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Abstract

Consider an epidemic model with a constant flux of susceptibles, in a sit-
uation where the corresponding deterministic epidemic model has a unique
stable endemic equilibrium. For the associated stochastic model, whose law
of large numbers limit is the deterministic model, the disease free equilibrium
is an absorbing state, which is reached soon or later by the process. How-
ever, for a large population size, i.e. when the stochastic model is close to its
deterministic limit, the time needed for the stochastic perturbations to stop
the epidemic may be enormous. In this paper, we discuss how the Central
Limit Theorem, Moderate and Large Deviations allow us to give estimates
of the extinction time of the epidemic.

1 Introduction

We consider epidemic models where there is a constant flux of susceptible
individuals, either because the infected individuals become susceptible im-
mediately after healing, or after some time during which the individual is
immune to the illness, or because there is a constant flux of newborn or
immigrant susceptibles.

In the above three cases, for certain values of the parameters, there is
an endemic equilibrium, which is a stable equilibrium of the associated de-
terministic epidemic model. The deterministic model can be considered as
the Law of Large Numbers limit (as the size of the population tends to ∞)

1



of a stochastic model, where infections, healings, births and deaths happen
according to Poisson processes whose rates depend upon the numbers of in-
dividuals in each compartment.

Since the disease free states are absorbing, it follows from an irreducibil-
ity property which is clearly valid in our models, that the epidemic will stop
soon or later in the more realistic stochastic model. However, the time which
the stochastic perturbances will need to stop the epidemic may be enormous
when the size N of the population is large. The aim of this paper is to
describe, based upon the Central Limit Theorem, Large and Moderate De-
viations, the time it takes for the epidemic to stop in the stochastic model.

The law of large numbers and central limit theorems are rather old. They
can be found e.g. in chapter 11 of Ethier and Kurtz [3]. There are also
presented, in the framework of epidemic models, in Britton and Pardoux
[1]. The Large Deviations results are close to those presented in Shwartz
and Weiss [9], [10], although their assumptions are not quite satisfied in our
models. Derivations adapted to our setup can be found in Kratz and Pardoux
[5], Pardoux and Samegni–Kepgnou [6], and Britton and Pardoux [1]. The
results concerning moderate deviations are new and constitute the core of this
paper. Our derivation is essentially based upon an infinite generalization
of the Gärtner–Ellis Theorem, Corollary 4.6.14 from Dembo and Zeitouni
[2]. Our main results are Theorem 4.10 and Theorem 4.13. We also give
expressions for the rate function in our three models of interest, and in case
of the simplest model we give an explicit formula for the quasi–potential. We
also compare in that case the upper bound of fluctuations given respectively
by the central limit theorem, moderate deviations, and large deviations.

The paper is organized as follows. In section 2, we describe the three
deterministic and stochastic models which we have in mind, namely the SIS,
SIRS and SIR model with demography. In section 3, we give the general
formulation of the stochastic models, and recall the Law of Large Numbers,
the Central Limit Theorem and the Large Deviations, and their application to
the time of extinction of an epidemic. In section 4, we establish the moderate
deviations result and explain how it can be used to predict the time taken
for an epidemic to cease. Finally an Appendix establishes an estimate of
exponential moments of the integral with respect to a compensated Poisson
random measure. This estimate is used several times in our proofs.

In this paper, the same letter C denotes an arbitrary constant, whose
value may change from line to line.
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2 The three models

2.1 The SIS model

The deterministic SIS model is the following. Let s(t) (resp. i(t)) denote
the proportion of susceptible (resp. infectious) individuals in the population.
Given an infection parameter λ, and a recovery parameter γ, the determin-
istic SIS model reads {

s′(t) = −λs(t)i(t) + γi(t),

i′(t) = λs(t)i(t)− γi(t).

Since clearly s(t) + i(t) ≡ 1, the system can be reduced to a one dimensional
ODE. If we let z(t) = i(t), we have s(t) = 1− z(t),and we obtain the ODE

z′(t) = λz(t)(1− z(t))− γz(t) .

It is easy to verify that this ODE has a so–called “disease free equilibrium”,
which is z = 0. If λ > γ, this equilibrium is unstable, and there is an endemic
stable equilibrium z∗ = 1− γ/λ.

The corresponding stochastic model is as follows. Let SNt (resp. INt )
denote the proportion of susceptible (resp of infectious) individuals in a pop-
ulation of total size N .

SNt = SN0 −
1

N
Pinf

(
λN

∫ t

0

SNr I
N
r dr

)
+

1

N
Prec

(
γN

∫ t

0

INr dr

)
,

INt = IN0 +
1

N
Pinf

(
λN

∫ t

0

SNr I
N
r dr

)
− 1

N
Prec

(
γN

∫ t

0

INr dr

)
.

Here Pinf (t) and Prec(t) are two mutually independent standard (i.e. rate
1) Poisson processes. Let us give some explanations, first concerning the
modeling, then concerning the mathematical formulation.

Let SNt (resp. INt ) denote the number of susceptible (resp. infectious)
individuals in the population. The equations for those quantities are the
above equations, multiplied by N . The argument of Pinf (t) reads

λ

∫ t

0

SNr
N
INr dr .

The formulation of such a rate of infections can be explained as follows. Each
infectious individual meets other individuals in the population at some rate
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β. The encounter results in a new infection with probability p if the partner
of the encounter is susceptible, which happens with probability SNt /N , since
we assume that each individual in the population has the same probability
of being that partner, and with probability 0 if the partner is an infectious
individual. Letting λ = βp and summing over the infectious individuals at
time t gives the above rate. Concerning recovery, it is assumed that each
infectious individual recovers at rate γ, independently of the others.

2.2 The SIRS model

In the SIRS model, contrary to the SIS model, an infectious who heals is first
immune to the illness, he is “recovered”, and only after some time does he
loose his immunity and turn to susceptible. The deterministic SIRS model
reads 

s′(t) = −λs(t)i(t) + ρr(t),

i′(t) = λs(t)i(t)− γi(t),
r′(t) = γi(t)− ρr(t),

while the stochastic SIRS model reads

SNt = SN0 −
1

N
Pinf

(
λN

∫ t

0

SNr I
N
r dr

)
+

1

N
Ploim

(
ρN

∫ t

0

RN
r dr

)
,

INt = IN0 +
1

N
Pinf

(
λN

∫ t

0

SNr I
N
r dr

)
− 1

N
Prec

(
γN

∫ t

0

INr dr

)
RN
t = RN

0 +
1

N
Prec

(
γN

∫ t

0

INr dr

)
− 1

N
Ploim

(
ρN

∫ t

0

RN
r dr

)
.

These two models could be reduced to two–dimensional models for z(t) =
(i(t), s(t)) (resp. for ZN

t = (INt , S
N
t )).

2.3 The SIR model with demography

In this model, recovered individuals remain immune for ever, but there is a
flux of susceptibles by births at a given rate multiplied byN , while individuals
from each of the three compartments die at rate µ. Thus the deterministic
model 

s′(t) = µ− λs(t)i(t)− µs(t)
i′(t) = λs(t)i(t)− γi(t)− µi(t)
r′(t) = γi(t)− µr(t),
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whose stochastic variant reads

SNt = SN0 −
1

N
Pinf

(
λN

∫ t

0

SNr I
N
r dr

)
+

1

N
Pbirth(µNt)−

1

N
Pds

(
µN

∫ t

0

SNr dr

)
,

INt = IN0 +
1

N
Pinf

(
λN

∫ t

0

SNr I
N
r dr

)
− 1

N
Prec

(
γN

∫ t

0

INr dr

)
− 1

N
Pdi

(
µN

∫ t

0

INr dr

)
,

RN
t = RN

0 +
1

N
Prec

(
γN

∫ t

0

INr dr

)
− 1

N
Pdr

(
µN

∫ t

0

RN
r dr

)
.

