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HEIGHT AND THE TOTAL MASS OF THE FOREST OF GENEALOGICAL
TREES OF A LARGE POPULATION WITH GENERAL COMPETITION

Le Vi1 and Etienne Pardoux2

Abstract. Consider a continuous time branching process, which is integer or real valued (in the
latter case it is called a continuous state branching process, and we restrict ourselves to the class of
Feller branching diffusions) which models the time evolution of a population, to which we superimpose
an interaction between the branches (which destroys the branching property). In the case of a large
population, the interaction is of the type of a competition, which increases the individual death rate.
We give precise conditions on the competition term, in order to decide whether the extinction time
(which is also the height of the forest of genealogical trees) remains or not bounded as the ancestral
population size tends to infinity, and similarly for the total mass of that forest of genealogical trees.
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1. Introduction

Consider a continuous time branching process, which takes values either in N or in R+ (in the second case one
speaks of a continuous state branching process, and we shall consider only those such processes with continuous
paths). Such processes can be used as models of population growth. However, in that context one might want
to model interactions between the individuals (e.g. competition for limited resources) so that we no longer have
a branching process. Such interactions can increase the number of births, or in contrary increase the number
of deaths. The popular logistic competition has been considered in [10], while a much more general type of
interaction appears in [4].

We will assume that for large population size the interaction is of the type of a competition, which limits
the size of the population. One may then wonder in which cases the interaction is strong enough so that the
extinction time (or equivalently the height of the forest of genealogical trees) remains finite, as the number of
ancestors tends to infinity, or even such that the length of the forest of genealogical trees (which in the case of
continuous state is rather called its total mass) remains finite, as the population size tends to infinity.

This question has been addressed in the case of a polynomial interaction in [3]. Here we want to generalize
those results to a very general type of competition, and we will also show that whenever our condition enforces
a finite extinction time (resp. total mass) for the process started with infinite mass, that random variable has
some finite exponential moments.
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2 Aix-Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, 13453 Marseille, France. etienne.pardoux@univ-amu.fr

Article published by EDP Sciences c© EDP Sciences, SMAI 2015

http://dx.doi.org/10.1051/ps/2014019
http://www.esaim-ps.org
http://www.edpsciences.org


HEIGHT AND TOTAL MASS OF GENEALOGICAL TREES OF A LARGE POPULATION 173

Let us describe the two classes of models which we will consider.
We first describe the discrete state model. Consider a population evolving in continuous time with m ancestors

at time t = 0, in which each individual, independently of the others, gives birth to one child at a constant rate λ,
and dies after an exponential time with parameter μ. For each individual we superimpose additional birth and
death rates due to interactions with others at a certain rate which depends upon the other individuals in the
population. More precisely, given a function f : R+ → R which satisfies assumption (H1) below, whenever the
total size of the population is k, the total additional birth rate due to interactions is

∑k
j=1(f(j) − f(j − 1))+,

while the total additional death rate due to interactions is
∑k

j=1(f(j)−f(j−1))−. Let Xm
t denote the population

size at time t > 0, originating from m ancestors at time 0. The above description is good enough for prescribing
the evolution of {Xm

t , t ≥ 0} with one value of m. There is a natural way to couple those evolutions for different
values of m which will be described in Section 2 below, such that m �→ Xm

t is increasing for all t ≥ 0, a.s.
If we consider this population with m = [Nx] ancestors at time t = 0, replace λ by λN = 2N , μ by μN = 2N ,

f by fN (x) = Nf(x/N), and define the weighted population size process ZN
t = N−1XN

t , it is shown in [4] that
ZN converges weakly to the unique solution of the SDE (see [7])

Zx
t = x +

∫ t

0

f(Zx
s )ds + 2

∫ t

0

∫ Zx
s

0

W (ds, du), (1.1)

where W is space–time white noise on R+ × R+. This SDE couples the evolution of the various {Zx
t , t ≥ 0}

jointly for all values of x > 0.
We will use the fact that for a given value of x > 0, there exists a standard Brownian motion W , such that

Zx
t = x +

∫ t

0

f(Zx
s )ds + 2

∫ t

0

√
Zx

s dWs. (1.2)

There is a natural way of describing the genealogical tree of the discrete population. The notion of genealogical
tree is discussed for the limiting continuous population as well in [10, 12], in terms of continuous random trees
in the sense of Aldous [1]. Clearly one can define the height Hm and the length Lm of the discrete forest of
genealogical trees, as well as the height of the continuous “forest of genealogical trees”, equal to the lifetime T x

of the process Zx, and the total mass of the same forest of trees, given by Sx :=
∫ T x

0
Zx

t dt.
Our assumption concerning the function f will be

Hypothesis (H1): f ∈ C(R+, R), f(0) = 0, and there exists θ ≥ 0 such that

f(x + y) − f(y) ≤ θx ∀x, y ≥ 0.

Note that the hypothesis (H1) implies that the function θx − f(x) is increasing. In particular, we have

f(x) ≤ θx ∀x ≥ 0.

The paper is organized as follows. Section 2 studies the discrete case, i.e. the case of N-valued processes, while
section 3 studies the continuous case, i.e. the case of R-valued processes. Each of those two sections starts with a
subsection presenting necessary preliminary material. The main results in the discrete case are Theorems 3 and
4, while the main results in the continuous case are Theorems 6–8. Section 4 gives some examples to illustrate
our results.

Remark 1.1. This remark aims at helping the reader to build his intuition about our results. Take first a
locally Lipschitz function f : R → R+, such that for simplicity f(x) > 0, for all x, and consider the ODE
ẋ = f(x). It is easily seen that the solution x explodes in finite time iff

∫∞
0 dx/f(x) < ∞, and in that case,

denoting t∞ the time of explosion,
∫ t∞
0 x(t)dt < ∞ iff

∫∞
0 xdx/f(x) < ∞.
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Reversing time, we deduce that if now f(x) < 0 for all x (or all x sufficiently large), the same ODE has a
solution which satisfies x(t) ∈ R for all t ∈ (0; T ] for some T > 0 and x(t) → +∞ as t → 0 (i.e. in a sense
x(0) = +∞) iff for some M > 0,

∫∞
M

dx/|f(x)| < ∞, and that solution is locally integrable near t = 0 iff∫∞
M

xdx/|f(x)| < ∞. The fact that these results can be extended to certain SDEs is essentially our argument
in the continuous population case, see Section 3 below. Once this is understood, it is clear that similar results
might be expected to hold true in the finite population case, which is the content of Section 2.

