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INTRODUCTION

A new part of the theory of stochastic processes, initiated by P. Malliavin, and
veloped among others by D. Stroock, J. M. Bismut, S. Watanabe and many others
recently emerged under the name of “the Malliavin Calculus.” This is a stochastic
calculus of variation which is in particular able to give powerful criterions for the law
of a given functional of the Brownian motion to possess a density. One can distinguish
three parts in the Malliavin Calculus. First of all, it relies on the use of differential
operators which apply to functionals on Wiener space, associated Sobolev spaces, and
an integration by parts formula which relates the derivations on Wiener Space and
the Itd integral. Second, it contains a criterion, essentially in terms of the “Malliavin
covariance matrix,” or a similar quantity in Bismut’s approach for a random vector
defined on Wiener space to possess a density, or even a smooth density. The third
circle of ideas concerns the way in which one can give in specific examples sufficient
conditions for the above criterion to be satisfied. The most studied example is that
of the solution of a stochastic differential equation, for which the Malliavin Calculus

produces a probabilistic proof of Hormander’s “sum of squares theorem.”
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It has become clear during recent years that the Malliavin Calculus is not just
a fancy way of making the probabilistic theory of diffusion processes self-contained
(i.e. suppressing the need for borrowing results from analysis), but that it is a powerful
tool for analyzing Wiener functionals, which is of interest to theoreticians as well as

to specialists of stochastic control and nonlinear filtering.

This set of notes, which reflects the contents of a series of lectures given by the
authors at the Systems Research Center, University of Maryland at College Park,

aims at introducing and motivating the study of the Malliavin Calculus.

Section 3.4.1 explains the ideas of Malliavin and Bismut in the simple case of a
finite dimensional probability space. In Section 3.4.2, we present the basic definitions
and results of the Malliavin calculus on Wiener space, following Bismut and Zakai.
Section 3.4.3 explains how the sufficient condition for the existence of a density follows
from Hormander’s condition, in the case of the solution of a stochastic differential
equation. In Section 3.4.4, we study the same problem for the conditional law in a
filtering problem. Section 3.4.5 presents the application of the Malliavin calculus to
stochastic partial differential equations, and how it allows to prove the non existence of
finite dimensional statistics in certain nonlinear filtering problems. Finally in Section
3.4.6 we show how the differential calculus on Wiener space can be used to generalize

1td’s and Stratonovich’s stochastic integrals and differential calculus.

The aim of this text is to state the main results and introduce some of the
relevant techniques. No detailed proof is given; only some proofs are sketched. We
have included an extended bibliography at the end. Each Section is followed by
bibliographical comments.

We want to thank the Systems Research Center and in particular its director John

Baras for inviting us to give this series of lectures and for their warm hospitality.
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PRELIMINARY

Let (2, F, P) be a probability space and & : Q — R a measurable map. I P?
is the image measure of P under ¢ the question is:

(i) does P? have a density w.r.t. Lebesgue measure on R*?
(1) is this density regular?

In the case where © is finite dimensional, some answers can be given using the
differential calculus on . When Q = Co(R4+,R™), the m dimensional Wiener space
of continuous paths in R™ starting at 0, the Banach structure on { is too strong to
give an answer to the problem, essentially because most of the Wiener functionals
are not even continuous for this structure. The idea of Malliavin was to define a new
notion of regularity of a Wiener functional and to use it to perform an integration by

parts on Q.
The answer to the above question is then given by the following lemma.
Lemma. Let u be finite Radon measure on R*. Assume that there exist

m € N, m > 1 and C = 0 such that:
Vo,lo| < m, Ve € CRR®), | \ D®p(x)(@x)] < Cllplloo

then p has a density w.r.t. Lebesgue measure and, if m > n, this density is in CHR™)

withk=m—n—1.

3.1 A FINITE DIMENSIONAL ANALOG OF MALLIAVIN
CALCULUS

In this paragraph, (Q,F,P)is (R¥,B, g(x) dx) where B is the Borel field on RN

and ¢ a C° positive function on RN with integral 1.
d is a C™ map from R" to R®

A natural assumption for the existence of a density for P® = @, (P)isthat & be
a submersion, i.e. that the differential of ® be of maximal rank, namely n. So, from
NOW On, We assume:

d is a submersion. (H1)
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If & is a submersion and is proper (i.e. B is 2 bounded set of R* = &7!(B)
is a bounded set of RN), it is not difficult to prove that P?® has a smooth density.

If & is not proper, there is a density but nothing can be said about its regularity.

In that case, we look for necessary conditions which ensure that the following

integration by parts formula is true:
Vo e C°(RY), Vi, 0<i<n, 3IB¥eL'(Q),

\.b,. @(z) P®(de)=E(D; po &)= E(po0d-B¥) (3.1.1)

From (3.1.1) and Lemma 0, we get the answer.

In the following, we give two methods which lead to this integration by parts
formula and which can be generalized to the infinite dimensional case of the Wiener

Space.

3.1.1 The Malliavin Method

It is adapted to the particular case where P is the canonical mw.hmmmb measure
/

n 2
on RN, ie. g(y) = (27)"7 exp AI Enlv ' /
The Ornstein-Uhlenbeck operator
L=A-z-V¢
is self adjoint with respect to the gaussian measure i.e. :

E(LF - G)= E(F - LG), (3.1.2)

provided the above quantities are well defined.
Furthermore, let F, G and F G € D (L), where D (L) = {& e L? (RY);

L& e L*(RN)}, and define:
T(F, G) = w (L(FG) — FLG — GLF)
If F and G are C! functions on RY, it holds:

I(F,G)=vF - -vG (3.1.3)
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Formulas (3.1.2) and (3.1.3) are the keys for the integration by parts formula.

Let J = D @ be the differential of & - J is an (V, n) matrix and assumption

(H;) is equivalent to the invertibility of the (n, n) matrix

A=JT=((v® - Q@mvvinu to n (1)

which is called the Malliavin matrix.
The way of getting the integration by parts formula is the following.
E(Dip o ®)=Y E(D; (¢ o ®) D; & A7}
5k
Assume:
wod, & ®(pod), Ar, Az P arein D (L) (H2)
Then
E(Dipo @)=y E(Vpod v Af]
k
1
= mMUm ({L(po@- &%) — po LI, — DrLy o D} A})
&
=F Aﬁ o®. mﬁw
where B? = 1{®; L A} — A7} L & — L(%: A3).
It is possible to get, in a similar way, an integration by parts formula up to any

order with allows to prove the existence of a smooth density for P®.

Comments on the generalization to Wiener space. The natural way of gener-
alizing the operator L to an infinite dimensional setting is to define it by its spectral

decomposition.