Remark 2.1. One may think that it would be more natural to decide that
births happen at rate µ times the total population. The total population pro-
cess would be a critical branching process, which would go extinct in finite
time a.s., which we do not want. Next it might seem more natural to replace
in the infection rate the ratio SNt /N by SNt /(S

N
t + INt + RN

t ), which is the
actual ratio of susceptibles in the population at time t. It is easy to show that
SNt + INt +RN

t is close to N , so we choose the simplest formulation.

Again, we can reduce these models to two–dimensional models for z(t) =
(i(t), s(t)) (resp. for ZN

t = (INt , S
N
t )), by deleting the r (resp. RN) compo-

nent.

3 The stochastic model, LLN, CLT and LD

3.1 The stochastic model

The three above stochastic models are of the following form.

ZN
t = zN +

1

N

k∑
j=1

hjPj

(
N

∫ t

0

βj(Z
N
s )ds

)

= zN +

∫ t

0

b(ZN
s )ds+

1

N

k∑
j=1

hjMj

(
N

∫ t

0

βj(Z
N
s )ds

)
,

(1)

where {Pj(t), t ≥ 0}0≤j≤k are mutually independent standard Poisson pro-

cesses, Mj(t) = Pj(t) − t, and b(z) =
∑k

j=1 βj(z)hj. Z
N
t takes its values in

IRd.
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In the case of the SIS model, d = 1, k = 2, h1 = 1, β1(z) = λz(1 − z),
h2 = −1 and β2(z) = γz.

In the case of the SIRS model, d = 2, k = 3, h1 =

(
1
−1

)
, β1(z) = λz1z2,

h2 =

(
−1
0

)
, β2(z) = γz1 and h3 =

(
0
1

)
, β3(z) = ρ(1− z1 − z2).

In the case of the SIR model with demography, we can restrict ourselves

to d = 2, while k = 4, h1 =

(
1
−1

)
, β1(z) = λz1z2, h2 =

(
−1
0

)
, β2(z) =

(γ + µ)z1, h3 =

(
0
1

)
, β3(z) = µ, h4 =

(
0
−1

)
, β4(z) = µz2.

While the above expressions has the advantage of being concise, we shall
rather use the following equivalent formulation of (1). Let {Mj, 1 ≤ j ≤
k} be mutually independent Poisson random measures on IR2

+ with mean
measure the Lebesgue measure, and let Mj(ds, du) = Mj(ds, du) − ds du,
1 ≤ j ≤ k. We can rewrite (1) in the form

ZN
t = zN +

1

N

k∑
j=1

hj

∫ t

0

∫ Nβj(Z
N
s )

0

Mj(ds, du)

= zN +

∫ t

0

b(ZN
s )ds+

1

N

k∑
j=1

hj

∫ t

0

∫ Nβj(Z
N
s )

0

Mj(ds, du),

(2)

The joint law of {ZN , N ≥ 1} is the same law of a sequence of random
elements of the Skorohod space D([0, T ]; IRd), whether we use (1) or (2) for
its definition.

Let us state the assumptions which we will need in section 4 below. Those
are more than necessary for the results of the present section to hold, see [1]
for the proofs.

(H.1) βj is bounded , 1 ≤ j ≤ k;

(H.2) b ∈ C1(IRd; IRd), and ∇b : IRd 7→ IRd×d is bounded and Lipshitz.

Remark 3.1. In practice, in our models, either the process ZN
t takes its

values in a compact subset of IRd (this is the case for all models with a
constant population size), or else we restrict ourselves to such a situation,
by stopping the process when the total population exceeds a given large value,
see section 4.2.7 in [1].

6



Concerning the initial condition, we assume that for some z ∈ [0, 1]d,
zN = [Nz]/N , where [Nz] ∈ Zd+ is the vector whose i–th component is the
integer part of the real number Nzi.

3.2 Law of Large Numbers

We have a Law of Large Numbers

Theorem 3.2. Let ZN
t denote the solution of the SDE (1). Then ZN

t → zt
a.s. locally uniformly in t, where {zt, t ≥ 0} is the unique solution of the
ODE

dzt
dt

= b(t, zt), z0 = x.

The main argument in the proof of the above theorem is the fact that,
locally uniformly in t,

P (Nt)

N
→ t a.s. as N →∞.

3.3 Central Limit Theorem

We also have a Central Limit Theorem. Let UN
t :=

√
N(ZN

t − z(t)).

Theorem 3.3. As N → ∞, {UN
t , t ≥ 0} ⇒ {Ut, t ≥ 0} for the topology of

locally uniform convergence, where {Ut, t ≥ 0} is a Gaussian process of the
form

(3) Ut =

∫ t

0

∇xb(s, zs)Usds+
k∑
j=1

hj

∫ t

0

√
βj(s, zs)dBj(s), t ≥ 0 ,

where {(B1(t), B2(t), . . . , Bk(t)), t ≥ 0} are mutually independent standard
Brownian motions.

3.4 Large Deviations, and extinction of an epidemic

We denote by ACT,d the set of absolutely continuous functions from [0, T ]
into IRd. For any φ ∈ ACT,d, let Ak(φ) denote the (possibly empty) set of
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functions c ∈ L1(0, T ; IRk
+) such that cj(t) = 0 a.e. on the set {t, βj(φt) = 0}

and
dφt
dt

=
k∑
j=1

cj(t)hj, t a.e.

We define the rate function

IT (φ) :=

{
infc∈Ak(φ) IT (φ|c), if φ ∈ ACT,A;

∞, otherwise.

where as usual the infimum over an empty set is +∞, and

IT (φ|c) =

∫ T

0

k∑
j=1

g(cj(t), βj(φt))dt

with g(ν, ω) = ν log(ν/ω)−ν+ω. We assume in the definition of g(ν, ω) that
for all ν > 0, log(ν/0) = ∞ and 0 log(0/0) = 0 log(0) = 0. The collection
ZN obeys a Large Deviations Principle, in the sense that

Theorem 3.4. For any open subset O ⊂ D([0, T ]; IRd),

lim inf
N→∞

1

N
log IP

(
ZN,zN ∈ O

)
≥ −IT,z(O).

For any closed subset F ⊂ D([0, T ]; IRd),

lim sup
N→∞

1

N
log IP(ZN,zN ∈ F ) ≤ −IT,z(F ) .

A slight reinforcement of this theorem allows us to conclude a Wentzell–
Freidlin type of result. In what follows, we assume that the first component
of ZN

t (resp. of z(t)) is INt (resp. i(t)). Assume that the deterministic ODE
which appears in Theorem 3.2 has a unique stable equilibrium z∗ whose first
component satisfies z∗1 > 0. We define

V := inf
T>0

inf
φ∈ACT,d,φ(0)=z∗,φ1(T )=0

IT (φ).

Let now
TN,zExt = inf{t > 0, ZN

1 (t) = 0, if ZN(0) = zN}.
We have the
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Theorem 3.5. Given any η > 0, for any z with z1 > 0,

lim
N→∞

P
(

exp{N(V − η)} < TN,zExt < exp{N(V + η)}
)

= 1.

Moreover, for all η > 0 and N large enough,

exp{N(V − η)} ≤ E(TN,zExt ) ≤ exp{N(V + η)}.

We refer for the proof of this Theorem to [5] and [1].
It is important to evaluate the quantity V . Note that it is the value

function of an optimal control problem. In case of the SIS model, which is
one dimensional, one can solve this control problem explicitly with the help
of Pontryagin’s maximum principle, see [8], and deduce in that case that
V = log λ

γ
− 1 + γ

λ
. For other models, one can compute numerically a good

approximation of the value of V for each given value of the parameters.