2. The discrete case

2.1. Preliminaries

We consider a continuous time Z+-valued population process {Xm
t , t ≥ 0, m ≥ 1}, which starts at time zero

from the initial condition Xm
0 = m, i.e. m is the number of ancestors of the whole population. {Xm

t , t ≥ 0} is
a continuous time Z+-valued Markov process, which evolves as follows. If Xm

t = 0, then Xm
s = 0 for all s ≥ t.

While at state k ≥ 1, the process

Xm
t jumps to

{
k + 1, at rate λk + F+(k)
k − 1, at rate μk + F−(k),

where f is a function satisfying (H1), λ, μ are positive constants, and

F+(k) :=
k∑

�=1

(f(�) − f(� − 1))+, F−(k) :=
k∑

�=1

(f(�) − f(� − 1))−.

We now describe a joint evolution of all {Xm
t , t ≥ 0}m≥1, or in other words of the two-parameter process

{Xm
t , t ≥ 0, m ≥ 1}, which is consistent with the above prescriptions. Suppose that the m ancestors are

arranged from left to right. The left/right order is passed on to their offsprings: the daughters are placed on
the right of their mothers and if at a time t the individual i is located at the right of individual j, then all the
offsprings of i after time t will be placed on the right of all the offsprings of j. Since we have excluded multiple
births at any given time, this means that the forest of genealogical trees of the population is a planar forest of
trees, where the ancestor of the population X1

t is placed on the far left, the ancestor of X2
t − X1

t immediately
on his right, etc. Moreover, we draw the genealogical trees in such a way that distinct branches never cross.
This defines in a non-ambiguous way an order from left to right within the population alive at each time t. We
decree that each individual feels the interaction with the others placed on his left but not with those on his
right. Precisely, at any time t, the individual i has an interaction death rate equal to (f(�Li(t) + 1) − f(�Li(t)))

−

or an interaction birth rate equal to (f(�Li(t) + 1) − f(�Li(t)))
+, where �Li(t) denotes the number of individuals

alive at time t who are located on the left of i in the above planar picture. This means that the individual i
is under attack by the others located at his left if f(�Li(t) + 1) − f(�Li(t)) < 0 while the interaction improves
his fertility if f(�Li(t) + 1) − f(�Li(t)) > 0. Of course, conditionally upon �Li(·), the occurence of a “competition
death event” or an “interaction birth event” for individual i is independent of the other birth/death events and
of what happens to the other individuals. In order to simplify our formulas, we suppose moreover that the first
individual in the left/right order has a birth rate equal to λ + f+(1) and a death rate equal to μ + f−(1).

It is plain that with this definition, m → {Xm
t , t ≥ 0} is increasing, since the progeny of the m+1th ancestor

does not modify the fate of the progeny of the m first ancestors. Let us moreover verify that this description
of the evolution of the two-parameter process {Xm

t , t ≥ 0, m ≥ 1} is consistent with the jump rates from k to
k + 1 and k − 1 which have been indicated above. This is a consequence of the fact that the rate at which Xm

t

jumps from k to k + 1 is the sum of the individual birth rates of k individuals, one having zero left neighbour, a
second one having one left neighbour, etc., the last one having k−1 left neighbours. A similar argument applies
for the rate of jump from k to k − 1, replacing birth rates by death rates.
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Remark 2.1. The functions F+ and F− may look a bit strange. However, if f is either increasing or decreasing,
which is the case in particular if f is linear, then F+ = f+ and F− = f−.

Define the height and length of the genealogical forest of trees by

Hm = inf{t > 0, Xm
t = 0}, Lm =

∫ Hm

0

Xm
t dt, for m ≥ 1.

Note that our coupling of the various Xm’s makes Hm and Lm a.s. increasing w.r. to m. We now study the
limits of Hm and Lm as m → ∞. We first recall some preliminary results on birth and death processes, which
can be found in [2, 6, 9].

Let Y be a birth and death process with birth rate λn > 0 and death rate μn > 0 when in state n, n ≥ 1. Let

A =
∑
n≥1

1
πn

, S =
∑
n≥1

1
πn

∑
k≥n+1

πk

λk
,

where
π1 = 1, πn =

λ1 . . . λn−1λn

μ2 . . . μn
, n ≥ 2.

We denote by T m
y the first time the process Y hits y ∈ [0,∞) when starting from Y0 = m.

T m
y = inf{t > 0 : Yt = y | Y0 = m}.

We say that ∞ is an entrance boundary for Y (see, for instance, Anderson [2], Sect. 8.1) if there is y > 0 and a
time t > 0 such that

lim
m↑∞

P(T m
y < t) > 0.

We have the following result (see [6], Prop. 7.10)

Proposition 2.2. The following are equivalent:

(1) ∞ is an entrance boundary for Y .
(2) A = ∞, S < ∞.
(3) limm↑∞ E(T m

0 ) < ∞.

We now want to apply the above result to the process Xm
t , in which case λn = λn + F+(n), μn = μn +

F−(n), n ≥ 1. We will need the following lemmas.

Lemma 2.3. Let f be a function satisfying (H1), a ∈ R be a constant. If there exists a0 > 0 such that
f(x) 	= 0, f(x) + ax 	= 0 for all x ≥ a0, then we have that∫ ∞

a0

1
| f(x) |dx < ∞ ⇔

∫ ∞

a0

1
| ax + f(x) |dx < ∞,

and when those equivalent conditions are satisfied, we have

lim
x→∞

f(x)
x

= −∞.

Proof. We need only show that∫ ∞

a0

1
| f(x) |dx < ∞ ⇒

∫ ∞

a0

1
| ax + f(x) |dx < ∞.
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Indeed, this will imply the same implication for pair f ′(x) = f(x)+ax, f ′(x)−ax, which is the conversed result.
Because f(x) ≤ θx for all x ≥ 0, we can easily deduce from

∫∞
a0

1
|f(x)|dx < ∞ that

f(x) < 0 ∀x ≥ a0.