Ka=(a,...,an) €rmNY, define:
N
Ho(y) =[] Ha: (), y€RY
i=1

(-0t 2 & (=g

where H(z) = Q_&vw 3ok

is the k-th Hermite polynomial on R.
The Hermite polynomials (Ha), ¢ ymy~ are eignevectors of L. More precisely:
LH, = —|a| Hy.
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Furthermore, the set {H,, @ € rmN™} is an orthonormal basis of L2 (RN, HUV. So,
the domain of L in L? (RN, P) is:

D(L)={2€L*(RVP)/ &= > Ay Ha,

a€rmNN

Y lalAL < +oo}

a€ErmNN

and if ® € D(L), by definition
Lé=- > |a|rs Ha.

aErmNY
All this program can be developed in the Wiener space setting: the multiple
Wiener integrals stand for the Hermite polynomials, and the fact that they form
an orthonormal basis of L? (2, P) is the Wiener chaos decomposition of a square

integrable functional of the brownian motion.

So, if & is in L? (£, P) with its values in R®, the assumptions for P? to have a
smooth density are: (H}) the Mallavian matrix: \
\..\
A= AAH, AA...q AVJVVH:.HH ton

is invertible.
(Hz2) ® and A™! are “regular” and have good properties of integrability.
This can be rewritten in the following way:

HY') the Malliavin matrix A is invertible and |det 4|~ € L7 (Q, P) Vp > 1.
1

H;) @ is “regular” and has good properties of integrability as well as its
2 g g gr

“derivatives.”

3.1.2 The Bismut method

The idea of Bismut is not related to the Gaussian character of the measure but
to the quasi invariance property of the measure with respect to some transformations

on .

If g =1, (of course, P is not a probability measure but, any-way, we can look
for an integration by parts formula), P is Lebesgue measure and, so, is invariant

under translations.
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Take H: R¥ — R a C? map, P integrable. Jaw wo®(y+a) H{y+a)dy
is independant of a. By differentiating w.r.f.a, we get, under some more regularity

assumptions,

\wz > Djpo®(y) D; &;(y) mGEQuJ\wz po®(y) D; H(y)dy (3.1.4)

=1

Under assumption (Hj), define:

Ha(y) =) D; :(y) A5 (v)

J=1

Write (3.1.4) with H = H; and sum over 1. We get:

0o d(y) WU D; AP ¥; kﬂv () dy

i,5=1

Depo®()dy =~ |

RN RN

This is a good formula of integration by parts if:

N
3 D AP 3 mw& € L' (RN, dx) (Hs)
i,j=1
When g # 1, the measure P has a priori no invariance property but it is quasi

invariant under any C' differomorphism ¥ (i.e. ¥, P is absolutely continuous

w.r.t. P) because of the change of variables formula:

g (T~ (v))

v —
P ) = 9(y)

|det |7 (y) dP(y)

So, the integral is:
1= [ posouy) dP¥ (W)
RN

In order to differentiate w.r.t ¥, we choose a one parameter family of diffeomor-
phisms, for example the flow associated to a vector field X an RY i.e ¥, (y) is the

solution at time ¢ of the equation:

dy: = X (ye)
Yo=Yy
Now, we write: & I(¥¢),_q=0:
[ Xeon @@ == [ votw) TEE@dPw  (G13)
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ﬁ& is the divergence of the vector field X under the measure P.

In a similar way that we have chosen H in the Malliavin method, we have to

choose X in order to get the integration by parts formula. *

Since
N n
X(po®=) > XiDjpodDi¥;
=1 j=1
=Y Dijpo® (X V8, (3.1.6)
j=1

we need the following assumption:
(H,) There exist vector fields Yi,...,Y, such that the matrix ((Y; . v @;)) is

invertible.

Actually, if (Hg) is valid, let B be the inverse matrix, and define:

n
Xi=> Bi;Y;
=
Then: X'(¢ o @) =Dip o @ /

So, if

Viel.n, % . pw,p).
g

the integration by parts formula holds.
In the finite dimensional setting, it is easy to show that (Hj) and (Hi) are

equivalent. In the infinite dimensional setting, this is no longer the case.

Comments about the generalization. As we are only interested in the behaviour
of the low ¥, near t = 0, it is equivalent and easier to take for ¥ the linearized
flow y+t X (y). When Q is the Wiener Space, we need transformations of Q,w —
w +t X (w), leaving the Wiener measure quasi invariant. Some of them are given by

Girsanov theorem.

Girsanov’s Theorem. Let u: [0, 1] x W3 — R be an adapted process such that,

1
3
Nhﬂ@m»\ :w%vv < oo foral VM.
0

2

Then the law of the process w. + .ﬂo u, ds is absolutely continuous with respect

to Wiener measure, the density being:

1 1 1
exp AI\. Uy dwy — 3 \ u? A,mv
0 0

By means of this theorem, it is possible to get an integration by parts formula ana-
log to (3.1.5) on Wiener Space. By the way, it is necesary to define the analog
X . V& when ® is a Wiener satisfies the assumptions of Girsanov theorem.

3.1.3 Bibliographical comments

This section was inspired by similar expositions in Bismut [A1l] and Stroock

[A13].

3.2 THE BISMUT - ZAKAI METHOD FOR MALLIAVIN CALCULUS

Let Q denote the space C (R4, R™) equipped with the topology of uniform
convergence on compact sets, F the Borel o-field on @, P the standard Wiener

measure, and let {W, (w) =w(t),t>0}.

3.2.1 The polynomial functionals

Definition. A polynomial Wiener functional is 2 map ®: & — R defined by:

&= f (6 (h), -6, (hp))

Where:
(i)  f is a polynomial function on R?
(ii)  {h1,.--,hp} is an orthonormal set of L?(Ry)
i) 8 (R)= [7°° h(s) dW(s)

P () is the set of polynomial Wiener functionals.

Proposition. The set of polynomial functionals on Q is dense in L% (Q, P).

3.2.9 The directional derivative of a Wiener functional

If ©(w) = f(6;, (R1),....6, (hp)) is a polynomial functional and the h; are C?
functions with compact support, then:
+oco

6: (k) = — i Wi kI ds
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and @ is Frechet differentiable i.e. , if g € L? (R+; R™)

Do &= tim 2@T€ [ 9(s) ds) — @(w)

e—0 I

=3 X 3L 60 tw o)

J=1 {k; ix=j}

where (, ) denotes the scalar product in L2 (Ry; R™) and G, = Iy g(u) du.
This motivates the following definition:

Definition. If & is a polynomial functional on  and g € L?(Ry; R™), define:
r
De@ (W)=Y Y & (8(R)) (hx, g;)
i=1 {ky =g} K

where Q«H.\ g(u) du.
0

+ Notation. Denote by (D¢ @),cp+ the element of L?(R* x 2, R™) such that:

Ds & =(D-®,9)ie. Di® =T sopy Wmm (5(h)) ke (£)
On P (Q), we define the following norm:

eN+MU\ 2t

=1 e

[E (72 (5 (R)) ?%a@%

=

@[]z, 1

il

Definition. H* is the closure of P () in L? (2) for the norm || ||z1
It can be shown that the gradient operator D extends to H?1. The extension is

called the derivative on Wiener Space.