3.5 CLT and extinction of an epidemic

The discussion of this subsection, which motivates the moderate deviations
approach of this paper, is taken from section 4.1 in [1]. Consider the SIR
with demography.

i′(t) = λi(t)s(t)− γi(t)− µi(t),
s′(t) = −λi(t)s(t) + µ− µs(t).

We assume that λ > γ + µ, in which case there is a unique stable endemic
equilibrium, namely z∗ = (i∗, s∗) = ( µ

γ+µ
− µ

λ
, γ+µ

λ
). We can study the ex-

tinction of an epidemic in the above model using the CLT. We note that
the basic reproduction number R0 and the expected relative time of a life an
individual is infected, ε, are given by

(4) R0 =
λ

γ + µ
ε =

1/(γ + µ)

1/µ
=

µ

γ + µ
.

The rate of recovery γ is much larger than the death rate µ (52 compared to
1/75 for a one week infectious period and 75 year life length) so we use the
approximations R0 ≈ λ/γ and ε ≈ µ/γ. Denote again by INt the fraction
of the population which is infectious in a population of size N . The law
of large numbers tells us that for N and t large, INt is close to i∗. The
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central limit theorem tell us that
√
N(INt − i∗) converges to a Gaussian

process, whose asymptotic variance can be shown to well approximated by
R−1

0 . This suggests that for large t, the number of infectious individuals
in the population is approximately Gaussian, with mean Ni∗ and standard
deviation

√
N/R0. If Ni∗ and

√
N/R0 are of the same order, i.e. N is of

the same order as 1
(i∗)2R0

, it is likely that the fluctuations described by the
central limit theorem explain that the epidemic might cease in time of order
one. This gives a critical population size roughly of the order of

Nc ∼
1

(i∗)2R0

=
1

ε2(1−R−1
0 )2R0

,

in fact probably a bit larger than that.
Consider measles prior to vaccination. In that case it is known that

R0 ≈ 15, and ε ≈ 1/75
1/(1/52)+1/75

≈ 1/3750 we arrive at Nc ∼ (3750)2/15,

which is almost 106. So, if the population is at most a million (or perhaps a
couple of millions), we expect that the disease will go extinct quickly, whereas
the disease will become endemic (for a rather long time) in a significantly
larger population. This confirms the empirical observation that measles was
continuously endemic in UK whereas it died out quickly in Iceland (and was
later reintroduced by infectious people visiting the country).

4 Moderate deviations

If the CLT allows to predict extinction of an endemic disease for population
sizes under a given threshold Nc, and Large Deviations gives predictions for
arbitrarily large population sizes, it is fair to look at Moderate Deviations,
which describes ranges of fluctuations between those of the CLT and those
of the LD.

The assumptions (H.1) and (H.2) are assumed to hold throughout this
section.

4.1 The set–up and preliminary estimates

We shall use the general model written in the form (2). We assume that the
limiting law of large numbers ODE

z(t) = z +

∫ t

0

b(z(s))ds
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has a unique stable equilibrium point z∗ such that z∗1 > 0, called the endemic
equilibrium, which is such that, provided z1(0) > 0, z(t)→ z∗ as t→∞.

For the sake of simplifying many formulas below, we change our coordi-
nates, and let z∗ = 0. The reader should be aware of the fact that there is
a price to pay for that translation of the origin. Indeed, since in the original
coordinate system, the process ZN

t was living on the set of vectors whose
coordinates are integer multiples of N−1 (this is essential for the process to
remain in the set where it makes sense, i.e. for proportions to remain between
0 and 1), the new origin generically does not belong to the set of point in IRd

which our process ZN
t may visit. The grid on which ZN

t lives is translated by
the vector z∗−{z∗}N , where here and below {z}N := [Nz]/N , [Nz] denoting
the vector whose i–th component is the integer part of the i–th component
of Nz. However, this minor complexity will appear only in the formula for
the initial condition of the SDE. Once the SDE starts on the correct grid,
the solution remains there.

From now on 0 will be the endemic equilibrium (of course in the translated
coordinate system), while z∗ 6= 0 will denote that endemic equilibrium in the
original coordinates (we shall need it for the formula of the initial condition
of the SDE).

We want to study the moderate deviations at scale α of ZN
t , where 0 <

α < 1/2. Note that α = 0 would correspond to the large deviations, and
α = 1/2 to the central limit theorem. We shall need below to consider the
ODE starting from a point close to z∗ = 0, namely we shall consider the
function {zN(t), 0 ≤ t ≤ T}, solution of the ODE

zN(t) = N−αz +

∫ t

0

b(zN(s))ds,

where z ∈ IRd is arbitrary. In fact, we shall be more interested in zN(t) :=
NαzN(t), which solves (below we exploit the fact that b(0) = 0)

zN(t) = z +Nα

∫ t

0

b(zN(s))ds

= z +

∫ t

0

∇b(0)zN(s)ds+

∫ t

0

∫ 1

0

[∇b(θzN(s))−∇b(0)] dθ zN(s)ds.

It is not hard to prove that, under our standing assumption (H.2) that b
is of class C1 and ∇b is bounded, as N → ∞, zN(t) → z(t) uniformly for
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0 ≤ t ≤ T , where z(t) solves the linearized ODE near the endemic equilibrium
0 :

(5) z(t) = z +

∫ t

0

∇b(0)z(s)ds .

We want to study the moderate deviations of the process ZN
t solution of

the SDE (1) with the initial condition zN := {z∗+N−αz}N−z∗. This amounts
to study the large deviations of ZN,α

t := NαZN
t at speed aN = N2α−1. We

define

Y N
t =

1

N

k∑
j=1

hj

∫ t

0

∫ Nβj(Z
N
s )

0

Mj(ds, du), and Y N,α
t = NαY N

t .

With these notations, the SDE for ZN,α
t reads

ZN,α
t = Nα

(
{z∗ +N−αz}N − z∗

)
+

∫ t

0

Nαb
(
N−αZN,α

s

)
ds+ Y N,α

t

= Nα
(
{z∗ +N−αz}N − z∗

)
+

∫ t

0

∇b(0)ZN,α
s ds+

∫ t

0

V N,α
s ds+ Y N,α

t , where

V N,α
s = Nαb

(
N−αZN,α

s

)
−∇b(0)ZN,α

s =

[∫ 1

0

(
∇b
(
θN−αZN,α

s

)
−∇b(0)

)
dθ

]
ZN,α
s .

If we let K := supz ‖∇b(z)‖, we have

‖ZN,α
t ‖ ≤ ‖z‖+

√
dNα−1 +K

∫ t

0

‖ZN,α
s ‖ds+ ‖Y N,α

t ‖.

This combined with Gronwall’s Lemma yields

(6) ‖ZN,α
t ‖ ≤ eKt

(
‖z‖+

√
dNα−1 + sup

0≤s≤t
‖Y N,α

s ‖
)
.

From the boundedness and Lipschitz property of ∇b, and the formula for
V N,α, we deduce that

‖V N,α
t ‖ . ‖ZN,α

t ‖, and ‖V N,α
t ‖ . N−α‖ZN,α

t ‖2 .

We deduce from the last three inequalities

(7)
∥∥∥V N,α

t

∥∥∥.Nα−1 +

(
‖z‖+ sup

0≤s≤t
‖Y N,α

s ‖
)
∧N−α

(
‖z‖+ sup

0≤s≤t
‖Y N,α

s ‖
)2

.
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We now define

Ỹ N,α
t =

∫ t

0

V N,α
s ds+ Y N,α

t , t ≥ 0,

so that

(8) ZN,α
t = Nα

(
{z∗ +N−αz}N − z∗

)
+

∫ t

0

∇b(0)ZN,α
s ds+ Ỹ N,α

t .

