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Vertical and Horizontal Gene Transfers for
Micro-organisms

The ability of a bacteria to survive and reproduce depends on its
genes.

The evolution results from the basic mechanisms.

Heredity. (Vertical) transmission of the ancestral trait to the
offsprings.

Mutation. Generates variability in the trait values.

Selection. Acts on the death rates as the result of competition
between individuals.

Horizontal Gene Transfer (HGT): the bacteria exchange genetic
information.



Horizontal Gene Transfer

HGT is recognized as a major process in the evolution and
adaptation of population, especially for micro-organisms.

HGT plays a main role in the evolution, maintenance, and
transmission of virulence.
It is the primary reason for bacterial antibiotic resistance.
It plays an important role in the evolution of bacteria that can
degrade novel compounds such as human-created pesticides.

There are several mechanisms for horizontal gene transfer.

Transformation: some DNA filaments directly enter the cell.

Transduction: DNA is carried by some viruses (phages) which
affect the cell.

Conjugation: plasmids: circular DNA replicates from a cell to
another one, independently of the chromosome.

We will focus on Conjugation.



Biological and Medicine context

The spread of antibiotic resistances among bacterial pathogens
becomes very concerning.

Urgent to develop new technologies to fight bacterial infections.

Use of the plasmid transfer to destroy pathogenic bacteria within
complex microbial populations.

A technique which will not destroy the ecosystem and will
weaken the resistance.



Our aim

To propose a general stochastic eco-evolutionary model of
population dynamics with horizontal and vertical transfers,
inspired by the transfer of plasmids in bacteria.

To study different transfer rates: either density-dependent or
frequence-dependent or Beddington-deAngelis horizontal gene
transfer (HGT) rates.

To study the impact of HGT on the maintenance of polymorphism
and the invasion or elimination of pathogens strains

To study the impact of HGT on the evolution and to show how it
can drastically affect the evolutionary outcomes.



A large literature from the
seminal work of Anderson-May,
on the population dynamics of
host-pathogens, but no general
models of gene transfer.

Previous models are either deterministic (epidemiological
models) or stochastic (population genetics models with constant
population size).



Individual-based model: a 2-traits population
K scales the size of the population (large K means large
population).

We consider a population structured by a gene u with two alleles
A and a: u ∈ {A,a}.

The population at time t is modeled by the vector

(X K
t ,Y

K
t ) =

1
K

(NA,K
t ,Na,K

t ),

where NA,K
t and Na,K

t the numbers of individuals with alleles
respectively A and a.

Birth rate of an individual u ∈ {A,a}: bK (u).
With probability pK , the offspring carries the trait u,
with probability 1− pK , its trait is in {A,a} \ {u}.

Death rate of an individual u at time t :

dK (u) +
C(u,u)

K
Nu,K

t +
C(u, v)

K
Nv ,K

t .



Modeling of the HGT at the individual scale
In a population (x , y), a donor transfers its trait u to a recipient
with trait v at rate τK (u, v , x , y).The recipient becomes u.
(bacteria conjugation).

We will denote the difference between the two transfer rates by

αK (A,a, x , y) = τK (A,a, x , y)− τK (a,A, x , y).

Observations: HGT rate is density-dependent when the
population size is low and frequency-dependent when the
population is close to its carrying capacity.

Here, we consider the general form: for x , y ∈ N
K ,

τK (u, v , x , y) =
ψK (u, v)EK (u, v)

EK (u, v) + K ψK (u, v) (x + y)
.

EK (u, v) : quantity of resources useable for HGT which are
shared among individuals.
ψK (u, v) : maximal quantity of resources one individual can use
per time unit to perform HGT.



Three interesting cases
Density-Dependent transfer rate (DD): If
limK→+∞

EK
KψK (u,v)

= +∞ and limK→+∞ ψK (u, v) = ψ(u, v),

τK (u, v , x , y) = ψ(u, v).

Frequency-Dependent transfer rate (FD): If
limK→+∞

EK
KψK (u,v)

= 0 and limK→+∞
EK (u,v)

K = E(u, v),

τK (u, v , x , y) =
E(u, v)

x + y
.

Beddington-deAngelis transfer rate (BA): If
limK→+∞ ψK (u, v) = ψ(u, v) and limK→+∞

EK (u,v)
K = E(u, v),

τK (u, v , x , y) =
ψ(u, v)E(u, v)

E(u, v) + ψ(u, v) (x + y)
.