3.2.3 The integration by parts formula

Theorem. If @ isin H*>! and u € L?((0, t) x 2, R™) is adapted, then:

M\b.eg% umeM\gp.s

i=1 =1

This is an extension to Wiener space of the formula (5) of Section one.

Remark. The gradient operator D can be thought of as a linear continuous operator

from H*' C L? (Q) into L2(R4 x £; R™). Clearly, D has an adjoint D* which maps
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L*(R4 x ;R™) into (H2!)', where (H?')', the dual space of H??, is a space of

“distributions over Wiener space.” Let us now define the operator § as follows.
Dom & = {u € L*(R4+ x ©; R™); D*u e L3 ()}
For v € Dom(é), § w2 D*u
It follows from Riesz’s representation theorem that an equivalent definition of §
is as follows.
Definition. Dom § = {u € L?(R4 x 2, R™), such that there exists a constant ¢ with:
IB(D-&,u)| < c| @], V& € B},

For v € Dom 6§, 6u is the unique random variable which satisfies:

E(D.% u)=E(®6u) V& ¢ H

The operator § is called the Skorohod integral. It will be studied in § 6 below.

3.2.4.1 Theorem

Let @ be in L? (). Assume that & is in H*' and that there exists « € Dom §
such that:
(D - @ u) € H:?
(ii) (D - ®,u) > 0 as.

Then P? has a density.

Proof: Let ¢ € Cf°(R). Then p o & € H>1,

Furthermore, if ¥ = ml+lmbu.|0,e&._ then ¢ o ® . ¥isin H* ! by assumption.
Then, the following integration by parts holds:
B((D(po8-¥), v)) = B((po &) Véu)
<= E(¢' 0o (D-®, u)T)=FE[(p o ®)(T u) — (D T, u)]

So, if P, is the probability law on € such that Nmun , then P? possesses

a density. Now, if B is a borel set of Lebesgue measure zero: mvm. (B)=P.(® € B)=

0. By the monotone convergence theorem, P(® € B) = 0. So, P? is absolutely

continuous w.r.t Lebesgue measure.
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Further integrations by parts lead to the smoothness of the density. Let us now

state the multidimensional version of Theorem 3.2.4.1.

3.2.4.2 Theorem N
Let & = (@1,...,84) € (L*(Q))?. Assume that ®; is in H>!,i =1,...,d, and
that there exists uj,...,uq € Dom é such that:
() (D - &;, u;) € H¥1<4,5<d
1) (D - @, nu.uﬂm...u.mm >0 as.

Then P? has a density with respect to Lebesgue measure on R".

3.2.5 Bibliographical comments

The akstract presentation of Bismut’s methodology (independently of the par-
ticular application to SDE’s) can be found (in the case of one- dimensional processes)
in Zakai [A17], from which Theorem 2.4.1 is borrowed. For a systematic exposition

of the theory of Sobolev spaces over Wiener space, we refer to Watanabe [A15].

3.3 THE APPLICATION TO STOCHASTIC DIFFERENTIAL
EQUATIONS

In this paragraph, we study the particular case where @ is the solution at time

t of a stochastic differential equation, i.e.

dze = Xo(ze) dt+ Y Xi(z) odw (3.3.1)
i=1
Xo, X1,--., Xm are C{° maps from R™ to R" that we consider as vector fields on

R™ in the sense that we identify X; with the first order partial differential operator

Mwﬂ; X .u mhnk,. Equation (1) is understood in the sense of Stratonovich.

It is natural to associate to (1):
its infinitesimal generator: (3.3.2)
H m
= = 2
L=Xo+3 .Mum X3

a controlled ordinary differential equation: (3.3.3)
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Xt =Xo(e)+ Y Xi(=h)u;
i=1

Iy = To

where u € H' (R, R™)

The links between (3.1), (3.2) and (3.3) are the following:

3.3.1 Theorem
a. If pq is the law of z¢, solution of (3.3.1), then p is the solution of the following

PDE written in the distributional sense:

n&.n:

—_ h* —]

g7 pe=0
where L* is the adjoint of L in the L? sense.

b. Support theorem:

If A(t,z0) = {X}, ue H'} and

\PﬁHOV = Usso ;\Wﬁmq R.cvu then :

support p: = A(t, To)

support A\. e ot I &v = A(xo)-
0

So, the existence of a smooth density for u. is in relation with:
1. the hypoellipticity of the operation mm|ﬂ — L*. Recall that a partial differential
operator A is said to be hypoelliptic if:
Ap=TonlU
Yy eC?U)= vy € c=(U)
U being an open set of R™.
9. the accessibility property for the controlled ODE (3.3.3).
The assumptions needed for solving this problem are in terms of the following
Lie algebras of vector fields:
1. A=LA(Xq, X1,0--2Xm)
2. B=LA(X1,...,Xm)
3. J = ideal generated by B in A
The main results concerning these problems are presented in the following pic-

ture:

77



3.3.2 Theorem

dim A(z) =n, Vz € R®

dim J(z) =n, Yz € R®

dim B(z) = n, Yz € R"

L is hypoelliptic

m *
IMM‘ - h
is hypoelliptic

a *
at L

is hypoelliptic

.—.o+oo nlo;hn&
has a smooth

density

it has a
smooth density.

i: has a smooth
density, everywhere

strictly positive.

Az) £0, ¥z eR* | A(t,z) #0, Vz € R® A(t,) = R,
t>0 Yz € RM
t>0
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3.3.3 Comments

/

1. The Hmmmkﬂ why the Lie algebras occur in the accessibility problem is essen-
tially the following: if the vector fields X; commute, for a control u with piecewise
constant derivative, z} is a composition of the flows associated to each X;. If they
don’t, the flows associated to the brackets occur because of the parallelogram law:
follow the vector field X; during time ¢, then X; during the same time, then —X;
and —X;; up to the second order, it is as if you had followed the field [X;, X;]

during time 4e, up to a term of order &2.