Let β be a constant such that β > θ. We have

∫ ∞

a0

1
βx − f(x)

dx <

∫ ∞

a0

1
−f(x)

dx < ∞.

It implies that

lim
x→∞

∫ 2x

x

1
βu − f(u)

du = 0.

But since the function x �→ βx − f(x) is increasing,

∫ 2x

x

1
βu − f(u)

du ≥
(

2β − f(2x)
x

)−1

·

We deduce that limx→∞
f(x)

x = −∞. Hence there exists a1 > a0 such that f(x) < −2|a|x for all x ≥ a1. The
result follows from ∫ ∞

a1

1
| ax + f(x) |dx <

∫ ∞

a1

2
−f(x)

dx < ∞. �

Lemma 2.4. Let f be a function satisfying (H1). For all n ≥ 1 we have the two inequalities

F+(n) ≤ θn

−f(n) ≤ F−(n) ≤ θn − f(n).

Proof. The result follows from the facts that for all n ≥ 1

(f(n) − f(n − 1))+ ≤ θ

(f(n) − f(n − 1))− ≥ f(n − 1) − f(n)

F−(n) − F+(n) = −f(n). �

Proposition 2.5. Assume f is a function satisfying (H1) and there exists a0 > 0 such that f(x) 	= 0 for all
x ≥ a0. Then ∞ is an entrance boundary for X if and only if

∫ ∞

a0

1
| f(x) |dx < ∞.
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Proof. If
∫∞

a0

1
|f(x)|dx = ∞, then (recall that since μ > 0, (μ + θ)x − f(x) is non-negative and increasing)

∫ ∞

a0

1
(μ + θ)x − f(x)

dx = ∞,

by Lemma 2.3. In this case,

S ≥
∑
n≥1

πn+1

λn+1πn

=
∑
n≥1

1
μn+1

=
∑
n≥2

1
μn + F−(n)

≥
∑
n≥2

1
(μ + θ)n − f(n)

= ∞.

Therefore, ∞ is not an entrance boundary for X , by Proposition 2.2. On the other hand, if
∫∞

a0

1
|f(x)|dx < ∞,

then limx→∞
f(x)

x = −∞, by Lemma 2.3. By Lemma 2.4 we have

lim
n→∞

πn+1

πn
= lim

n→∞
λn + F+(n)
μn + F−(n)

≤ lim
n→∞

(λ + θ)n
μn − f(n)

= 0,

so that
A =

∑
n≥1

1
πn

= ∞.

Set an = λn/μn, then there exists n0 ≥ 1 such that an < 1 for all n ≥ n0. The inequality of arithmetic and
geometric means states that for all m > 0 and x1, x2, . . . , xm > 0,

x1 + x2 + . . . + xm

m
≥ m

√
x1x2 . . . xm,

so that for all k > n > 0,
ak−n

n+1 + . . . + ak−n
k ≥ (k − n)an+1 . . . ak.

Then

∑
n≥n0

1
πn

∑
k≥n+1

πk

λk
≤ 1

λ

∑
n≥n0

∑
k≥n+1

1
k

an+1 . . . ak

≤ 1
λ

∑
n≥n0

∑
k≥n+1

1
k(k − n)

(
ak−n

n+1 + . . . + ak−n
k

)

=
1
λ

∑
k≥n0+1

k−n0∑
n=1

1
kn

(
an

k−n+1 + . . . + an
k

)

=
1
λ

∑
i≥n0+1

∑
n≥1

an
i

n−1+i∑
k=i

1
kn
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≤ 1
λ

∑
i≥n0+1

∑
n≥1

an
i

i

=
1
λ

∑
i≥n0+1

ai

i(1 − ai)

=
1
λ

∑
i≥n0+1

λi

i(μi − λi)

=
∑

i≥n0+1

λi + F+(i)
λi(μi − λi + F−(i) − F+(i))

≤ λ + θ

λ

∑
i≥n0+1

1
μi − λi − f(i)

< ∞,

where we have used Lemma 2.3 to conclude. Hence S < ∞. The result follows from Proposition 2.2. �

We can now prove

Theorem 2.6. Assume f is a function satisfying (H1) and there exists a0 > 0 such that f(x) 	= 0 for all
x ≥ a0. We have

(1) If
∫∞

a0

1
|f(x)|dx = ∞, then

sup
m>0

T m
0 = ∞ a.s.

(2) If
∫∞

a0

1
|f(x)|dx < ∞, then

E
(

sup
m>0

T m
0

)
< ∞.

Proof. If
∫∞

a0

1
|f(x)|dx = ∞, then by Proposition 2.5, ∞ is not an entrance boundary for X . It means that for

all t > 0,
lim

m↑∞
P(T m

0 < t) = 0.

Hence for all t > 0, since m → T m
0 is increasing a.s.,

P(sup
m>0

T m
0 < t) = 0,

hence
sup
m>0

T m
0 = ∞ a.s.

The second part of the theorem is a consequence of Propositions 2.5 and 2.2. �

Remark 2.7. The first part of Theorem 2.6 is still true when λn = 0, n ≥ 1. In fact, in this case we have

T m
0

.=
m∑

n=1

θn,

where .= denotes equality in law, θn represents the first passage time from state n to state n − 1,

θn = inf{t > 0 : Xt = n − 1 | X0 = n}.
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Recalling the fact that θn is exponentially distributed with parameter μn + F−(n), we have (see Lem. 4.3,
Chap. 7 in [11])

sup
m>0

T m
0 = ∞ a.s. ⇔

∞∑
n=1

1
μn + F−(n)

= ∞.

The result follows by Lemmas 2.3 and 2.4.

Here a question arises: in the case
∫∞

a0

1
|f(x)|dx < ∞, whether higher moments of supm>0 T m

0 are also finite
or not. We will see that the answer is Yes. Indeed, we can prove that it has some finite exponential moments.

Theorem 2.8. Suppose that f is a function satisfying (H1) and there exists a0 > 0 such that f(x) 	= 0 for all
x ≥ a0. If

∫∞
a0

1
|f(x)|dx < ∞ we have

(1) For any a > 0, there exists ya ∈ Z+ such that

sup
m>ya

E
(
eaT m

ya

)
< ∞.

(2) There exists some positive constant c such that

sup
m>0

E
(
ecT m

0
)

< ∞.