The Stochastic process

Recall that we focus on conversion. Let us consider test functions
F ∈ Cb(R2, R). The generator of the process (X K

t ,Y
K )t≥0 is:

LF (x , y) = K
(
(1 − pK )bK (A)x + pK bK (a)y

)(
F
(
x +

1
K
, y)− F (x , y)

)
+ K

(
pK bK (A)x + (1 − pK )bK (a)y

)(
F
(
x , y +

1
K
)
− F (x , y)

)
− K

(
dK (A) + C(A,A) x + C(A, a) y

)
x
(

F
(
x − 1

K
, y

)
− F (x , y)

)
− K

(
dK (a) + C(a,A) x + C(a, a) y

)
y
(

F
(
x , y − 1

K
)
− F (x , y)

)
+ K τK (A, a, x , y) x y

(
F
(
x +

1
K
, y − 1

K
)
− F (x , y)

)
+ K τK (a,A, x , y) x y

(
F
(
x − 1

K
, y +

1
K
)
− F (x , y)

)
.

(1)

Playing with the forms of the demographic parameters and time
scales will lead to various asymptotic behaviors.



Large population limit with no mutation
•We assume that bK (u) = b(u), dK (u) = d(u) and that pk −→ 0.

We set b(u)− d(u) = r(u) .

• To fix ideas, we also assume that

limK→∞ τK (A,a, x , y) =
τ(A,a)

β + µ (x + y)
.

• For β = 1, µ = 0 or β = 0, µ = 1 or β, µ 6= 0 , one gets the three
cases of DD, FD or BA horizontal transfer rates.

• Denote α(A,a) = τ(A,a)− τ(a,A), (positive or negative).

Theorem
When K →∞ , the stochastic process (X K

t ,Y
K
t )t≥0 converges in

probability to the solution (xt , yt )t≥0 of the ODEs system:

dx
dt

=
(

r(A)− C(A,A)x − C(A,a)y +
α(A,a)

β + µ (x + y)
y
)

x

dy
dt

=
(

r(a)− C(a,A)x − C(a,a)y − α(A,a)

β + µ (x + y)
x
)

y .



The eight possible phase diagrams
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The circles and stars respectively show the stable and unstable fixed
points.



Invasion fitness of individuals with trait A in the a-resident
population:

SAa = r(A) + (α(A,a,0, y)− C(A,a)) y and y =
r(a)

C(a,a)

= r(A) +
α(A,a)r(a)

βC(a,a) + µr(a)
− C(A,a))r(a)

C(a,a)
.

Compared to the classical two-species Lotka-Volterra system, 4
new phase diagrams are possible: Figures (5)-(8).

Figures (1)-(6) are possible for all forms of HGT rates while
Figures (7)-(8) are not possible when the HGT rate is DD.

Figures (5)-(8): depending on the initial conditions, the population
can be stably polymorphic or can fix one of the two traits.

Classical two-species LV system without HGT: coexistence of
both species⇐⇒ SAa > 0 and SaA > 0 .

Our results show that HGT changes drastically the picture: a
stable polymorphic state can exist whatever the sign of the
fitness.



Population size and Frequencies

Let us consider

n(t) = x(t) + y(t) ; q(t) =
x(t)

x(t) + y(t)
.

Then the coupled system writes

dn
dt

=n
(

q r(A) + (1− q) r(a)− CAA q2n − (CAa + CaA) q(1− q)n

− Caa (1− q)2n
)

dq
dt

=q (1− q)
(

r(A) + r(a) + nq(CaA − CAA) + n(1− q)(Caa − CAa)+

+ α(a,A)
n

β + µn

)
.



The case of small mutations
Let introduce ε > 0 and assume that mutation A brings only little
changes in demographic and ecological parameters.

We set r(a) = 1 ; Ca,a = C ; α(a,a) = 0, thus

r(A) = 1 + s ε,
C(A,a) = C + d1 ε ; C(a,A) = C + d2 ε , CAA = C + d1 ε+ d2 ε,
α(A,a) = λ ε.

Theorem
Assume s, d1 , d2 and λ are randomly chosen on [−1,1].

Then, with probability of order 1− ε, we fall in cases (1)-(4),
with probability between ε and ε2 in the cases (5)-(6),
with probability between ε2 and ε3 in the case (7)
and with probability lower than ε3 in the case (8).

Idea of the proof: expansion in ε of the stationary points.

0 = εq (1− q)
(

H0 + εq H1 + ε2 q2 H2 + ε3 q3 H3

)
.



Probability and time of invasion-fixation with HGT
Fate of the mutant with trait A in the resident population a.