2. The implication {dimA(z) = n,Vo € R"™ = L is hypoelliptic} is

Hormander’s theorem. To obtain the

{dimJ(z) =n,Vz € R® = £ —L*is hypoelliptic}, it suffices to apply

implication

Hormander’s theorem to the operator on R"*! £ — L* : then occurs the Lie algebra

C=LA AW + M?.N‘.. o .Nav where u.mo is the vector field defined by:

8 . B
m L =mth-

1
S TXI+e
¢ being a zero degree operator is a function. Actually, Xo = —Xo+ Y, XiXi, and

the two following conditions are equivalent:
a. dim C(t, ) =n+1 V({, z) € R*H!
b. dim J(z)=n V;€R"

3. Beware that the fact that the support of y: is the whole space does not imply

that p: has a smooth density. The following example is in R2.
L

Jz

i} a

X =a-te(@) 5

where ¢ : R — R is a smooth function whose value is 0 on R—.

dim B(z,y)=1 i#x<0

dim Bz, y)=2 fx>0

So, on R~ x R, the system (X3, X3) does not satisfy the range condition. Neverthe-
less:

\wﬁn_.. T, @v = mﬂ.u. Yt € B.
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and certainly p; does mot have a density when zyp < 0. But, we shall see, using b
Malliavin’s caleulus, that y, has a smooth density when zo > 0 because the rank
condition is needed only at the starting point. .
Stroock showed that, if the rank condition fails on a submanifold NV of codimen-

sion n— 1, under some technical assumptions on the degeneracy, then y; has a smooth

density even if the starting point is on N.

3.3.4 The Malliavin, Bismut method

Theorem. Let z¢ be the solution of the SDE (1) at time ¢ and p; its law. Then, if:
dim J (z0) =n,

1y has a smooth density.

Proof: The proof proceeds in three steps.

First step: z, € H»!

This is done by solving (1) by the Picard iteration method, using the rules of
calculus for the gradient and passing to the limit. The gradient D,z is a solution of
the following SDE:

t t . . I
\waﬂ =X ?L;_.\ X{ (z,) Diz, &1.“.\ X;(z,) Dz, o dw] _

Let ®; be the n x n matrix valued process solution of:
&, =TI+ \u X! (z,) B, ds+ \n__ X! (za) B o duwj.
0
Remark that @, is nothing else but the jacobian matrix of z: w.r.t. zo.
Then: Diz, =&, ;' Xi(z,)

Second step: Choose u such that ((Dz}, u;));; > 0. Look at the bilinear

form associated to ((Dzi, u;))ij,

((Dw;o) -2, @) =y Duj =i pj 4
t, J

Il
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i
\ @) 97 X, :w pj ¢ ds m
0 _

t _
\ M A@ﬂ Gulu N.Fmv ?w, ﬁv ds
o 5 . ”.

We get the best rank if span ((u!)',...,(u™)') = span(®:®; 1 X1,..., 9,9, X,,) and,
so in particular, if A:J. = &, $, X}, where AQJ. is the column vector whose j-th

k

component is uj.

In that case, the Bismut approach leads to the same condition as the Malli-
avin approach i.e. to check the invertibility of the Malliavin covariance matrix

A¢ = (D=}, D2))i ;-
Third step: The invertibility of A,

Remark first that:

Ay = 8,0,9°

with Cy = [f ¥, (871 Xx) (871 Xx)' (z4)ds
From the invertibility of ®; and its boundedness properties, it is clear that it is
equivalent to prove E Q&mﬁ .a..uluv < 40 or E Ammmn Q“VLJ < 4oco. We first

consider the elliptic case and then the hypoelliptic case.

3.3.4.1 Theorem.
Assume X ... X,, generate R" at zo then C; is positive definite a.s. and so p,

has a density.
Proof: For each ¢ € R*, T 1, (Xk(x0),q)? is strictly positive. So, by continuity,

(C: ¢, q) is strictly positive a.s.

3.3.4.2 Theorem.
Assume J (z9) = R™. Then Cy is positive definite a.s. and so u¢ has a density
Proof: Define U, =span{®;! X;, 1<i<m}, Vo= U U,and Vi= n V.

By the .w’o.w. law, H\a+ is a non random space a.s. Assume <.o+ # R™ and take ¢ in
C\ﬂ.v._.. Define 7 = inf{s > 0, Vi, # V;t}. It is clear that, a.s., 7 > 0. Then, for
R

(g, ®7'X;) =0, Vi=1,...,m.

By It&’s formula it holds:
t
(27 Xi,0) = (Xivq) + [ (87 X0, Xl q)ds
0
14
- \ (@37 [X;, Xi] ,q) 0 AW
0
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Annihilating the martingale part, we get:

(g, 7' [X;, X:) =0, Vi<

8

(g,%97! [Xx,[X;,X:]]) = 0. Then, annihilating the bounded
variation part, it comes, (g, ®;" [Xo,X:]) =0

and by iteration:

Recursively, we can prove that ¢ is orthogonal to every bracket which contradicts
the assumption. So, V;m = R™, and this implies that each V, is R™

The problem of the smoothness of the density is more complicated because we
need to prove that E Qm&» hnvluu < +oo. But, the first idea is the same, namely
to give a kind of Taylor expansion of 37! X; by means of the brackets. Before
looking at other properties of the density we give a classical example of 2 hypoelliptic

diffusion.

3.3.5 Example: the Heisenberg group

The Heisenberg group Ha is C x R together with the group law:
(z,8) (2,t)=(2+ 7, t+t +2Im 2Z').

X,Y,T are the left invariant vector fields on Hj defined by:

17} d a 0 a
”mn_lw..qwo M\."||MH|.,H)=IM

X

They form a basis of the tangent space. Let £ be the diffusion on Hj associated to the
Kohn laplacian: Ag = X%+ Y2, Because, [X,Y] = 4T, £ is a hypoelliptic diffusion.

It is a solution of the system:

1 0
&_m — O D«.EH + H &..E.m
262 —26
mO.. if £o = 0, we get,
wy (1)
E= w2 (t)

2 m;ﬂ wy dwy — .ﬂ SNAEHV

The last component is 4 times the area swipped out by the vector (w1, wz). Paul

Levy gave a formula for the density of the law of this area knowing (w1, wa)._
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3.3.6 Further properties of the density

3.3.6.1 Positivity Theorem.

\
It mﬁav = R", ¥x € R*®, then the density of u, p(t, z), is strictly positive for

all (£, z) € R} x R™.
Proof: We use the Feynmann-Kac formula and a time reversal. Let a € (0, ¢) and

define

q(s, z)=p(t—s, z), fors<t—a

g is a solution of the following PDE:

g . s
lmwﬂnf.ﬁ qg=0,

q(t — o) given.

s<t—a

where L* = 1 "7 X?— X —c as we saw before. Let y be the diffusion associated

to the operator § 1" X7 — Xo, starting at <.

By the Feynmann-Kac formula, it holds:

p(t,2) = a(0,2) = B (g (t — aica) o Q- cwds))

Since £ — ¢(t — @,z) = p(a,z) is the smooth density of a probability measure, there

exists a ball B C R™ and a strictly positive constant k € R, such that:

g(t—a,z) 2k, VreB

Moreover, as |c| is bounded, there exists ¢ € R, such that, c¢(z) 2 ¢, VzeR™
We get then:
p(t,z) = kexp(E(t — ) P (vi_o € B)

Because B(z) = R", Vx € R®, the support of the law of yf_, is R". This implies
that:
P(yi., € B)>0.