Proof.

(1) There exists na ∈ Z+ large enough so that

∞∑
n=na

1
πn

∑
k≥n+1

πk

λk
≤ 1

a
·

Let J be the nonnegative increasing function defined by

J(m) :=
m−1∑
n=na

1
πn

∑
k≥n+1

πk

λk
, m ≥ na + 1.

Set now ya = na + 1. Note that supm>ya
T m

ya
< ∞ a.s., then for any m > ya we have

J(Xm
t∧T m

ya
) − J(m) −

∫ t∧T m
ya

0

AJ(Xm
s )ds

is a martingale, where A is the generator of the process Xm
t which is given by

Ag(n) = λn(g(n + 1) − g(n)) + μn(g(n − 1) − g(n)), n ≥ 1,

for any R+-valued, bounded function g. Therefore, by Itôs formula

ea(t∧T m
ya

)J(Xm
t∧T m

ya
) − J(m) −

∫ t∧T m
ya

0

eas(aJ(Xm
s ) + AJ(Xm

s ))ds

is also a martingale. It implies that

E

(
ea(t∧T m

ya)J
(
Xm

t∧T m
ya

))
= J(m) + E

(∫ t∧T m
ya

0

eas(aJ(Xm
s ) + AJ(Xm

s ))ds

)
.
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We have for m > ya, J(Xm
s ) < J(∞) ≤ 1

a ∀s ≤ T m
ya

, and for any n ≥ ya,

AJ(n) = λn(J(n + 1) − J(n)) + μn (J(n − 1) − J(n))

= λn
1
πn

∑
k≥n+1

πk

λk
− μn

1
πn−1

∑
k≥n

πk

λk

=
μ2 . . . μn

λ1 . . . λn−1

∑
k≥n+1

πk

λk
− μ2 . . . μn

λ1 . . . λn−1

∑
k≥n

πk

λk

= − μ2 . . . μn

λ1 . . . λn−1

πn

λn

= −1.

So that
E

(
ea(t∧T m

ya)J
(
Xm

t∧T m
ya

))
≤ J(m) ∀m > ya.

But J is increasing, hence for any m > ya one gets

0 < J(ya) ≤ J(m) < J(∞) ≤ 1
a
.

From this we deduce that
E

(
ea(t∧T m

ya)
)
≤ 1

aJ(ya)
∀m > ya.

Hence
E

(
eaT m

ya

)
≤ 1

aJ(ya)
∀m > ya,

by the monotone convergence theorem. The result follows.

(2) Using the first result of the theorem, there exists a constant M ∈ Z+ such that

sup
m>M

E
(
eT m

M
)

< ∞,

or E
(
eTM

)
< ∞, where TM := supm>M T m

M .
Given any fixed T > 0, let p denote the probability that starting from M at time t = 0, X hits zero before

time T . Clearly p > 0. Let ζ be a geometric random variable with success probability p, which is defined as
follows. Let X start from M at time 0. If X hits zero before time T , then ζ = 1. If not, we look the position XT

of X at time T .
If XT > M , we wait until X goes back to M . The time needed is stochastically dominated by the random

variable TM , which is the time needed for X to descend to M , when starting from ∞. If however XT ≤ M , we
start afresh from there, since the probability to reach zero in less than T is greater than or equal to p, for all
starting points in the interval (0, M ].

So either at time T , or at time less than T + TM , we start again from a level which is less than or equal
to M . If zero is reached during the next time interval of length T , then ζ = 2 . . . Repeating this procedure, we
see that supm>0 T m

0 is stochastically dominated by

ζT +
ζ∑

i=1

ηi,

where the random variables ηi are i.i.d, with the same law as TM , globally independent of ζ. We have

sup
m>0

E

(
ecT m

0

)
≤ E

(
ec(ζT+

∑ζ
i=1 ηi)

)

≤
√

E (e2cζT )
√

E

(
e2c

∑ζ
i=1 ηi

)
.
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Since ζ is a geometric(p) random variable, then

E
(
e2cζT

)
=

p

1 − p

∞∑
k=1

(
e2cT (1 − p)

)k
< ∞,

provided that c < − log(1 − p)/2T .
Moreover, we have

E
(
e2c

∑ζ
i=1 ηi

)
=

∞∑
k=1

E
(
e2c

∑k
i=1 ηi

)
P(ζ = k)

=
∞∑

k=1

[
E
(
e2cTM

)]k
P(ζ = k)

=
p

1 − p

∞∑
k=1

[
E
(
e2cTM

)
(1 − p)

]k
.

Since E
(
eTM

)
< ∞, it follows from the monotone convergence theorem that E

(
e2cTM

)→ 1 as c → 0. Hence we
can choose 0 < c < − log(1 − p)/2T such that

E
(
e2cTM

)
(1 − p) < 1,

in which case E
(
e2c

∑ ζ
i=1 ηi

)
< ∞.

Then supm>0 E
(
ecT m

0
)

< ∞. The result follows. �

2.2. Height and length of the genealogical forest of trees in the discrete case

The following result follows from Theorems 2.6 and 2.8

Theorem 2.9. Suppose that f is a function satisfying (H1) and there exists a0 > 0 such that f(x) 	= 0 for all
x ≥ a0. We have

(1) If
∫∞

a0

1
|f(x)|dx = ∞, then

sup
m>0

Hm = ∞ a.s.

(2) If
∫∞

a0

1
|f(x)|dx < ∞, then

sup
m>0

Hm < ∞ a.s.,

and moreover, there exists some positive constant c such that

sup
m>0

E
(
ecHm)

< ∞.

Concerning the length of the genealogical tree we have

Theorem 2.10. Suppose that the function f(x)
x satisfies (H1) and there exists a0 > 0 such that f(x) 	= 0 for

all x ≥ a0. We have

(1) If
∫∞

a0

x
|f(x)|dx = ∞, then

sup
m>0

Lm = ∞ a.s.
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(2) If
∫∞

a0

x
|f(x)|dx < ∞, then

sup
m>0

Lm < ∞ a.s.,

and moreover, there exists some positive constant c such that

sup
m>0

E
(
ecLm)

< ∞.

To prove Theorem 2.10 we need the following result, which is Theorem 1 in [5].