We will see below that the large deviations of ZN,α will follow from those
of Ỹ N,α by a variant of the contraction principle. We first consider the simpler
processes

(9) Y
N

t :=
1

N

k∑
j=1

hj

∫ t

0

∫ Nβj(0)

0

Mj(ds, du), and Y
N,α

t = NαY
N

t

which are similar to Y N and Y N,α, but with ZN
s replaced by 0.

4.2 The limiting logarithmic moment generating func-

tion of Y
N,α

We note that writing the integral over [0, Nβj(0)] as the sum from ` = 1 to

` = N of integrals over ((`− 1)βj(0), `βj(0)], we can rewrite Y
N,α

as follows.

Y
N,α

t =
1

N1−α

N∑
`=1

Q`(t), where

Q`(t) =
k∑
j=1

hj

∫ t

0

∫ `βj(0)

(`−1)βj(0)

Mj(ds, du).

The processes Q1, Q2, . . . , QN are i.i.d., and their law is that of

(10) Q(t) = Q1(t) =
k∑
j=1

hj

∫ t

0

∫ βj(0)

0

Mj(ds, du).

Now let ν = (ν1, . . . , νd) be a vector of signed measures on [0, T ].

Lemma 4.1. As N →∞,

aN log IE exp
{
a−1
N ν(Y

N,α
)
}
→ 1

2
IE
(
ν(Q)2

)
.

13



Proof We use in an essential way the above decomposition of Y
N,α

.

aNΛN(a−1
N ν) = N2α−1 log IE exp{N1−αν(Y

N
)}

= N2α log IE exp{N−αν(Q)}
= N2α log IE{1 +N−αν(Q) +N−2αν(Q)2 +N−3αRN

3 }

= N2α log

{
1 +

N−2α

2
IE[ν(Q)2] +N−3αIE[RN

3 ]

}
→ 1

2
IE[ν(Q)2],

provided

(11) sup
N≥1
|IE[RN

3 ]| <∞,

which we will check below. From this it follows that the argument of the
logarithm on the before last line is greater than or equal to 1, at least for N
large enough, and the final conclusion follows easily from the fact that for
any x ≥ 0, x−x2/2 ≤ log(1 +x) ≤ x. Let us now check (11). It follows from
an exact Taylor formula that

|RN
3 | ≤

|ν(Q)|3

6
exp(N−α|ν(Q|).

But ν(Q) is an affine combination of mutually independent Poisson random
variables, so that (11) follows easily by an explicit computation. �

4.3 The limiting logarithmic moment generating func-
tion of Ỹ N,α

We want to study the large deviations of Ỹ N,α. The main step will be to

prove that Lemma 4.1 remains valid if we replace Y
N,α

by Ỹ N,α, which will
follow from the next Proposition.

Proposition 4.2. For any C > 0, ν = (ν1, . . . , νd) a vector of signed mea-
sures, as N →∞,

(12) aN log IE exp
[
Ca−1

N ν(Ỹ N,α − Y N,α
)
]
→ 0 .

14



Before we establish that Proposition, let us first prove that it yields the
wished result.

Proposition 4.3. Given Lemma 4.1, if Proposition 4.2 holds true, then for
any signed measure ν on [0, T ], as N →∞,

aN log IE exp
{
a−1
N ν(Ỹ N,α)

}
→ 1

2
IE[ν(Q)2] .

Proof For any δ > 0, we deduce from Hölder’s inequality

aN log IE exp{a−1
N ν(Ỹ N,α)}

= aN log IE
[
exp{a−1

N ν(Y
N,α

)} exp{a−1
N ν(Ỹ N,α − Y N,α

)}
]

≤ aN
1 + δ

log IE exp{(1 + δ)a−1
N ν(Y

N,α
)}

+
aNδ

1 + δ
log IE exp

{
1 + δ

δaN
ν(Ỹ N,α − Y N,α

)

}
,

so that, if we combine Lemma 4.1 and Proposition 4.2, we deduce that

lim sup
N

aN log IE exp{ν(a−1
N Ỹ N,α)} ≤ (1 + δ)

2
IE[ν(Q)2],

and letting δ → 0, we conclude that

lim sup
N

aN log IE exp{ν(a−1
N Ỹ N,α)} ≤ 1

2
IE[ν(Q)2].

For the inequality in the other direction, we note that, by similar arguments,

aN log IE exp

{
a−1
N

1 + δ
ν(Y

N,α
)

}
≤ aN

1 + δ
log IE exp{a−1

N ν(Ỹ N,α)}

+
aNδ

1 + δ
log IE exp{(δaN)−1µ(Ỹ N,α − Y N,α

)},

with µ = −ν, which implies that

lim inf
N

aN log IE exp{a−1
N ν(Ỹ N,α)} ≥ 1

2(1 + δ)
IE[ν(Q)2],

hence, letting δ → 0 we conclude that

lim inf
N

aN log IE exp{a−1
N ν(Y N,α)} ≥ 1

2
IE[ν(Q)2].
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�
The remaining of this subsection will be devoted to the proof of Proposi-

tion 4.2.
We note that Proposition 4.2 is a consequence of the following two Propo-

sitions.

Proposition 4.4. For any C > 0, as N →∞,

(13) aN log IE exp
[
Ca−1

N ν(Y N,α − Y N,α
)
]
→ 0 .

Proposition 4.5. For any C > 0, as N →∞,

(14) aN log IE exp

[
Ca−1

N sup
0≤t≤T

∥∥∥∥∫ t

0

V N,α
s ds

∥∥∥∥]→ 0 .

We start with the
Proof of Proposition 4.4 The exponents in the expressions entering
(13) are sums over the indices 1 ≤ i ≤ d and 1 ≤ j ≤ k. Using repeatedly
Schwartz’s inequality, it is sufficient to prove the results with the sum re-
placed by each of the summands. Therefore in this proof we do as if d = 1,
we fix 1 ≤ j ≤ k and for the sake of simplifying the notations, we drop the
index j. We note that

a−1
N (Y N,α − Y N,α

) = N−α
∫ t

0

∫ N [β(ZNs )∨β(0)]

Nβ(0)

M(ds, du)

−N−α
∫ t

0

∫ N [β(ZNs )∨β(0)]

Nβ(ZNs )

M(ds, du)

It is not hard to see that one can treat each of the two terms on the right
separately, and we treat only the first term, the treatment of the second
one being quite similar. We note that there exists a compensated standard
Poisson process M(t) on IR+ such that the factor of N−α in this first term
can be rewritten as

WN
t := M

(
N

∫ t

0

(β(ZN
s )− β(0))+ds

)
.

We need to estimate IE exp[CN−αν(WN)]. If we decompose the signed mea-
sure ν as the difference of two measures as follows ν = ν+−ν−, we again have

16



two terms, and it suffices to treat one of them, say ν+. Of course it suffices
to treat the case where ν+ 6= 0. Since the positive constant C is arbitrary,
we can w.l.o.g. assume that ν+ is a probability measure on [0, T ]. It is then
clear that

exp

[
CN−α

∫ T

0

WN
t ν+(dt)

]
≤ exp

[
CN−α sup

0≤t≤T
WN
t

]
.

We choose a new parameter 0 < γ < α, and we write the expression
whose expectation needs to be estimated as a sum of two terms as follows.

exp

{
CN−α sup

0≤t≤T
WN
t

}
= exp

{
CN−α sup

0≤t≤T
WN
t

}
1sup0≤t≤T ‖ZNt ‖≤N−γ

+ exp

{
CN−α sup

0≤t≤T
WN
t

}
1sup0≤t≤T ‖ZNt ‖>N−γ .