Remark. The statement of the theorem can be improved as follows.
Let ¢ > 0. Suppose that for some s € (0,t), A(s,z)=R" for all

x € R™. Then p(¢, z) > 0 for all z € R".
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Indeed, the hypothesis has been used only to insure that for some o € (0,1)
and all z € R®, the support of the law of Yi_o 158 R™. That support coincides
with B (t — a,z), where B(#,z) is the accessible set at time t, starting from z, for

the control system:
%= —Xo () + Y e () Xi (v +
i=1

Yo X

=1
which is the same as that associated to:
U= —Xo (i) + > X: (ui) i}
=1

It finally follows easily from a time reversal argument that A(s,z) = R™ for all
z € R" if and only if B(s, z) = R™ for all z € R™.

3.3.6.2 The regularity with respect to the starting point

Let p(t,z0,z) be the density of p.,zo being the starting point of the diffusion.

As a function of (¢,zq),p satisfies the following backward equation:

9p
—+Lp=0.
ot t P
Then, if $(z) =R", Vx € R, p(t,%,%) is smooth w.r.t. z,, by Hérmander’s
theorem. One way of recovering this result by using the Malliavin calculus is to

proceed as in the previous paragraph ie. if ¢ is a smooth function with compact

[ptan 2o dn =B (oo Qﬁ_h%u%d

by Feynmann-Kac’s formula.

support:

Malliavin's calculus applied on the right hand side allows one to get estimates of
the type:
| [ 2(t,20,2) D (s0) dao] < cale
and then to conclude. -
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3.3.6.3 The hypoellipticity of L

I dimS (2) = n,Vz € R,y has a density which is smocth with respect to the
forward and backward variables. Using localization and integration w.r.t. zp Stroock

showed that L is hypoelliptic and, so, recovered the result of Hormander’s theorem.

Assume now the more general condition, dimA(z) =n VzeRM

Stroock’s method. It uses the following trick to go back to the previous case.
Let W™+ be a Wiener process independent of W',... W™, and define:

/
/

/ .
» [ owm(s))ds
Ty =
.S\J:.TH ﬁuv
where g is a C}® strictly positive function. Then % is a solution of the following
SDE:

iy = Xo (Z)dt + Y X (£0) 0 dWE + Xy (3,) o dWH
1

~ X ~ X s

Xo = Aboov , Xp= Aa\ﬂ »v s Xmg1 = va
and wﬂhﬂ? M?:;quaiv = R™*! at each point. So, L = Loymhl ¥y X s
hypoelliptic. As N_wa = p(&m+1)L, the same property holds for L.

with:

Bismut’s method. This is a geometric method. We shall only give an idea of the

method in the case where moreover:

dimS(z)=n—1, Yz € R"

By Frobenius theorem, R™ is a disjoint union of maximal integral submanifolds of
$. The idea of Bismut is to write the flow associated to z; as a composition of a

diffusion flow living in an integral submanifold and a deterministic transverse flow.

More explicitly, let ¢; be the flow associated to Xo. Then:
Proposition. z; = ¢ (X;) where,

dX: =9} X; (Xy) o AW
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Denote by M., the integral submanifold of & which contains z,. Then:

Proposition. X(z¢) € My,, Vt € R* and the law of X has a density on C M,,.

The hypoellipticity of L is obtained by integration along the flow .

3.3.7 Bibliographical comments

The equation in Theorem 3.1.ais often called the forward equation, or the Fokker-
Planck equation. It can be found in most standard textbooks on stochastic differential
equations and diffusion processes. Theorem 3.1.b. is due to Stroock-Varadhan [A 15].

The first two lines of Theorem 3.2 is Hérmander’s sum of squares theorem, whose
probabilistic proof is essentially the subject of the rest of the section. The third line of
Theorem 3.2 is borrowed from results in control theory, see e.g. A. Isidori: Nonlinear
Control Systems, Lecture Notes in Control and Info. Sci. 72, Springer Verlag (1985)
or C. Lobry: Bases mathématiques de la théorie des systémes asservis non linéaires,

mimeographed, Univ. de Bordeaux (1976).

Bismut’s version of the Malliavin calculus applied to SDEs appears in [A1]. In
his paper, Bismut makes a heavy use of the theory of flows. This may obscur the
exposition for the reader who is not familiar with stochastic flows. Norris [A7) presents

a very clear and complete account of Bismut’s approach.

The proof of the existence of the density in the one-dimensional case can also be
found in Zakai [A16].

The original approach of Malliavin [A5], [A6] has been developed by Stroock in
[A11], [A12], [A13] and [A14]. Other expositions appear in Ikeda-Watanabe [A3],
Kusuoka-Stroock [A4], Ocone [A8], Shigekawa [A9], [A10] and Watanabe [A15].

The result in 3.6.1 seems to be new. The regularity with respect to the starting
point is studied in Stroock [A14] and the hypoellipticity of L in Stroock [A 14] and
Bismut [Al].
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3.4 AN APPLICATION TO NON LINEAR FILTERING: EXISTENCE
AND REGULARITY OF THE CONDITIONAL DENSITY (following
Bismut-Michel)

We consider in this paragraph, a “signal-observation” process (z,y) with values

in R* x RP, solution of a system:

dze = Xo(ze)dt + Xi(ze) 0 dwi + Yj(we) o dyi
dy: = h(z¢)dt + dv;
where w and v are independant Wiener processes with values in R™ and RP re-
spectively, Xo,X1,...,Xn, Y1,...,Yp,h arein C3°.
The problem is: does the filter associated to that system possess a smooth den-
sity, i.e. does there exist a smooth function ¢(%, xﬂu such that for every continuous
function with compact support ¢ : R* — R: ,

|
/

rip = Blolml¥) = [ oot )i

Ra
where Y, = o(ys,s < 1)

fh=0 and¥, =... =Y, =0, the conditional law is the law of z and the
answer to the question is in §3. We shall in a certain sense, go back to that situation
by using Girsanov theorem and the theory of stochastic flows. But first remark that,
heuristically, if k = 0 the conditional law is the law of the diffusion associated to the
operator WMN 24 Xo+ Mu\_.mn«nh. whose drift term has p+ 1 independant components,
namely Xo,Y3,...,Y;. Thisis why it is natural to introduce the ideal J generated
in A= LA(Xo,X1,...,Xm, Y1,... ,Y,) by the Lie algebra B = LA(X1,---, Xm)-

3.4.1 The Girsanov theorem

Zy = exp C.m h(zs)dy. — L [ _wﬁﬂmv_n&mv is an exponential martingale and it
o
allows to define a new probability measure P on (Q,F) by:

]

le_h =2z, t=>0

then:
o
a. by Girsanov’s theorem, y and w are independant V.iener processes Gm&mﬂ. P.
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b. by Kallianpur-Striebel’s formula.