Proposition 2.11. Let Y i be a birth and death process with birth rates {λ(i)
n }n≥1 and death rates {μ(i)

n }n≥1(i =
1, 2), where λ

(i)
n and μ

(i)
n satisfy the condition

∑
n≥1

1
πn

n∑
k=1

πk

λk
= ∞. (2.1)

Suppose that
λ(1)

n ≥ λ(2)
n and μ(1)

n ≤ μ(2)
n , n ≥ 1.

Then one can construct two processes Ỹ 1 and Ỹ 2 on the same probability space such that {Ỹ i(k), k ≥ 0} and
{Y i(k), k ≥ 0} have the same law for i = 1, 2, and Ỹ 1(k) ≥ Ỹ 2(k) a.s. for all k ≥ 0.

Remark 2.12.

(1) Condition (2.1) implies that the birth and death process does not explode in finite time a.s. Note that

∑
n≥1

1
πn

n∑
k=1

πk

λk
≥
∑
n≥1

1
πn

× πn

λn

=
∑
n≥1

1
λn

·

Then (2.1) is satisfied if there exists a constant γ > 0 such that

λn ≤ γn, ∀n ≥ 1.

(2) Proposition 2.11 is still true when λ2
n = 0, n ≥ 1. In fact, the proof of Bhaskaran (as given in [5]) still works

in this case.

Now we will apply Proposition 2.11 to prove Theorem 2.10. In the proof, we will not bother to check
condition (2.1), which is obviously satisfied here.

Proof of Theorem 2.10

(1) Let

f1(n) :=
f(n)

n
, F−

1 (n) :=
n∑

k=1

(f1(k) − f1(k − 1))−, n ≥ 1.

By Lemma 2.13 below we have for all n ≥ 1,

μn = μn + F−(n) ≤ μn + 2θn2 − f(n)

≤ (μ + 2θ)n2 − f(n)
n

n

≤ (μ + 2θ)n2 + F−
1 (n)n.
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Let X1,m be a birth and death process which starts from X1,m
0 = m, with birth rate λ1

n = 0 and death rate
μ1

n = (μ + 2θ)n2 + F−
1 (n)n when in state n, n ≥ 1. From Proposition 2.11 we deduce that for all m ≥ 1,

Xm ≥ X1,m(in dist.), Hm ≥ H1,m(in dist.), Lm ≥ L1,m(in dist.),

and moreover, since both m → Lm and m → L1,m are a.s. increasing,

sup
m>0

Lm ≥ sup
m>0

L1,m(in dist.),

where H1,m, L1,m are the height and the length of the genealogical tree of the population X1,m, respectively.
We now use a random time-change to transform the length of a forest of genealogical trees into the height of

another forest of genealogical trees, so that we can apply Theorem 2.6. We define

A1,m
t :=

∫ t

0

X1,m
r dr, η1,m

t = inf{s > 0, A1,m
s > t},

and consider the process U1,m := X1,m ◦ η1,m. Let S1,m be the stopping time defined by

S1,m = inf{r > 0, U1,m
r = 0},

then we have

S1,m =
∫ H1,m

0

X1,m
r dr = L1,m a.s.

The process X1,m can be expressed using a standard Poisson processes P , as

X1,m
t = m − P

(∫ t

0

[
(μ + 2θ)(X1,m

r )2 + F−
1

(
X1,m

r

)
X1,m

r

]
dr

)
.

Consequently the process U1,m satisfies

U1,m
t = m − P

(∫ t

0

[
(μ + 2θ)U1,m

r + F−
1

(
U1,m

r

)]
dr

)
.

Applying Theorem 2.6 and Remark 2.7 we have

sup
m>0

L1,m = sup
m>0

S1,m = ∞ a.s.,

hence supm>0 Lm = ∞ a.s. The result follows.

(2) For the second part of the theorem, we note that in the case
∫∞

a0

x
|f(x)|dx < ∞, we have f(x)

x2 → −∞ as
x → ∞, by Lemma 2.3. Then there exists a constant u > 0 such that for all n ≥ u (using again Lem. 2.13),

μn + F−(n) ≥ −f(n) ≥ θn2 − f(n)
2

·

We can choose ε ∈ (0, 1) such that for all 1 ≤ n ≤ u

μn ≥ ε

(
θn2 − f(n)

2

)
·

It implies that for all n ≥ 1,

μn + F−(n) ≥ ε

(
θn2 − f(n)

2

)
·
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Let X2,m be a birth and death process which starts from X2,m
0 = m, with birth rate λ2

n = (λ+ 2θ)n2 and death
rate μ2

n = ε(θn2 − f(n)
2 ) when in state n, n ≥ 1. From Lemma 2.13 and Proposition 2.11 we deduce that for all

m ≥ 1,

Xm ≤ X2,m(in dist.), Hm ≤ H2,m(in dist.), Lm ≤ L2,m(in dist.),

where H2,m, L2,m are the height and the length of the genealogical tree of the population X2,m, respectively.
We define

A2,m
t :=

∫ t

0

X2,m
r dr, η2,m

t = inf{s > 0, A2,m
s > t},

and consider the process U2,m := X2,m ◦ η2,m. Let S2,m be the stopping time defined by

S2,m = inf{r > 0, U2,m
r = 0},

then we have

S2,m =
∫ H2,m

0

X2,m
r dr = L2,m a.s.

Denote f2(x) := ε
2 (f(x)

x − θx), then f2 is a negative and decreasing function, so that for all n ≥ 1,

F+
2 (n) :=

n∑
k=1

(f2(k) − f2(k − 1))+ = 0, F−
2 (n) :=

n∑
k=1

(f2(k) − f2(k − 1))− = −f2(n).

The process X2,m can be expressed using two mutually independent standard Poisson processes P1 and P2, as

X2,m
t = m + P1

(∫ t

0

[(λ + 2θ)(X2,m
r )2]dr

)
− P2

(∫ t

0

[
εθ

2
(X2,m

r )2 + F−
2 (X2,m

r )X2,m
r

]
dr

)
.

Consequently the process U2,m satisfies

U2,m
t = m + P1

(∫ t

0

[(λ + 2θ)U2,m
r + F+

2 (U2,m
r )]dr

)
− P2

(∫ t

0

[
εθ

2
U2,m

r + F−
2 (U2,m

r )
]

dr

)
.