(15)

We now estimate the first term on the right hand side of (15). For that sake,
we define the stopping time

σN = inf{0 ≤ t ≤ T ; ‖ZN
t ‖ > N−γ}

and note that

exp

{
CN−α sup

0≤t≤T
M

(
N

∫ t

0

(β(ZN
s )− β(0))+ds

)}
1sup0≤t≤T ‖ZNt ‖≤N−γ

≤ exp

{
CN−α sup

0≤t≤T
M

(
N

∫ t∧σN

0

(β(ZN
s )− β(0))+ds

)}
Consequently the expectation of the first term on the right of (15) is bounded
from above by

IE exp

{
CN−α sup

0≤t≤T
M

(
N

∫ t∧σN

0

(β(ZN
s )− β(0))+ds

)}
≤ IE exp

{
(e2CN−α − 1− 2CN−α)N

∫ T∧σN

0

(β(ZN
t )− β(0))+dt

}
≤ exp

{
CN1−2α−γ} ,

17



where the first inequality follows from Proposition 5.1 in the Appendix below,
and the second one exploits the Lipschitz property of β. Consider now the
second term on the right hand side of (15).

IE

(
exp

{
N−α sup

0≤t≤T
M

(
N

∫ t

0

(β(ZN
s )− β(0))+ds

)}
1sup0≤t≤T ‖ZNt ‖>N−γ

)
≤
(

IE exp

{
2N−α sup

0≤t≤T
M

(
N

∫ t

0

(β(ZN
s )− β(0))+ds

)})1/2

× IP

(
sup

0≤t≤T
‖ZN

t ‖ > N−γ
)1/2

≤ exp
{
CN1−2α

}
IP

(
sup

0≤t≤T

∥∥Y N
t

∥∥ > cN−γ
)1/2

,

for some c, C > 0, where the second inequality follows from Proposition 5.1
and the boundedness of β. Estimating the second factor in the last expression
amounts to estimating the two probabilities (with another c > 0)

IP

(
sup

0≤t≤T
M

(
N

∫ t

0

β(ZN
s )ds

)
> cN1−γ

)
and

IP

(
sup

0≤t≤T

(
−M

(
N

∫ t

0

β(ZN
s )ds

))
> cN1−γ

)
.

(16)

We estimate the first probability. For any a > 0,

IP

(
sup

0≤s≤t
M

(
N

∫ s

0

β(ZN
r )dr

)
> cN1−γ

)
= IP

(
sup

0≤s≤t
exp

{
aM

(
N

∫ s

0

β(ZN
r )dr

)}
> exp{acN1−γ}

)
≤ e−acN

1−γ
IE

(
sup

0≤s≤t
exp

{
aM

(
N

∫ s

0

β(ZN
r )dr

)})
. e−acN

1−γ
(

IE exp

{
(e2a − 1− 2a)N

∫ t

0

β(ZN
s )ds

})1/2

≤ exp{−acN1−γ + (e2a − 1− 2a)NCt}

≤ exp

{
− c2

8Ct
N1−2γ

}
,

(17)
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where the second inequality follows from Proposition 5.1 and the last in-
equality by optimizing over a > 0. One can easily convince oneself that a
similar result holds for the second line of (16), making use of Proposition 5.1
with a negative a. Note also for further use that the same result also holds
in case γ = 0. In that case, the probability on the second line of (16) is zero
for large enough c, in which case the anounced estimate is of course true.

The expectation of the second term of the right hand side of (15) is thus
dominated by (with c1 and c2 two positive constants)

exp{c1N
1−2α − c2N

1−2γ} → 0, as N →∞.

Finally

IE exp

{
N−α sup

0≤s≤t
M

(
N

∫ t

0

(β(ZN
s )− β(zs))

+ds

)}
≤ exp

{
CN1−2α−γ}+ exp{c1N

1−2α − c2N
1−2γ}

It follows readily from the inequality log(a+ b) ≤ log(2) + log(a∨ b) that for
N large enough

aN log IE exp

{
N−α sup

0≤s≤t
M

(
N

∫ t

0

(β(ZN
s )− β(0))+ds

)}
≤ aN log(2) + CN−γ,

which establishes (13). �

We now turn to the second proof.
Proof of Proposition 4.5 Recalling assumption (H.1), we now define,
with βj := supz∈IRd βj(z),

ξN,jt :=
1

N

∫ t

0

∫ Nβj

0

Mj(ds, du) 1 ≤ j ≤ k,

the event

ANb :=

{
sup

0≤t≤T

∥∥∥Y N

t

∥∥∥ ≤ b

}⋂ k⋂
j=1

{
sup

0≤t≤T
ξN,jt ≤ (1 + b′)βjT

}
,

and the stopping time

τ̄b := inf
{
t > 0,

∥∥∥Y N

t

∥∥∥ > b
}∧ k∧

j=1

inf
{
t > 0, ξN,jt > (1 + b′)βjT

}
,
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where the constant b > 0 will be chosen below, and the constant b′ > 0 is
arbitrary. From the estimate (7),

aN log IE

[
exp

{
a−1
N C sup

0≤t≤T

∥∥∥∥∫ t

0

V N,α
s ds

∥∥∥∥}]
. Nα−1 + aN log IE

[
exp

{
a−1
N C

(
‖z‖+Nα sup

0≤t≤T
‖Y N

t ‖
)
1(ANb )c

}]
(18)

+ aN log IE

[
exp

{
a−1
N C

(
N−α‖z‖2 +Nα sup

0≤t≤T
‖Y N

s ‖2

)
1ANb

}]
,(19)

We take the limit successively in the two terms of the above right hand side.
Step 1 : Estimate of (18) We have

IE

[
exp

{
a−1
N C

(
‖z‖+Nα sup

0≤t≤T
‖Y N

t ‖
)
1(ANb )c

}]
. exp

{
CN1−2α‖z‖

}
IP
(
(ANb )c

)
+ IE

[
exp

{
CN−α sup

0≤t≤T
‖NY N

s ‖
}
1(ANb )c

]
+ 1,

We first note that the arguments used in the proof of (17), in the particular
case γ = 0, yield

IP(
(
ANb )c

)
≤ IP

(
sup

0≤t≤T

∥∥∥Y N

t

∥∥∥ > b

)
+

k∑
j=1

IP

(
sup

0≤t≤T
(ξN,jt − β̄t) > b′β̄T

)
. e−CN ,(20)

for some constant C > 0. We next estimate the product

IE

[
exp

{
CN−α sup

0≤t≤T
‖NY N

s ‖
}]

IP
(
(ANb )c

)
.

For the same reason as in the previous proof, we need only consider the case
d = k = 1. It follows from Proposition 5.1 that the first factor satisfies

IE

[
exp

{
CN−α sup

0≤t≤T

∣∣∣∣∣
∫ t

0

∫ Nβ(ZNs )

0

M(ds, du)

∣∣∣∣∣
}]
. eCN

1−2α

.

Finally there exist two positive constants C1 and C2 such that

IE

[
exp

{
a−1
N C

(
‖z‖+Nα sup

0≤t≤T
‖Y N

t ‖
)
1(ANb )c

}]
. 1 + exp{C1N

1−2α − C2N}

≤ 2 ,
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for N large enough. So aN log of the above tends to 0, as N →∞.
Step 2 : Estimate of (19) We first note that

aN log IE

[
exp

{
a−1
N C

(
N−α‖z‖2 +Nα sup

0≤t≤T
‖Y N

s ‖2

)
1ANb

}]
≤ CN−α‖z‖2 + aN log IE

[
exp

{
a−1
N CNα sup

0≤t≤T
‖Y N

s ‖21ANb

}]
.