If SAa > 0, the stochastic dynamics can be decomposed in three
phrases (as in Champagnat 2006).
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Unilateral DD transfer:
τ = α = 5.10−4, K = 1000,
C = 1, b(A) = 0.8, b(a) = 1,
d ≡ 0. Without transfer, the
mutant couldn’t invade and fix.

First phase (stochastic): the number of A-mutants reaches a
threshold εK . It occurs with probability

P(A,a) =
SAa

b(A) + τ(A,a,0, y) y
=

b(A)− d(A) +
(
α(A,a,0, y)− C(A,a)

)
y

b(A) + τ(A,a,0, y) y
.



The first phase has a duration of order log K/SAa.

Second phase (deterministic): follows the EDOs system - Duration
of order 1.

Third phase (the latter case): birth-death process until A is fixed and
a is lost - Duration of order log K/SaA.

HGT increases the probability of invasion of a mutant ⇐⇒

b(A)− d(A)− C(A,a)ȳ
b(A)

< 1− τ(a,A,0, ȳ)

τ(A,a,0, ȳ)
.

If HGT is symmetrical, τ(A,a,0, ȳ) = τ(a,A,0, ȳ), HGT
decreases the probability of invasion of A.

If HGT is unilateral, τ(A,a,0, ȳ) > 0 and τ(a,A,0, ȳ) = 0, HGT
increases the probability of invasion of A.

If α(A,a,0, y) > 0, (HGT biased towards A), invasion and
fixation times are decreased by HGT.



A diffusive equation with HGT - Frequency-Dependent
case

We assume that birth, death and transfer rates have allometric forms:

bK (u) = Kγ(u) + η(u),

dK (u) = Kγ(u) + ρ(u),

τK (u, v) = K s(u, v) + h(u, v),

where s(u, v) = s(v ,u). (Small perturbations of a critical population
with symmetric transfer). Moreover,

pK =
p
K
, CK (u, v) =

C(u, v)

K
.

Theorem
Under those assumptions, the stochastic process((

X K
t + Y K

t ,
X K

t

X K
t + Y K

t

)
, t ≥ 0

)
converges in law, as K tends to

infinity, to the diffusion process ((Nt ,Qt ), t ≥ 0), defined as follows.



A generalized Wright-Fisher equation

Nt =N0 +

∫ t

0

{
(ηA − ρA)Qs − (ηa − ρa)(1−Qs)

− Ns

(
CAAQ2

s + Caa(1−Qs)2 + (CAa + CaA)Qs(1−Qs)
)}

Ns ds

+

∫ t

0

√
2γANsQsdW A

s +

∫ t

0

√
2γaNs(1−Qs)dW a

s

Qt =Q0 +

∫ t

0

{
p γa(1−Qs)− p γAQs

+ Qs(1−Qs)
[
(ηA − ρA)− (ηa − ρa) + (hAa − haA)

+ Ns
(
(CaA − CAA)Qs + (Caa − CAa)(1−Qs)

)]}
ds

+

∫ t

0
(1−Qs)

√
2γA

Qs

Ns
dW A

s −
∫ t

0
Qs

√
2γa

1−Qs

Ns
dW a

s

+

∫ t

0

√
2sAa

Qs(1−Qs)

Ns
dBs. (2)



Remark that if γ(A) = γ(a) = γ, then Equation (2) writes

Qt =Q0 +

∫ t

0

{
Qs(1−Qs)

[
(ηA − ρA)− (ηa − ρa) + (hAa − haA)

+ pγ(1− 2Qs) + Ns
(
(CaA − CAA)Qs + (Caa − CAa)(1−Qs)

)]}
ds

+

∫ t

0

√
2(γ + sAa)

Qs(1−Qs)

Ns
dW̃s,

where W̃ is a Brownian motion.

Expression close to the one established by Tazzyman-Bonhoeffer
(discrete time, unilateral transfer, fixed population size, no
competition).

HGT has the same quantitative effect on genetic drift than
demographic stochasticity.



Evolution - Rare mutations - Logistic Competition
We assume now that there is a continuum of traits u ∈ U ⊂ R.

The population is described by νK
t =

1
K

∑
i∈Nt

δU i
t
. Rates are given by

b(u) , d(u) ,
C
K
, pK , τ(u, v , x , y) =

τ(u, v)

β + µ (x + y)
.

Mutation with probability pK : mutation law mσ(u,h)dh for an
ancestor with trait u to give an offspring u + h.

We assume rare mutations:

∀V > 0 , lim
K→∞

pK eVK = +∞ ; lim
K→∞

pK (K log K ) = 0.