E
rep = B(p(ze)|Y) = 2z ZelP) _ B
E(Z:)) o B
We get a first result in the uncorrelated case.

Theorem. AssumeY; =...=Y¥, =0 and J(z) =R", Vx € R*, then 7; hasa
density.

Proof: Define p(t,z) = E(Z;|z; = z,Y;), then, by the independance of z and

y under .m.u we have:
owp = E(p(z)p(t, 2¢))

o
Under the assumption, the law of =, which is the same under P or P, has a

density p and: oup = [(z)p(t,z) p(t, z)dz. Therefore, m; has the density:

_p(t,z)p(t,x)
)= Fott, oot 2l

3.4.2 The stochastic flows
In the case of correlated noises, more work is needed. In order to be able to fix
the trajectory y in x,, we write z; as a composition of stochastic flows (cf §3.6.3).

Denote by ¢, the stochastic flow associated to the following SDE.
du, = Yj(us) o dy}

It is characterized by the following properties:
(1) t — ¢(y,uq) is the essentially unique solution of the SDE
(1) (t,u0) — 9e(y,u0) is a continuous map for every vy, a.s.

(111) wo — ey, uo) is a C*° diffeomorphism, ¥(¢,y), a.e.

Proposition. For a.e.y,Z; = 1; '(y,2¢) is the essentially unique solution of the
SDE:
dZe = P71 Xi(F) o dwi + P Xo(Z,)dt

where

wx@ = | 2@)] X
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Since 9 is a €' diffeomorphism, to prove that the conditional law of z; given
y¢ under .Mw has a smooth density, it suffices to prove that the law of Z; has a
smooth density, for a.e.y. Of course, we cannot apply directly the results of §3 to the
equation satisfied by Z; because it is inhomogeneous and with unbounded coefficients.
But, by first assuming that the vector fields ¥7,...,Y, have compact support which
insures the boundedness of ¢; and its derivatives and then passing to the limit, one
can show that everything works in a similar way. If =, (resp. ) is the stochastic

flow associated to z; (resp. I:), one gets:
Doz = 77 (407 Xi) (o)
Since 7, = 1 0 T4, we have:
D,z = 77727 Xi(zo).

Since 7 is an invertible linear map, the invertibility of the Malliavin matrix is

equivalent to that of:

m f
Ce= M\ (13 Xe(20)) (127 X(20))  ds
k=1 0

Theorem. Assume J(zy) = R". then C; is a.s. invertible and m; has a smooth

density.

Proof: It issimilar to that of Theorem 3.4.2. We just write the stochastic differential
of 777 X;(xy) which shows how the ideal J enters.

drf 1 Xi(z0) = 7 [Xo, Xi)(zo)dt + 707 [X;, Xi](z0) 0 dw!
+ 777 ¥, Xil(20) 0 dyi

Remarks.
a. We have presented here a simplified version of the Bismut-Michel approach, which
yields only the existence of a density for II;. Indeed, in order to obtain the smoothness
of that density along the above lines, we would have to prove both the smoothness of
the conditional density under Hou“ and the smoothnesso z — p(t,z). Bismut-Michel
obtain the smoothness of the density of II; via a different and more direct approach.
b. The same kind of result can be obtained under more general assumptions.

- Xo0,X;,Y;,h can depend on y:.

- the coefficient of dvy; can be a function of y; : dy: = R(z¢, y¢)dt + (1) o dvy
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3.4.3 Bibliographical comments

Qur reference here has been Bismut-Michel [B1], which is an improvement over
the original work of Michel [B7]. The same result can be obtained by an adaptation of
the PDE hypoellipticity argument. For a summary of the two approaches mb...m'.?lrmn
references, we refer to Michel [B8]. Let us finally mention the works of Ferreyra [(B4]
and Kusuoka-Stroock [B6] who present other versions of the proof of existence and

smoothness of the conditional law in nonlinear filtering, using the Malliavin calculus.

3.5 ANOTHER APPLICATION TO NON LINEAR FILTERING:
MALLIAVIN CALCULUS APPLIED TO ZAKAI EQUATION AND
NON EXISTENCE OF FINITE DIMENSIONAL FILTERS (following D.

Ocone)

We consider a filtering problem as in §4 and assume that the signal noise and the
observation noise are independent i.e. that the vector fields Y7...,Y, are identically

zero. So (z,y) is a solution of:
dzy = Xo(z:)dt + Xi(ze) 0 AEM.
dyy = h(z:)dt + dvy
and Xo,X1,---,Xm,h are C* and bounded as well as all their derivatives.

From §4, we know that, under Hérmander’s condition (J (zo) = R™), the
unnormalized filter has a density p:. Assume: (Xi,...,Xm) is a uniformly elliptic

system of vector fields, i.e., there exists d >0 such that

weR™, Y (X;,v) = dlv]’
i=1
then, Krylov Rozovskii and Pardoux observed that p; isin L2(Qx[0,T], HV2(R™)N
L?(2,C([0,T],L?(R™))) and that it is the unique solution in this space of Zakai’s
equation

dp: = Lgp:dt + Lipe o dyi

where

SOX? )+ Xo— b

i=1

al S

.
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From now on, we consider p: as the unique process with values in L*(R™) so-

lution of Zakai’s equation.

The idea is to use Malliavin’s calculus to determine whether this process “fills
up” L?*(R") or not. Of course, we cannot speak of a density for the law of p; in
I*(R™) because there is no Lebesgue measure in L*(R") but Ocone looks at all the
finite dimensional projections of p; in L?*(R™) and finds a condition of Hérmarder’s
type under which every such projection has a density.

Denote by A the ideal of differential operators in R* generated by Lie (L3,...,L3) in
Lie (L}, L},...,L;) and,ifp€ L*(R™), by A(p) the space {Dp,D € A}. Then, we

have a result which is an infinite dimensional analog of that in §3.2.

3.5.1 Theorem.
Assume Apy is dense in L?(R™). Then for any £ > 0, the law of every finite

dimensional projection of p; has a density.

This result has an important nonmmnsmﬂnm in terms of finite dimensional filters.

3.5.2 Definition. _

r
For any ¢t > 0, p; is said to be finite dimensionally computable if there exists
- finite dimensional random vector Z(#,y) evolving in a finite dimensional vector

space such that: pi(z;y) = Fi(z; Z(t,y)) for some smooth function Fi(-).

3.5.3 Theorem.
If Apy is dense in L?*(R™), then for any ¢, p: is not finite dimensionally com-

putable.