The first term on the right tends to 0 as N →∞. It remains to take care of
the second term. Since Y N

t is a martingale, it is clear that the process{
exp

(
a−1
N

C

2
Nα‖Y N

t ‖2

)
, t ≥ 0

}
is a submartingale. Consequently, from Doob’s L2 submartingale inequality,

IE

[
sup

0≤t≤T
exp

{
a−1
N CNα‖Y N

t ‖21ANb

}]
≤ IE

[
sup

0≤t≤T∧τ̄b
exp

{
a−1
N CNα‖Y N

t ‖2
}]

≤ 4IE
[
exp

{
a−1
N CNα‖Y N

T∧τ̄b‖
2
}]

Next

IE
[
exp

{
CN1−α‖Y N

T∧τ̄b‖
2
}]
≤
√

IE
[
exp

{
CN1−α

(
‖Y N

T∧τ̄b‖2 − ‖Y N

T∧τ̄b‖2
)}]

×
√

IE
[
exp

{
CN1−α‖Y N

T∧τ̄b‖2
}]

(21)

Consider first the first factor on the right hand side of (21). We deduce
from the definition of τ̄b that

‖Y N
T∧τ̄b‖

2 − ‖Y N

T∧τ̄b‖
2 =

(
Y N
T∧τ̄b + Y

N

T∧τ̄b , Y
N
T∧τ̄b − Y

N

T∧τ̄b

)
≤ (cT + b+ 2N−1 sup

j
‖hj‖)

∥∥∥Y N
T∧τ̄b − Y

N

T∧τ̄b

∥∥∥ ,
with cT =

∑k
j=1 ‖hj‖(1 + b′)βjT . Consequently the square of the first factor

on the right of (21) is bounded from above by

IE
[
exp

{
CN1−α

∥∥∥Y N
T∧τ̄b − Y

N

T∧τ̄b

∥∥∥}] ≤ IE
[
exp

{
CN1−α

∥∥∥Y N
T − Y

N

T

∥∥∥}] ,
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where we have used Doob’s optional sampling theorem for submartingales.
From the same argument as above,we do as if d = 1, note that

exp
{
CN1−α

∣∣∣Y N
T − Y

N

T

∣∣∣} ≤ exp
{
CN1−α

(
Y N
T − Y

N

T

)}
+ exp

{
CN1−α

(
Y
N

T − Y N
T

)}
and exploit Proposition 4.4 in order to conclude concerning aN log of the first
factor on the right of (21).

We next note that∥∥∥Y N

T∧τ̄b

∥∥∥2

≤
∥∥∥Y N

T

∥∥∥2

1{‖Y NT ‖≤b}
+ (b+N−1 sup

j
‖hj‖)21{τ̄b<T}.

Hence the square of the second term on the right of (21) satisfies

IE

[
exp

{
CN1−α

∥∥∥Y N

T∧τ̄b

∥∥∥2
}]
≤
√

IE
[
exp

{
CN1−α1{τ̄b<T}

}]
×

√
IE

[
exp

{
CN1−α

∥∥∥Y N

T

∥∥∥2

1{∥∥∥Y NT ∥∥∥≤b}
}](22)

Consider first the second factor on the right of (22). We have

∥∥∥Y N

T

∥∥∥2

≤ k
k∑
j=1

‖hj‖2

N2

∣∣∣∣∣
∫ T

0

∫ βj(0)

0

Mj(ds, du)

∣∣∣∣∣
2

.

Using the Cauchy–Schwartz inequality several times, it is clear that it is
sufficient to do as if we had (dropping the index j)

Y
N

T =
1

N

∫ T

0

∫ Nβ(0)

0

M(ds, du) =
√
a/N ξN ,

with a = β(0)T and ξN = θN−aN√
aN

, where θN ∼ Poi(aN). We now choose

b = a/3. We have
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IE exp
{
CN−α|ξN |21{|ξN |≤√aN/3}

}
=

b4aN/3c∑
k=d2aN/3e

exp

{
CN−α

(k − aN)2

aN

}
e−aN

(aN)k

k!

.
∫ √aN/3
−
√
aN/3

exp
{
CN−αx2

}
e−aN

(aN)aN+x
√
aN

(aN + x
√
aN)!

√
aNdx

.
1√
2π

∫ √aN/3
−
√
aN/3

exp
{
CN−αx2

}
ex
√
aN

(
1 +

x√
aN

)−(aN+x
√
aN)

dx

≤ 1√
2π

∫ √aN/3
−
√
aN/3

exp
{
CN−αx2

}
× exp

{
x
√
aN − (aN + x

√
aN)

[
x√
aN
− x2

2aN
+

x3

2(aN)3/2
1x<0

]}
dx

≤ 1√
2π

∫ √aN/3
−
√
aN/3

exp

{
CN−αx2 − x2

2
+

x3

2
√
aN

1x>0

}
dx

≤ 1√
2π

∫ √aN/3
−
√
aN/3

exp

{
CN−αx2 − x2

3

}
dx

We have proved that the second factor on the right of (22) remains bounded,
as N → ∞. We next consider the first factor on the right of (22). We first
note that

exp
{

4C ′N1−α1{τb<T}
}
≤ 1 + exp

{
4C ′N1−α}1{τb<T}

But from (20), IP (τ̄b < T ) . e−CN .
It follows that the left hand side of (22) is bounded from above by a

constant times
1 + exp{C1N

1−α − C2N},
where C1 and C2 are two positive constants. This last expression is bounded
by 2, as soon as N is large enough. Finally aN log of the left-hand side of
(22) tends to 0, as N →∞. �

Remark 4.6. We note that the full strength of (7) is necessary for the
proof of Proposition 4.5. Indeed, while aN log IE exp{CN1−α sup0≤t≤T ‖Y N

t ‖}
certainly does not converge to 0 as N → ∞, clearly with high probability
‖Y N

t ‖2 is smaller than ‖Y N
t ‖, but IE exp{CN1−α‖Y N

t ‖2} =∞.
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4.4 Large deviations of Ỹ N,α

We first define the Fenchel–Legendre transform of

Λ(ν) =
1

2
IE[ν(Q)2]

=
k∑
j=1

βj(0)

2

∫
[0,T ]2

s ∧ t < hj, ν > (ds) < hj, ν > (dt),

where Q has been defined by (10), ν = (ν1, . . . , νd) is a vector of signed
measures and < hj, ν > (dt) =

∑d
i=1 h

i
jνi(dt), h

i
j being the i–th coordinate of

the vector hj. We have exploited the fact that ν(Q) is the sum over j of zero
mean mutually independent random variables. For each φ ∈ D([0, T ]; IRd),
we define

Λ∗(φ) = sup
ν∈(D([0,T ];IRd))∗

{ν(φ)− Λ(ν)} .

The next step will consist in proving that the sequence of processes
{Ỹ N,α}N≥1 satisfies a Large Deviation Principle.

Theorem 4.7. The sequence {Ỹ N,α, N ≥ 1} satisfies the Large Deviation
Principle in D([0, T ]; IRd) equipped with the supnorm topology, with the con-
vex, good rate function Λ∗ and with speed aN , in the sense that for any Borel
subset Γ ⊂ D([0, T ]; IRd),

− inf
φ∈Γ̊

Λ∗(φ) ≤ lim inf
N

aN log IP(Ỹ N,α ∈ Γ)

≤ lim sup
N

aN log IP(Ỹ N,α ∈ Γ) ≤ − inf
φ∈Γ

Λ∗(φ) .

Since there is a difficulty with having a topology on D([0, T ]; IRd) which
makes it a topological vector space, and allows for a simple characterization
of the class of compact sets, we shall use a small detour for the proof of the
above Theorem. Recall that

Ỹ N,α
t = Y N,α

t +

∫ t

0

V N,α
s ds,

where Y N,α
t is piecewise constant, with jumps of size hjN

α−1. Let Y N,α,c
t de-

note the continuous piecewise linear approximation of Y N,α
t , which is defined
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as follows. Let 0 = τN0 < τN1 < τN2 < · · · denote the successive jump times
of the process Y N,α

t . For i ≥ 0, on the interval [τNi , τ
N
i+1],

Y N,α,c
t =

τNi+1 − t
τNi+1 − τNi

Y N,α

τNi
+

t− τNi
τNi+1 − τNi

Y N,α

τNi+1
.