By Theorem 2.8, there exists some positive constant c such that

sup
m>0

E
(
ecL2,m)

= sup
m>0

E

(
ecS2,m

)
< ∞,

hence
sup
m>0

E
(
ecLm) ≤ sup

m>0
E

(
ecL2,m

)
< ∞.

The result follows.
It remains to prove

Lemma 2.13. Suppose that the function f(x)
x satisfies (H1). For all n ≥ 1 we have the following inequalities

F+(n) ≤ 2θn2,

−f(n) ≤ F−(n) ≤ 2θn2 − f(n).
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Proof. Note that for all k ≥ 1,

(f(k) − f(k − 1))+ =
(

(k − 1)
(

f(k)
k

− f(k − 1)
k − 1

)
+

f(k)
k

)+

≤ (k − 1)
(

f(k)
k

− f(k − 1)
k − 1

)+

+
(

f(k)
k

)+

≤ 2θk.

Then

F+(n) ≤
n∑

k=1

2θk = θn(n + 1) ≤ 2θn2.

The second result now follows from the fact that for all n ≥ 1

(f(n) − f(n − 1))− ≥ f(n − 1) − f(n)
F−(n) − F+(n) = −f(n). �

3. The continuous case

3.1. Preliminaries

We now consider the R+-valued two-parameter stochastic process {Zx
t , t ≥ 0, x ≥ 0} which solves the

SDE (1.1), where the function f satisfies (H1). We note that this coupling of the {Zx
t , t ≥ 0}’s for various

x’s is consistent with that used in the discrete population case in the sense that as N → ∞,

{N−1X
�Nx	
t , t ≥ 0, x > 0} ⇒ {Zx

t , t ≥ 0, x > 0},

see [4], where the topology for which this is valid is made precise.
According again to [4], the process {Zx

. , x ≥ 0} is a Markov process with values in C(R+, R+), the space of
continuous functions from R+ into R+, starting from 0 at x = 0. Moreover, we have that whenever 0 < x ≤
y, Zy

t ≥ Zx
t for all t ≥ 0 a.s. For x > 0, define T x the extinction time of the process Zx (it is also called the

height of the process Zx) by

T x = inf{t > 0, Zx
t = 0}.

And define Sx the total mass of Zx by

Sx =
∫ T x

0

Zx
t dt.

We next study the limits of T x and Sx as x → ∞. We want to show that under a specific assumption T x → ∞
(resp. Sx → ∞) as x → ∞, and under the complementary assumption supx>0 E(ecT x

) < ∞ for some c > 0
(resp. supx>0 E(ecSx

) < ∞ for some c > 0). Because both mappings x �→ T x and x �→ Sx are a.s. increasing,
the result will follow for the same result proved for any collection of r.v.’s {T x, x > 0} (resp. {Sx, x > 0}) which
has the same monotonicity property, and has the same marginal laws as the original one. More precisely, we
will consider the Zx’s solutions of (1.2) instead of (1.1), with the same W for all x > 0.

We first need to recall some preliminary results on a class of one-dimensional Kolmogorov diffusions (drifted
Brownian motions), which can also be found in [6].

Consider a one-dimensional drifted Brownian motion with values in [0,∞) which is killed when it first hits
zero

dXt = q(Xt)dt + dBt, X0 = x > 0,
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where q is defined and is C1 on (0,∞), and {Bt, t ≥ 0} is a standard one-dimensional Brownian motion. In
particular, q is allowed to explode at the origin. In this section, we shall assume that

Hypothesis (H2): There exists x0 > 0 such that q(x) < 0 ∀x ≥ x0, and

lim sup
x→0+

q(x) < ∞.

The condition (H2) implies that q is bounded from above by some constant. It ensures that ∞ is inaccessible,
in the sense that a.s. ∞ can not be reached in finite time from X0 = x ∈ (0,∞).

We denote by T x
y the first time the process X hits y ∈ [0,∞) when starting from X0 = x

T x
y = inf{t > 0 : Xt = y | X0 = x}.

We say that ∞ is an entrance boundary for X (see, for instance, Revuz and Yor [13], p. 305) if there is y > 0
and a time t > 0 such that

lim
x↑∞

P(T x
y < t) > 0.

Let us introduce the following condition

Hypothesis (H3): ∫ ∞

1

e−Q(y)

∫ ∞

y

eQ(z)dzdy < ∞,

where Q(y) = 2
∫ y

1 q(x)dx, y ≥ 1.
Tonelli’s theorem ensures that (H3) is equivalent to∫ ∞

1

eQ(y)

∫ y

1

e−Q(z)dzdy < ∞.

We have the following result which is Proposition 7.6 in [6].

Proposition 3.1. The following are equivalent:

(1) ∞ is an entrance boundary for X.
(2) (H3) holds.
(3) For any a > 0, there exists ya > 0 such that

sup
x>ya

E
(
eaT x

ya

)
< ∞.

We now state the main result of this subsection

Theorem 3.2. Assume that (H2) holds. We have

(1) If (H3) does not hold, then for all y ≥ 0,

sup
x>y

T x
y = ∞ a.s.

(2) If (H3) holds, then for all y ≥ 0,
sup
x>y

T x
y < ∞ a.s.,

and moreover, there exists some positive constant c such that

sup
x>0

E
(
ecT x

0
)

< ∞.
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Proof.

(1) If (H3) does not hold, then by Proposition 3.1, ∞ is not an entrance boundary for X . It means that for all
y > 0, t > 0,

lim
x↑∞

P(T x
y < t) = 0.

Hence for all t > 0, since x → T x
y is increasing a.s.,

P(sup
x>y

T x
y < t) = 0,

hence
sup
x>y

T x
y = ∞ a.s.

(2) The result is a consequence of Proposition 3.1. We can prove it by using the same argument as used in the
proof of Theorem 2.8. �

It is not obvious when (H3) holds. But from the following result, if q satisfies some explicit conditions, we can
decide whether (H3) holds or not.