Proof: Suppose Pt js finite dimensionally computable, then

F.(-; Z(t,y)) stays in a finite dimensional sub manifold of L?(R") when y evolves
in C([0,t],RP). So if § is a sub-space of L*(R®) of dimension larger than that of
the state space of Z, then the projection of p; on S cannot have a density, which

contradicts Theorem 5.1.
3.5.4 Sketch of the proof of Theorem 3.5.1

Denote by § a finite dimensional subspace of L*(R™) and by s the orthogonal

projection on S.
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3.5.4.1 Lemma
Vt € Ry, p: is in the space H?' of functionals from © into L?(R™) having a

gradient.

This gradient is a Hilbert-Schmidt operator on L?(R*) whose kernel D,p; sat-

isfies;
t t
D,py = Lips +\» Ly Dgprdr + \ LiD,p, o dy,
0 0
(we assume here for simplicity that the dimension of y is one).

Denote by &(¢,s) the H.S. operator on L?(R™) solution of the linear equation:
Vo € LE(R™) :

t
B(t,s)p = +.\ L3 ®(r, s)pdr
.
+ .\ Li®(r,s)p o dyr
E ]
Then D,p; = ®(t,s)L] Ps.
Let A be the Malliavin covariance matrix of ps:
t
A= .\ D;p: ® Dypids.
0
3.5.4.2 Lemma

If A is positive definite a.s., then the Malliavin covariance matrix associated

to mgp: is positive definite a.s., for every finite dimensional subspace § of LZ(R™)

Proof: Remark that the projection s and the gradient operator commute, ie.
Dsmspy = nsDsp
So, if Ag, is the Malliavin covariance matrix associated to msp, one gets:
As: = mg ATy,
and the result follows.
3.5.4.3 Lemma

If Apg is densein L2(R™), then A, is positive definite a.s.

Proof: The difference with the finite dimensional case is that we cannot write

®(r,s) = ®(r)®(s)”' because &(s)”! would be an unbounded operator whose
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domain is not known. So, instead of working on &(s)”'¢ we work directly on

(Ai,0,) that we write as:
t
:\. MU < Lip,, ®*(t,8)p > ds
]

Let wv(s,t,¢) = ®*(t,5)p. Then, as a function of s, for (¢,) fixed, v solves the
following backward SPDE:

dvs = —Loveds — Liv, 0 dy}
UVt =@

and the starting point of the proof is the following equality

(Lips, (1, s)p) = {Lipo, ®7(¢,0)p)
8
+ [ Bl o)
0
[ Bl 9 (6 o ol
0
As in the classical case, this implies that, if (A, p) = 0, then *(1,0)¢ is orthogonal

to Apo. So: ®*(t,0)¢ = »(0) = 0. This implies ¢ = 0, from a backward uniqueness

Theorem for parabolic PDEs.
|

Of course, what we need is stronger because we want the exceptional set in y to
be independent of . This is done by using a pathwise interpretation and a technical
Lemma.

Another difficulty we have overlooked is that v; is not adapted: this can be

solved by using either a pathwise interpretation or the extended stochastic calculus.

3.5.5 Bibliographical comments
The contents of this section is based on the work of Ocone [B 9]. Ocone has
applied lis results to the cubic sensor problem in [B 10].

Let us now explain in what sense the results of Ocone are stronger than earlier
results about nonexistence of finite dimensional sufficient statistics, due in particular
to Hazewinkel-Marcus [B5], Sussmann [B11] and Chaleyat Maurel-Michel [B3]. What

the results of these authors preclude is the existence of a smooth finite dimensional
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manifold M, smooth vector fields over M : Z;,Z1,...,Z,, and a smooth mapping
F:Ry xM — L*R") s.t.:
pe = F(t, V), t>0; where : -
P A
Ve = Zo(Va)dt + Yy Z:(Va) o dy;
i=1
On the other hand, Ocone shows that under appropriate conditions, for each fixed ¢ >
0, there does not exist a finite dimensional manifold M, an M-valued random

variable Vi, and a smooth mapping F(t) : M — L*(R?), such that for that t:
P = F(1,V4).

We finally note that the stochastic calculus of variation has also been used by
Chaleyat-Maurel [B2] in order to study the smoothness of the mapping {y(s);0 <
s <t} —p.

3.6 EXTENDED STOCHASTIC INTEGRALS AND STOCHASTIC
CALCULUS (Following Skorohod; Gaveau-Trauber; Nualart-Zakai; Nualart-

Pardoux).

For simplicity, all processes in this section will be one dimensional, (Q2,F,P)

is the canonical space C([0,1],R) equipped with Wiener measure and ws(w) = w(#).

3.6.1 The Skorohod integral

In this paragraph we develop the idea of Remark 3.2.3.
We saw in §2, that, if ® € H*! and u € L%([0,1] x Q,R) and is adapted, the

following integration by parts formula holds:

1 1
M._AB.\. u,dw,) = E A.\ D,® E&v :
0 0

This can be rewritten as:

E(®6u) = E((D®, u))

and u — bu = h u,dw, appears as the adjoint of the gradient operator. Actually,

we can extend the domain of § to every process u such that the map:

® — E((D®,u))
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is continuous on L*(f2).
It can be shown that this is the domain of definition of the Skorohod integral of

u. Here, we shall take § as a definition for the Skorohod integral.

3.6.1.1 Definition

(i) An element u € L?((0,1) x ©,R) is said to be Skorohod integrable if:
3C > 0,8 € H*',|E((D®,))| < C||2||2

(1) Let §: L*((0,1) x 2,R) — L2(£2) be the unbounded operator with domain:
Dom § = {Skorohod integrable processes}

and defined by: ifu € Dom 6, V® e HZ!,E(®§u)= E((D®,u))

3.6.1.2 Basic properties of the Skorohod integral

Notation:
= o(w,,s <)

Fy
/,.m; =o(ws —wy, £ <5<1)
Theorem.

a. Ifu € L*((0,1) x Q,R) and is Fy-adapted, then u € Dom § and éu = ,FH ugdw, is
the It6 integral.

b. Ifu e L*((0,1) x @, H*'), then u € Dom § and fu = %OH uydw, is the backward
It6 integral.

c. fue L> = L%((0,1),H*'), then u € Dom §.

d. fu €Dom é§ and & € H?!, then:

1
§(du)=®6u— .\ D® u,dt
0

in the sense that ®u € Dom§ if and only if the right hand side is square integrable
and then the equality holds.
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Proof: (a) is a consequence of Theorem 3.2.3, and (b) is proved in the same way.

(d) follows from the definition of 6. Let us indicate a proof of (¢), let u € L.