Next we define ˜̃
Y
N,α

t = Y N,α,c
t +

∫ t

0

V N,α
s ds .

We note that

(23) sup
0≤t≤T

∥∥∥∥Ỹ N,α
t − ˜̃Y N,α

t

∥∥∥∥ ≤ sup
j
‖hj‖Nα−1,

hence for any δ > 0, for N large enough,

IP

(
sup

0≤t≤T

∥∥∥∥Ỹ N,α
t − ˜̃Y N,α

t

∥∥∥∥ ≥ δ

)
= 0 .

This implies clearly

Lemma 4.8. The two sequences {Ỹ N,α}N≥1 and
{˜̃
Y
N,α}

N≥1
are exponen-

tially equivalent in D([0, T ]; IRd), equipped with the supnorm topology, in the
sense that for each δ > 0,

lim sup
N→∞

aN log IP

(
sup

0≤t≤T

∥∥∥∥Ỹ N,α
t − ˜̃Y N,α

t

∥∥∥∥ ≥ δ

)
= −∞.

We shall prove below the following.

Proposition 4.9. The sequence
{˜̃
Y
N,α}

N≥1
is exponentially tight in

C0([0, T ]; IRd), the space of continuous functions from [0, T ] into IRd, which
start from 0 at t = 0, in the sense that for any R > 0, there exists a compact
subset KR ⊂⊂ C0([0, T ] : IRd) such that

lim sup
N→∞

aN log IP

(˜̃
Y
N,α

6∈ KR

)
≤ −R.
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Let us now turn to the proof of the above Theorem.
Proof of Theorem 4.7 From (23), we deduce that

aN log IE exp

{
Ca−1

N ν

(
Ỹ N,α
t − ˜̃Y N,α

t

)}
≤ CNα−1 → 0,

as N → ∞. Consequently, again by the argument of Proposition 4.3, we
deduce from that same Proposition that for any signed measure ν on [0, T ],
as N →∞,

aN log IE exp

{
a−1
N ν

(˜̃
Y
N,α
)}

→ 1

2
IE[ν(Q)2] .

This, together with Proposition 4.9, allows us to apply Corollary 4.6.14

from [2], to conclude that the sequence
{˜̃
Y
N,α}

N≥1
satisfies a LDP in

C0([0, T ]; IRd) with the good rate function Λ∗, and speed aN . Since
C0([0, T ]; IRd) is closed in D([0, T ]; IRd) equipped with the supnorm topol-
ogy, it follows from Lemma 4.1.5 in [2] that the same LDP holds in the
latter space, with the same rate function Λ∗, extended to that space by
Λ∗(φ) = +∞ for φ ∈ D([0, T ]; IRd)\C0([0, T ]; IRd). The result now follows
from Lemma 4.8, in view of Theorem 4.2.13 from [2]. �

We now turn to the
Proof of Proposition 4.9 Clearly it suffices to prove both that

(24) lim
R→∞

lim sup
N→∞

aN log IP

(
sup

0≤t≤T
‖V N,α

t ‖ ≥ R

)
= −∞ ,

and that the sequence {Y N,α,c}N≥1 is exponentially tight in C0([0, T ]; IRd).
Let us first establish (24). It follows from (7) that

‖V N,α
t ‖ ≤ C

(
‖z‖+ 1 + sup

0≤t≤T
‖Y N,α

t ‖
)
.

Consequently, if R > 2C(‖z‖+ 1), with R′ = (2C)−1R,

aN log IP( sup
0≤t≤T

‖V N,α
t ‖ > R) ≤ aN log IP( sup

0≤t≤T
‖Y N,α

t ‖ > R′)

≤ aN log

(
e−a

−1
N R′IE sup

0≤t≤T
exp{a−1

N ‖Y
N,α
t ‖}

)
≤ −R′ + aN log IE

(
sup

0≤t≤T
exp{a−1

N ‖Y
N,α
t ‖}

)
.
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It follows from Doob’s submartingale inequality and a combination of Lemma
4.1 and Proposition 4.4 that the lim sup as N → ∞ of the second term of
the last right hand side is finite. (24) clearly follows.

It remains to consider Y N,α,c. Define the modulus of continuity of an
element x ∈ C0([0, T ]; IRd) as wx(δ) = sup0≤s,t≤T,|s−t|≤δ ‖x(t) − x(s)‖. It
follows from Ascoli’s theorem that for any sequence {δ`, ` ≥ 1} of positive
numbers, the following is a compact subset of C0([0, T ]; IRd):⋂

`≥1

{x : wx(δ`) ≤ `−1} .

Suppose that for each ` ≥ 1, R > 0, we can find δR,` > 0 such that for all
N ≥ 1,

(25) IP(wY N,α,c(δR,`) ≥ `−1) ≤ exp{−a−1
N (R + `)} .

From this we deduce that

IP(∪`≥1{wY N,α,c(δR,`) ≥ `−1}) ≤
∑
`≥1

e−a
−1
N (R+`) ≤ e−a

−1
N R,

so that
lim sup
N→∞

aN log IP(∪`≥1{wY N,α,c(δR,`) ≥ `−1}) ≤ −R,

from which the result follows. A sufficient condition for (25) to be true is
that for any b > 0,

lim
δ→0

lim sup
N→∞

aN log IP (wY N,α,c(δ) > b) = −∞ .

In turn a sufficient condition for this is that

(26) lim
δ→0

lim sup
N→∞

aN log IP (wY N,α(δ) > b) = −∞ ,

which we now prove. It is not hard to see that

IP (wY N,α(δ) > b) ≤ 2

(
T

δ
+ 1

)
sup

0≤t≤T
IP

(
sup

t≤s≤t+2δ
‖Y N,α

s − Y N,α
t ‖ ≥ b/2

)
≤ 2

(
T

δ
+ 1

)
sup

0≤t≤T
IP

(
sup

t≤s≤t+2δ
exp{a−1

N δ−1/2‖Y N,α
s − Y N,α

t ‖} ≥ exp{ba−1
N /2
√
δ}
)

≤ 2

(
T

δ
+ 1

)
exp{−ba−1

N /2
√
δ} sup

0≤t≤T
IE exp{a−1

N δ−1/2‖Y N,α
t+2δ − Y

N,α
t ‖},
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where we have used Doob’s submartingale inequality at the last step. Clearly

exp{a−1
N δ−1/2‖Y N,α

t+2δ − Y
N,α
t ‖} ≤

k∏
j=1

exp

{
N−αδ−1/2‖hj‖

∣∣∣∣∣
∫ t+2δ

t

∫ Nβj(Z
N
s )

0

Mj(ds, du)

∣∣∣∣∣
}

Using repeatedly Cauchy–Schwartz’s inequality, we see that it suffices to
estimate for each j

IE exp

{
CN−αδ−1/2

∣∣∣∣∣
∫ t+2δ

t

∫ Nβj(Z
N
s )

0

Mj(ds, du)

∣∣∣∣∣
}

≤ IE exp

{
CN−αδ−1/2

∫ t+2δ

t

∫ Nβj(Z
N
s )

0

Mj(ds, du)

}

+ IE exp

{
−CN−αδ−1/2

∫ t+2δ

t

∫ Nβj(Z
N
s )

0

Mj(ds, du)

}
≤ 2 exp{8C2N1−2αβ̄j},

where β̄j = supz βj(z), we have used Proposition 5.1 and the inequality
ex − 1 − x ≤ x2, valid for x ≤ log(2), which we have applied with x =
2CN−αδ−1/2 and x = −2CN−αδ−1/2 (recall that we will first let N → ∞).
Putting together the last estimates yields

lim sup
N→∞

aN IP (wY N,α(δ) > b) ≤ − b

2
√
δ

+ C.