It results a separation of time scales, between competition phases
and mutation arrivals (cf. Champagnat 2006).

The evolution at time scale
t

K pK
can be approximated by a TSS.

(Cf. Metz et al.)



Monomorphic Equilibrium with trait u : xu =
r(u)

C
.

Invasion Fitness Function:

S(u + h; u) = r(u + h)− r(u) +
α(u + h,u) r(u)

β C + µ r(u)
.

Theorem
Invasion-implies-fixation assumption. The initial conditions
νK

0 = xK
0 δu0 (du) converge to xu0δu0 (du).

Then the sequence
(
νK
./KpK

)
K≥1

converges in law to the process

(Vt (du) = xYt δYt (du), t ≥ 0), where the process Y jumps from u to
u + h with the jump measure

b(u) xu
[S(u + h; u)]+

b(u + h) + τ(u + h,u,0, xu)
mσ(u,h)dh.

Proof: direct adaptation of Champagnat 2006.

Main Fact: transfer events may drastically change the evolution.



Exemple: u ∈ [0,4]. A frequency-dependence HGT case.

b(u) = 4− u ; d ≡ 1 , C(u, v) ≡ C ; τ(u, v) = eu−v , β = 0 , µ = 1.

Then, xu =
3− u

C
and if h > 0,

S(u + h; u) = r(u + h)− r(u) + τ(u + h,u)− τ(u,u + h)

= −h + eh − e−h > 0
⇐⇒ h > 0.

The evolution will lead to larger and larger traits.

Without HGT: the fitness function equals r(u + h)− r(u) and is
negative when h > 0: a mutant with trait u + h cannot invade the
population.



The canonical equation - σ → 0
We assume that

∫
g(h)mσ(u,h)dh =

∫
g(σh)m(u,h)dh. Let us

denote by Yσ the associated TSS.

Theorem
The processes ( 1

σ2 Yσ
t , t ≥ 0) converge when σ → 0, to the solution

of the deterministic equation

u′(t) = xu

(
r ′(u) + ∂1τ(u,u)− ∂2τ(u,u)

) ∫
h2m(u,h)dh.

In the example, r ′(u) = −1 and ∂1τ(u,u) = −∂2τ(u,u) = 1. Then

u′(t) =
3− u(t)

C

∫
h2m(u(t),h)dh.

The evolution with transfer decreases the reproduction rate until it
vanishes and therefore yields the population to evolutive suicide.

Without transfer: EC: u′(t) = − 3−u(t)
C

∫
h2m(u(t),h)dh yields the

optimal nil trait which maximizes the birth rate.



Simulations - Case of Frequency-Dependence
Two students: Lucie Desfontaines and Stéphane Krystal.

u ∈ [0,4], m(u,h)dh = N (0, σ2).

Frequency-dependent unilateral HGT model.
τ(u, v , x , y) = τ 1u>v

x+y . The constant τ will be the varying
parameter.

b(u) = 4− u ; d(u) = 1 ; C = 0,5 ; p = 0,03 ; σ = 0,1 ; K =
1000.

Initial state: 1000 individuals with trait 1. Equilibrium of
population size with trait 1: 1000× b(1)−d(1)

C = 4000 individuals.

Optimal trait 0 and size at equilibrium: 1000× b(0)−d(0)
C = 6000

individuals.

We will make τ increase.



τ = 0



τ = 0,2 - Almost no modification



τ = 0,6 - Stepwise Evolution

Brutal appearance of a quasi-invisible strain.

Transfer will convert individuals to larger traits.

Then, the population decreases. For a given trait u, the
equilibrium size Neq = b(u)−d

C × 1000 = 2000(3− u).



Mutants with small trait usmall appear in the resident population
with trait u. Invasion fitness:

S(usmall ; u) = u − usmall − τ .

Thus, mutants will survive⇐⇒ u − usmall > τ .

If such a mutant appears, it reproduces faster and its
subpopulation kills the population with trait u.



τ = 0,7 - Random Macroscopic Evolution

Four simulations with the same parameters. Big differences due to
the aptitude of a mutant to create a new strain.



τ = 1 - Evolutive Suicide

HGT impedes the population to keep a small mean trait to survive.



Density-Dependence Case
The transfer rate is proportional to τ 1u>v Nu, where Nu is the
number of individuals with trait u.

τ = 1
K and time = 100.

τ = 1
K and time = 1000 .

For transfer rates larger than 2
K , one observes the evolutive suicide.


