =T}
= particles alive at time T (yellow dots)

e The sphere is ultrametric : d(x,z) < max(d(x,y),d(y,z)).
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Comb metric (1)

Let I be a compact interval and f : I — R

Definition
The mapping f is called a comb if for any € > 0, {f > €} is finite.
For any s,t € I, define d; by

dp(s,t) =2 sup f.
(sAt,sVr)

Then dy is an ultrametric distance on {f = 0} (properly quotiented) called
the comb metric.



Properties of « Ultrametric Trees » Examples & applications A Non-Exchangeable Coalescent Model Simulations and Inference

Comb metric (2)

When the comb has finite support,
the comb metric space

is one-to-one with...
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Comb metric (3)

When the comb has finite support,
the comb metric space
is one-to-one with...

An « ultrametric tree »

What about the general case ?
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A representation theorem

Theorem (L. 2015)

Any compact, ultrametric space with no isolated point is isometric to a
(properly completed) comb metric space.

In particular, any sphere {x € t : d(root,x) = T} of a locally compact real
tree (t,d) having no isolated point, is isometric to a comb metric space.

The spheres of the Brownian tree can be represented by a comb whose graph
is a Poisson point process with intensity x y~~ dy (properly stopped).

For Lévy trees, see L. & Popovic, Ann. Appl. Prob. (2013).
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@ Examples & applications
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Expll. The p—adic comb
e U := Non stationary sequences of 0’s and 1’s with Hamming distance
dy(x,y) = o~ min{n:x,Fyn }
o (x,) — Y x,2 " maps (U,dy) to the dyadic comb (see fig)
e Blue dot = (1,0,0,1,...) Red dot = (1,0, 1,1,...)
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Expl 2. Exchangeable coalescents

...and Aldous’ construction

Let f be a comb on [0, 1] and (V) i.i.d. random variables uniform in (0, 1).
Define the partition R;(7) on N induced by the equivalence relation ~;

i & dp (Vi V) <.

The process (Ry(t);t > 0) is an exchangeable coalescent process.

For example, take
=Y vy,
jz1
where the (U;) are i.i.d. uniform on (0,1) and 7; = }';~;. | ez, where ¢; are
independent exponential r.v. with parameter k(k — 1)/2, then the process
(R¢(2t);t > 0) has the same law as the Kingman coalescent.
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Expl3. The coalescent point process

(Popovic 2004, Aldous & Popovic 2005)

¢ Coalescent Point Process = CPP
= Depths H|,H>, ..., form a
sequence of iid random variables
killed at its first value larger than 7.

e More general definition via Poisson
point processes (cf Brownian tree) J
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b=b(t) and d = d(t,a) always produce CPP

L.& Stadler, TPB, 2013

Consider a birth—death process started at time O with 1 particle and
e Birth rate b = b(r), where ¢ is time

e Death rate d = d(t,a), where a is any non-heritable trait (e.g. age).

Theorem (L. & Stadler 2013)

The reconstructed tree at time T is a CPP with typical node depth H, where
the function F = 1 /P(H > -) is the unique solution to a linear
integro-differential equation with initial condition F(0) = 1.

If b and d are time-homogeneous, F can also be obtained by inverting an
explicit Laplace transform.

The result still holds with bottlenecks/partially sampled tips.

= Likelihoods in product form = Applications...
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Appl.1 «Do species age ? »
Alexander, L., Stadler, Systematic Biology (2015 7?)

Gamma distributed lifetime (k,s > 0), with mean m := ks

g(a) — F(k)—ls—kak—l e—a/s

e Test on simulations : accurate MLEs of b and m

e MLE on Aves phylogeny = 9993 extant bird sp
(Jetz et al Nature 2012)

e Exponential model rejected (p = 10719)

e Shape parameter k > 1 : extinction rate
increases with age

o Average lifetime m = 15.26 My

e Speciation rate b = 0.108 My~
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Appl.2 « How long does speciation take ? »

Etienne, Morlon, L., Evolution (2014)

10 L .

" e Speciation takes time
©

8 . . .
g = new populations take time to diverge from
§ 6 mother pop until total reproductive isolation
o
é . e Test on simulations : efficient inference of
e duration of speciation

0—3 g 0 ] e Left : duration of speciation inferred in 46

O10g(Duration of speciation) bird clades (in My)
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Other models of reconstructed trees ?

o Advantages of CPP as models of phylogenies :
e Process-based

e Mathematically tractable

e [ ikelihood-based methods available Stadler (2011), Morlon, Parsons & Plotkin
(2011), L. & Stadler (2013), Etienne, Morlon & L. (2014), L., Morlon & Etienne (2015),
Alexander, L. & Stadler (2015)...

e Shortcomings :

e Lineage-based : No insight at the ind level, no predictions at the
population level

e Topology always equivalent to Yule tree = Uniform over trees with ranked
node depths
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Outline

® A Non-Exchangeable, Individual-Based Model of Phylogeny
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Godl

In this second part, our goal is to propose :

e A biologically reasonable model of phylogeny

e Individual-based

e Where species play different roles

e Mathematically tractable

o Fitting empirical patterns



Properties of « Ulframetric Trees » Examples & applications A Non-Exchangeable Coalescent Model Simulations and Inference