Proposition 3.3. Suppose that (H2) holds. We have

(1) If ∫ ∞

x0

1
q(x)

dx = −∞ and lim sup
x→∞

q
′
(x)

q(x)2
< ∞,

then (H3) does not hold.
(2) If there exists q0 < 0 such that q(x) ≤ q0 for all x ≥ x0,∫ ∞

x0

1
q(x)

dx > −∞ and lim inf
x→∞

q
′
(x)

q(x)2
> −2,

then (H3) holds.
(3) If ∫ ∞

x0

1
q(x)

dx > −∞ and q
′
(x) ≤ 0 ∀x ≥ x0,

then (H3) holds.

Proof.

(1) Define s(y) :=
∫∞

y
eQ(z)dz. If s(x0) = ∞, then s(y) = ∞ for all y ≥ x0, so that (H3) does not hold.

We consider the case s(x0) < ∞. Integrating by parts on
∫

se−Qdy gives

∫ ∞

x0

se−Qdy =
∫ ∞

x0

s

2q
e−Q2qdy =

−s

2q
e−Q

∣∣∣∣
∞

x0

−
∫ ∞

x0

1
2q

dy −
∫ ∞

x0

se−Q q
′

2q2
dy (3.1)

From
∫∞

x0

1
q(x)dx = −∞ and −s

2q e−Q(∞) ≥ 0, (3.1) implies that

∫ ∞

x0

se−Q(1 +
q
′

2q2
)dy = ∞.

Since lim supx→∞
q
′
(x)

q(x)2 < ∞, then
∫∞

x0
se−Qdy = ∞. Condition (H3) does not hold.
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(2) We can easily deduce from q(x) ≤ q0 for all x ≥ x0 that s(y) tends to zero as y tends to infinity, and

s(y)e−Q(y) is bounded in y ≥ x0. Because
∫∞

x0

1
q(x)dx > −∞, (3.1) implies that se−Q(1 + q

′

2q2 ) is integrable.

Then thanks to the condition lim infx→∞
q
′
(x)

q(x)2 > −2, we conclude that (H3) holds.

(3) From q(x) ≤ q(x0) < 0 for all x ≥ x0, we can easily deduce that Q(y) → −∞ and s(y) → 0 as y → ∞.
Applying Cauchy’s mean value theorem to s(y) and q1(y) := eQ(y), we have for all y ≥ x0, there exists ξ ∈ (y,∞)
such that ∫∞

y
eQ(z)dz

eQ(y)
=

s
′
(ξ)

q
′
1(ξ)

= − 1
2q(ξ)

.

Because q
′
(x) ≤ 0 for all x ≥ x0, we obtain

s(y)e−Q(y) ≤ − 1
2q(y)

, for all y ≥ x0.

Hence ∫ ∞

x0

s(y)e−Q(y)dy ≤ −
∫ ∞

x0

1
2q(y)

dy < ∞.

Then (H3) holds. �

Example 3.4. We are interested in the case that q is a polynomial. More precisely, we consider the function q
satisfying (H2) and for all x ≥ x0,

q(x) = −xα α > −1.

We have

lim
x→∞

q
′
(x)

q(x)2
= lim

x→∞
αxα−1

x2α
= lim

x→∞
α

xα+1
= 0.

Hence condition (H3) holds if and only if∫ ∞

x0

1
−xα

dx > −∞ ⇔ α > 1.

3.2. Height of the continuous forest of trees

We consider the process {Zx
t , t ≥ 0} solution of (1.2). It follows from the Ito formula that the process

Y x
t =

√
Zx

t solves the SDE

dY x
t =

f((Y x
t )2) − 1
2Y x

t

dt + dWt, Y x
0 =

√
x. (3.2)

Note that the height of the process Zx is

T x = inf{t > 0, Zx
t = 0} = inf{t > 0, Y x

t = 0}.

We now establish the large x behaviour of T x.

Theorem 3.5. Assume that f is a function satisfying (H1) and that there exists a0 > 0 such that f(x) 	= 0 for
all x ≥ a0. If

∫∞
a0

1
|f(x)|dx = ∞, then

T x → ∞ a.s. as x → ∞.
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Proof. Let β be a constant such that β > θ. By a well-known comparison theorem, Y x
t ≥ Y 1,x

t , where Y 1,x
t

solves

dY 1,x
t = −β(Y 1,x

t )2 − f((Y 1,x
t )2) + 1

2Y 1,x
t

dt + dWt, Y 1,x
0 =

√
x,

Note that the function βx − f(x) + 1 is positive and increasing, then f1(x) := −βx2−f(x2)+1
2x satisfies (H2), and

lim sup
x→∞

f
′
1(x)

f1(x)2
< ∞.

Moreover there exists x1 > 0 such that βx − f(x) ≥ 1 for all x ≥ x1, hence

∫ ∞

1

1
f1(x)

dx = −
∫ ∞

1

2x

βx2 − f(x2) + 1
dx

= −
∫ ∞

1

1
βx − f(x) + 1

dx

≤ −
∫ x1

1

1
βx − f(x) + 1

dx − 2
∫ ∞

x1

1
βx − f(x)

dx

= −∞,

again by Lemma 2.3. The result now follows readily from Theorem 3.2 and Proposition 3.3. �

Theorem 3.6. Assume that f is a function satisfying (H1) and that there exists a0 > 0 such that f(x) 	= 0 for
all x ≥ a0. If

∫∞
a0

1
|f(x)|dx < ∞, then

sup
x>0

T x < ∞ a.s.,

and moreover, there exists some positive constant c such that

sup
x>0

E
(
ecT x)

< ∞.

Proof. We can rewrite the SDE (3.2) as (with again β > θ)

dY x
t =

β(Y x
t )2 − h((Y x

t )2)
2Y x

t

dt + dWt, Y x
0 =

√
x,

where h(x) := βx − f(x) + 1 is a positive and increasing function. By Lemma 2.3, we have
∫∞
1

1
h(x)dx < ∞

which is equivalent to
∑∞

n=1
1

h(n) < ∞. Let

a1 = h(1), an = min{h(n), 2an−1} ∀n > 1.

It is easy to see that for all n > 1,

an−1 < an ≤ h(n),
an

an−1
≤ 2.
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We also have

1
a1

=
1

h(1)
1
a2

≤ 1
h(2)

+
1

2a1
=

1
h(2)

+
1

2h(1)
1
a3

≤ 1
h(3)

+
1

2a2
≤ 1

h(3)
+

1
2h(2)

+
1

4h(1)
. . .