Define i} =k277,
1 thia -
Un k= =|Iu=\. Uyds
k+1 k Jtp

2" -1
un(t) = MU :u.w:un.ﬁin_ (1)
k=0
Consider the random variable:

2" -1

n = M .:.Pwﬁ.snmt - ,Eﬁnvl

k=0

ty 1y
1 k41 PERY
_—_ Dyugdsdr
n — ¢
k+1 k Jep i

Tt can be shown that £, € L*(Q); it then follows from (d) that u. € Domé and
Sun = &n. One can moreover show that E({, X £m) converges as n,m — o0.
Then {£,,n € rmN} is Cauchy in L*(Q2). But up, — u in L}(Q x (0,1)), and § is
a closed operator (as the adjoint of the operator D which has a dense domain).

Consequently, u € Domé, and

Su=IL*— lm 6u,
n—+o0

3.6.1.3 Further properties

(i) In cases (a, b, ¢):

n—+o0 B+t

2" -1
$u=1L?— lim M T k(wer | — wep)
k=0

where
Un k = E Aﬁ:..«_uﬂnn A\ M‘Jun+~v
(ii) In cases (a, b, ¢):
E(bu)=0

and in case c¢:

1 1 41
E(§ :vw =F A\y zw&u + FE A\. v\ D.u.Dyu,ds &v
0 o Jo
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this last term vanishes in case a because if s > ¢, D,u; =0, and in case b

since if s < ¢, Dyu; = 0.

3.6.2 Skorohod’s integral as a process

Define: [ u,dw, = §(ulpy) for t € (0,1).

3.6.2.1 Theorem.

The process { fy u,dw,, t € [0,1]} has a continuous modification if u € L*! and

one of the following properties is satisfied:
P
o 3p> 1,sup,epo ) E Qh _Ps_u%v v < 400
© 35> 2,8 (f; (f3 IDsuilds)” dt) < +oo.

3.6.2.2 Theorem.

Under the assumptions of Theorem 3.6.2.1,

2" -1 m 2

k41 1 5
M ugdw, —_— u; ds
k=0 \Y& D

ke

in probability, as n — co.

3.6.3 The generalized Ité formula

kY
H™ = {3 € LP(Q), D% € I7(2 x (0,1))}
L = LP((0,1), H™")

1 1
IP? = {ue L?!,Dyu € H*' ae., E Q. \ |D,Dyul?ds &v < +oo}
0 0

Notation:

Theorem. Consider:

t t
N.HH.N‘OIT,\; \ﬂh&hl—l\ .mubde.u
0 0

where: X € H®!, Ae L*', B € L?? for some p > 4.
and let F' € C*(R). Then:

F(X:)=F(Xo) + .\o“ F'(X,)Asds+ \o, F'(X,)B, dw,

H t
3 \ F"(X,)(9X)s By ds.
0
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where:
AQ.N‘V" = lim buku + lim ‘NUH.N.- ”.UM.MQ:TUMIN.‘H

At =t

s >t s <t

t t
.mnl_uw Abn ;N.o +-\ ‘Uuuﬂﬂ Q@ﬁ..T-\ b‘. wq.&ﬁc«.v _
0 0

Il

Remark. In the adapted case, (7 X); = B: and this formula reduces to the usual

Itd formula.
Proof: The three ingredients of the proof are the continuity of {X;} which follows
« from Theorem 6.2.1. Property 6.1.2. d, and Theorem 6.2.2. Write 2 for 7.

[tzr]-1

F(X) - F(Xo) =lim Y [F(Xuy) - F(Xe)]

k=0

Tre41
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"R tk > t
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k
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B,dW,+
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k+1 t
I F(Xe) \ Apdis \ F/(X,)A, ds
E th 0

The convergence:
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k
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ﬂ
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0

th41

is an easy consequence of Theorem 6.2.2.

Te41
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Te41

S F(X4) B dW, =Y, \
k te E Ytk
+M .\M

tet1
F"(Xy,)Ds Xe, Bods

k

- \A F'(Xs)BsdW, + W \ﬁ F"(X,)[(vX)s — Bs]Bs ds

3.6.4 The extended Stratonovitch integral

Definition. We say that {u,t € (0,1)} is Stratonovitch integrable if:

2" —1

M Un,k A.Eﬁnt)_ = Eﬁiv

k=0
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converges in probability, V¢ € [0,1]. In that case the limit, denoted h u o0dw,, is
called the Stratonovitch integral of wu.

Notation:

L2 = {u € L*!/ the set of functions {s = Deuy; s € [0,1] — {t}}eep,y s

equi-continuous, and sup, ; B(| Dt us|?) < +00}.

If u € L2, one can define D} uy, Dy ug and so (Vu):-

Theorem. If u € L2?, u is Stratonovitch integrable and:

t 1 1 gt
\ .F,om.EmH.\ :um8«+l‘\'Ad§uaAm.
0 0 2 Jo

Remark. If u; is a Fy-semimartingale:

1 1 1
.\. uy 0 dwy = \ ugdwy + = {u, wh
0 0 2

If u; is a F' “backward semi-martingale”

1 1 1
.\» uy 0 dwy = s\. usdws — =(u,w)1.
0 0 2

More generally, if u € L2, {u,w); exists and is given by:

/ {u,wh = %HAUM_.E — D7 uy)dt

\

In the case v F; adapted, Dy u; = 0. So:

i £
M?,Grﬂw‘\o D ug dt

1 1
=5 \o (Vu), dt

In the case u F* adapted,
Df py = 0. So:

H HH|
MA.Q“‘SVH m|\c NUH .:.ﬁ&u

H i
3 \ (Vu)e dt
0
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3.6.5 The generalized Stratonovich formula

Let the assumptions of Itd’s formula be in force and assume in addition:
BeL¥  and v Be L

then, if: X; = Xo + .ﬂ Auds + ‘n_... B, o dw,,

t 1
F(X) = F(Xo) + [ F(X2)Auds + [ P80 o,
0 0

3.6.6 Bibliographical comments

We have mainly followed the presentation and results of Nualart-Pardoux [C
4). Earlier results on the Skorohod integral include the work of Skorohod [C 14],
Gaveau-Trauber [C 1], Krée [C 2] and Nualart-Zakai [C 5]. Note that our notion
of “Skorohod integrable processes” is slightly more general than that in the original
paper by Skorohod. Various versions of the generalized It formula have been given
by Sevljakov [C 12], Sekiguchi-Shiota [C 11], Ustunel [C 15] and Nualart-Pardoux [C
4]. Ogawa [C 8] has constructed a generalized stochastic integral which essentially
coincides with what we call the “extended Stratonovich integral.” For an overwiew
and comparison of all the existing results, we refer the reader to the expository paper

of Nualart [C 3]. For applications to stochastic differential equations, we refer to

Ogawa. [C 9], Shiota [C 13], Ocone-Pardoux [C 6], [C 7] and Pardoux-Protter [C 10].

b
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