The Red Queen Hypothesis

il

e “0Old species are continually replaced by younger, fitter species’

e Examples
o Key innovations, niche invasions

e Evolutionary arms races

e No parameterization of fitness = fitness mediated by order of
appearance
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Asymmetric multispecies model

Let A > >0,c>d>0,and K = scaling parameter.
e Individual-based model with n species = multitype logistic branching
process (Ethier & Kurtz 1980, L. 2005)

e Per capita birth rate A, death rate u

e Death by competition at rate c¢;; felt by each ind of sp i, from each ind
of sp j, where sp i is younger than sp j and

¢j = 0
Cii = C/K
Cj,’ = d/K
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Large population limit

Now species have levels :
Species at level 1 = youngest species,
Species at level 2 = 2nd youngest species,...

If K~'X;(0) converge as K — oo, then K~ (X;) = (x;) (Kurtz 1981)

Xi = A—[J—C)Ci—dle' X

Jj<i

which, letting k := A%“ and o0 := 1 — % has equilibrium state

= Younger species are more abundant.
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Speciation by point mutation

Each newborn is a mutant with probability €x, where for all V > 0,

1

—VK
£ Em—
¢ SE& <K

Separation of timescales as K — oo :

Theorem
Set Ty := first time when the number of species exceeds N.

Let (N;;1 > 0) be a pure-birth process with birth rate p, = A (1 — %) X

Then, as K — oo, the process K~ (X,) (ﬁ (tN TN)) converges (fdd) to the

process (X1.%2,....%y,—1,0,....0).
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Speciation in forward time...

forward time
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A non-exchangeable coalescent process

In the new timescale, at constant rate

i—1

Speciation occurs from the sp at level i, with proba (1 — @) o

All species simultaneously “shift up” their level by +1

o The new species occupies the newly vacated bottom level = youngest
species.
e Backwards-in-time picture = Shift-Down/Look-Up Coalescent
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...Coalescence in backward time

backward time
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|nTerTWining (Rogers & Pitman 1981)

Let ((X;,Y;),t > 0) a Markov process with state-space E x F with generator
G and K a probability kernel from E to F with associated operator

Kf(0) = [ K(v.dnf(c).

Theorem (Rogers & Pitman 1981)

If there exists a generator G of a Markov process in E such that for each
f: EXF — Rin the domain of G,

KG(f)(x) = GK(f)(x) x€E,

then
O P(Yy € dy|Xo) = K(Xo,dy) a.s. implies that for each t > 0,

P(Y, € dy|(X;,0 <s<1)) =K(X;,dy) a.s.

@ (X;,t>0) is a Markov process.
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The weight measure (1)

Levels

backward time

Weight = 14 Number of coalescences ‘from below’ since last visit of level 1

Number of ‘delayed’ lineages (i.e., coal. only when leaving level 1)
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Intertwining (1)

W, (£) = weight of level £ = number of ‘delayed’ lineages at level ¢

N; := W;(N) = number of ‘delayed’ lineages.

Theorem

(Ni;t > 0) is a 0y coalescent process and conditional on (Ng;0 <s < 1),

Ny
Wt = Z 6Gi7
i=1

where the G;’s are i.i.d. Geom( o) random variables.



Properties of « Ulframetric Trees » Examples & applications A Non-Exchangeable Coalescent Model Simulations and Inference

Intertwining (2)

W;(¢) = weight of level ¢ = number of ‘delayed’ lineages at level ¢
B (w) = number of lineages with weight w.

Theorem
(B3t > 0) is a Markov process and conditional on (Bg;0 < s < 1),

By(w)

Z Z 5sz’

w>1 i=

where the Y,,;’s are independent Geom(") random variables, conditioned
to be pairwise distinct.
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Outline

@ simulations and Inference



Simulations and Inference

Simulated trees with 20 tips




Simulations and Inference

Simulated trees with 20 tips

a=0.7

[l

il
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Simulated trees with 20 tips

—T !l =00
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Convergence to the Kingman coalescent

Recall @ =1 —d/c and x = (A — u)/c = abundance of youngest species.

Theorem

As a0 — 1, the process (B;/(1—q)3t > 0) converges (fdd) to N;6,, where
(N3t > 0) is a pure-death process with death rate Cn(n— 1) /2, where
C = (1 —u/A)K (replacement rate).
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MCMC inference (1) : Caterpillar tfree
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Simulations and Inference

MCMC inference (2) : Very imbalanced tree
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MCMC inference (3) : Balanced tfree
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MCMC inference (4) : Very balanced tree
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Conclusion and perspectives

A simple model of phylogeny based on an individual-based model of
evolution under the Red Queen hypothesis see also Chisholm & O'Dwyer (2014)

Reduction of state-space for fast simulation of the phylogeny of a
sample of species

Convergence to Kingman coalescent as ¢ — 1

Likelihood computation after data augmentation : MCMC inference
algorithm

WIP : Distributions of 8 and y vs &

WIP : Inference in the transient phase, inference under models of niche
colonisation (Verénica Mir6 Pina)
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