1
an

≤ 1
h(n)

+
1

2an−1
≤ 1

h(n)
+

1
2h(n − 1)

+ . . . +
1

2n−1h(1)
·

Therefore ∞∑
n=1

1
an

≤ 2
∞∑

n=1

1
h(n)

< ∞.

Now, we define a continuous increasing function g as follows. We first draw a broken line which joins the points
(n, an) and is the graph of h1. Define the function h2 as follows.

h2(x) =

{
h(x), 0 ≤ x ≤ 1
h1(x), x ≥ 1.

We then smoothen all the nodal points of the graph of h2 to obtain a smooth curve which is the graph of an
increasing function g1. Let g(x) = 1

2g1(x). We have for all n ≥ 1 and x ∈ [n, n + 1),

h(x) ≥ h(n) ≥ an ≥ 1
2
an+1 = g(n + 1) ≥ g(x).

By the comparison theorem, Y x
t ≤ Y 2,x

t , where Y 2,x
y solves

dY 2,x
t =

β(Y 2,x
t )2 − g((Y 2,x

t )2)
2Y 2,x

t

dt + dWt, Y 2,x
0 =

√
x.

Since ∞∑
n=1

1
g(n)

= 2
∞∑

n=1

1
an

< ∞,

we deduce that
∫∞
1

1
g(x)dx < ∞, and g(x)

x → ∞ as x → ∞, by Lemma 2.3. Let f2(x) := βx2−g(x2)
2x , then there

exists x1 > 0, q1 < 0 such that f2(x) < q1 for all x ≥ x1, and∫ ∞

x1

1
f2(x)

dx =
∫ ∞

x1

2x

βx2 − g(x2)
dx =

∫ ∞

x2
1

1
βx − g(x)

dx > −∞.

Moreover,

lim inf
x→∞

f
′
2(x)

f2(x)2
= lim inf

x→∞
−4xg

′
(x)

g(x)2
.

But for all x ∈ [n, n + 1),

g
′
(x)x

g(x)2
≤ (n + 1)

g(n)2
max

i∈{n−1,n,n+1}
{g(i + 1) − g(i)} <

(n + 1)g(n + 2)
g(n)2

≤ 4(n + 1)
g(n)

→ 0,

as n → ∞. The result follows from Theorem 3.2 and Proposition 3.3. �
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3.3. Total mass of the continuous forest of trees

Recall that in the continuous case, the total mass of the forest of genealogical trees is given as

Sx =
∫ T x

0

Zx
t dt

Consider the increasing process

Ax
t =

∫ t

0

Zx
s ds, t ≥ 0,

and the associated time change

ηx(t) = inf{s > 0, As > t}.
We now define Ux

t = 1
2Zx ◦ ηx(t), t ≥ 0. It is easily seen that the process Ux solves the SDE

dUx
t =

f(2Ux
t )

4Ux
t

dt + dWt, Ux
0 =

x

2
· (3.3)

Let τx := inf{t > 0, Ux
t = 0}. It follows from above that ηx(τx) = T x, hence Sx = τx. We have

Theorem 3.7. Suppose that the function f(x)
x satisfies (H1) and there exists a0 > 0 such that f(x) 	= 0 for all

x ≥ a0.

(1) If
∫∞

a0

x
|f(x)|dx = ∞ then

Sx → ∞ a.s. as x → ∞.

(2) If
∫∞

a0

x
|f(x)|dx < ∞ then

sup
x>0

Sx < ∞ a.s.,

and moreover, there exists some positive constant c such that

sup
x>0

E
(
ecSx)

< ∞.

Proof. Note that we can rewrite the SDE (3.3) as

dUx
t =

(
βUx

t − h(Ux
t )
)
dt + dWt, Ux

0 =
x

2
,

where h(x) := βx − f(2x)
4x , with again β > θ, is a positive and increasing function.

(1) By the comparison theorem, Ux
t ≥ U1,x

t , where U1,x
t solves

dU1,x
t = −h(U1,x

t )dt + dWt, U1,x
0 =

x

2
.

The result follows from Theorem 3.2, Proposition 3.3 and Lemma 2.3.
(2) The result is a consequence of Theorem 3.2 and Proposition 3.3. We can prove it by using the same argument

as used in the proof of Theorem 3.6. �
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4. Some examples

In this section we will discuss some special cases to illustrate our results.

Example 4.1. An important example is the case of a logistic interaction, where

f(x) := ax − bx2, a ∈ R, b ∈ R+.

There exists a positive constant a0 such that f(x) < 0 for all x ≥ a0, and
∫ ∞

a0

1
| f(x) |dx =

∫ ∞

a0

1
bx2 − ax

dx < ∞,

∫ ∞

a0

x

| f(x) |dx =
∫ ∞

a0

x

bx2 − ax
dx = ∞.

Hence in this case, there exists some positive constant c such that

sup
m>0

E
(
ecHm)

< ∞, sup
x>0

E
(
ecT x)

< ∞,

and
sup
m>0

Lm = ∞ a.s., sup
x>0

Sx = ∞ a.s.

Example 4.2. We consider the case where f is a function satisfying (H1) and for all x ≥ 2,

f(x) = −xα(log x)γ , α ≥ 0, γ ≥ 0.

Note that

∫ ∞

2

1
xα(log x)γ

dx

{
= ∞, if α < 1 or α = 1, γ ≤ 1
< ∞, if α > 1 or α = 1, γ > 1.

Hence
sup
m>0

Hm = ∞ a.s., sup
x>0

T x = ∞ a.s.

if α < 1 or α = 1, γ ≤ 1, while there exists some positive constant c such that

sup
m>0

E
(
ecHm)

< ∞, sup
x>0

E
(
ecT x)

< ∞

if α > 1 or α = 1, γ > 1. Concerning the length (resp. the total mass) of the genealogical forest of trees we have

sup
m>0

Lm = ∞ a.s., sup
x>0

Sx = ∞ a.s.

if α < 2 or α = 2, γ ≤ 1, while there exists some positive constant c such that

sup
m>0

E
(
ecLm)

< ∞, sup
x>0

E
(
ecSx)

< ∞

if α > 2 or α = 2, γ > 1.
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