(26) follows, and the Proposition is proved. �

4.5 Computation of the rate function Λ∗

Let us compute Λ∗ in the three examples which we discussed above in section
2. Here we do not translate z∗ to the origin.

4.5.1 Computation of Λ∗ for the SIS model

Recall that in this case d = 1, k = 2, h1 = 1, β1(z) = λz(1 − z), h2 = −1,
β2(z) = γz. If λ > γ, there is a unique stable endemic equilibrium z∗ =
1− γ/λ. We first compute

Λ(ν) =
1

2
IE

∫
[0,T ]×[0,T ]

Q(s)Q(t)ν(ds)ν(dt),
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where

Q(t) =

∫ t

0

∫ β1(z∗)

0

M1(ds, du)−
∫ t

0

∫ β2(z∗)

0

M2(ds, du) .

It is easy to check that IE[Q(t)Q(s)] = σ2(z∗) s ∧ t, where

σ2(z∗) = β1(z∗) + β2(z∗) = 2
γ

λ
(λ− γ).

Consequently

Λ(ν) =
σ2(z∗)

2

∫
[0,T ]×[0,T ]

s ∧ t ν(ds)ν(dt) .

We now need to compute Λ∗(φ) in case φ ∈ C2([0, T ]). We should take
the supremum over the signed measures ν on [0, T ] of the quantity∫

[0,T ]

φ(t)ν(dt)− σ2(z∗)

2

∫
[0,T ]×[0,T ]

s ∧ t ν(ds)ν(dt) .

The supremum is achieved at the signed measure ν which makes the gradient
with respect to ν of the above zero, if any. We first note that for such a ν to
exist, we need that φ(0) = 0, unless Λ∗(φ) = +∞. Now the optimal ν must
satisfy

φ(t) = σ2(z∗)

∫
[0,T ]

s ∧ t ν(ds)

= σ2(z∗)

∫
[0,t]

s ν(ds) + σ2(z∗)t

∫
(t,T ]

ν(dt).

So necessarily

ν(dt) = − φ′′(t)

σ2(z∗)
dt+

φ′(T )

σ2(z∗)
δT (dt).

Substituting this signed measure ν in the above formula, we obtain that∫
[0,T ]

φ(t)ν(dt) =
φ′(T )

σ2(z∗)
φ(T )−

∫ T

0

φ′′

σ2(z∗)
(t)φ(t)dt

=
1

σ2(z∗)

∫ T

0

|φ′(t)|2dt .

Consequently

Λ∗(φ) =

{
1

2σ2(z∗)

∫ T
0
|φ′(t)|2dt, if φ(0) = 0 and φ is absolutely continuous;

+∞, otherwise.
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4.5.2 Computation of Λ∗ for the SIRS model

In this model, d = 2 and k = 3. We have h1 =
(

1
−1

)
, β1(z) = λz1z2, h2 =

(−1
0

)
,

β2(z) = γz1, and h3 =
(

0
1

)
, β3(z) = ρ(1 − z1 − z2). In the case λ > γ, there

is a unique stable endemic equilibrium, namely z∗ =
( ρ
γ+ρ(1− γ

λ)
γ
λ

)
. In order to

simplify the notations, we shall write a = β1(z∗), b = β2(z∗), c = β3(z∗) and
A = ab+ ac+ bc. We have

Λ(ν) =
a

2

∫
[0,T ]×[0,T ]

s ∧ t(ν1 − ν2)(ds)(ν1 − ν2)(dt)

+
b

2

∫
[0,T ]×[0,T ]

s ∧ tν1(ds)ν1(dt) +
c

2

∫
[0,T ]×[0,T ]

s ∧ tν2(ds)ν2(dt)

The functional to be maximized with respect to ν is

< ν1, φ1 >+ < ν2, φ2 > −
a

2

∫
[0,T ]×[0,T ]

s ∧ t(ν1 − ν2)(ds)(ν1 − ν2)(dt)

− b

2

∫
[0,T ]×[0,T ]

s ∧ tν1(ds)ν1(dt)− c

2

∫
[0,T ]×[0,T ]

s ∧ tν2(ds)ν2(dt)

Writing that the gradient w.r.t. ν1 and ν2 of this functional is zero leads to
the identities

φ1(t) = a

∫
[0,T ]

s ∧ t(ν1 − ν2)(ds) + b

∫
[0,T ]

s ∧ tν1(ds),

φ2(t) = a

∫
[0,T ]

s ∧ t(ν2 − ν1)(ds) + c

∫
[0,T ]

s ∧ tν2(ds).

This implies the identities

ν1(dt) = −
(
a+ c

A
φ′′1(t) +

a

A
φ′′2(t)

)
dt+

(
a+ c

A
φ′1(T ) +

a

A
φ′2(T )

)
δT ,

ν2(dt) = −
(
a

A
φ′′1(t) +

a+ b

A
φ′′2(t)

)
dt+

(
a

A
φ′1(T ) +

a+ b

A
φ′2(T )

)
δT .

Finally we deduce that Λ∗(φ) is +∞ unless φ is absolutely continuous and
φ(0) = 0, in which case

Λ∗(φ) =
a

2A

∫ T

0

|φ′1(t) + φ′2(t)|2dt+
c

2A

∫ T

0

|φ′1(t)|2dt+
b

2A

∫ T

0

|φ′2(t)|2dt .
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4.5.3 Computation of Λ∗ for the SIR model with demography

In this case, d = 2, k = 4, h1 =
(

1
−1

)
, β1(z) = λz1z2, h2 =

(−1
0

)
, β2(z) = (γ +

µ)z1, h3 =
(

0
1

)
, β3(z) = µ and h4 =

(
0
−1

)
, β4(z) = µz2. In the case λ > γ +µ,

there is a unique stable endemic equilibrium, namely z∗ =
(µ( 1

γ+µ
− 1
λ)

γ+µ
λ

)
. We

shall use the notations a = β1(z∗), b = β2(z∗), c = β3(z∗) + β4(z∗) and
A = ab+ ac+ bc We have

Λ(ν) =
a

2

∫
[0,T ]×[0,T ]

s ∧ t(ν1 − ν2)(ds)(ν1 − ν2)(dt)

+
b

2

∫
[0,T ]×[0,T ]

s ∧ tν1(ds)ν1(dt) +
c

2

∫
[0,T ]×[0,T ]

s ∧ tν2(ds)ν2(dt)

Formally the functional Λ(ν) has exactly the same form as in the case of
the SIRS model, only the constants have different values. The same com-
putations as in the previous subsection lead to the same result, namely that
Λ∗(φ) is +∞ unless φ is absolutely continuous and φ(0) = 0, in which case

Λ∗(φ) =
a

2A

∫ T

0

|φ′1(t) + φ′2(t)|2dt+
c

2A

∫ T

0

|φ′1(t)|2dt+
b

2A

∫ T

0

|φ′2(t)|2dt .

4.6 Moderate deviations of ZN

We again equip D([0, T ]; IRd) with the supnorm topology. Let for z ∈ IRd Fz :
D([0, T ]; IRd) 7→ D([0, T ]; IRd) be the continuous map which to x associates
y solution of the ODE

y(t) = z +

∫ t

0

∇b(0)y(s)ds+ x(t),

and for each N ≥ 1 Fz,N : D([0, T ]; IRd) 7→ D([0, T ]; IRd) be the continuous
map which to x associates yN solution of the ODE

yN(t) = Nα({z∗ +N−αz}N − z∗) +

∫ t

0

∇b(0)yN(s)ds+ x(t).

We have

(27) Fz,N(x)(t)− Fz(x)(t) = exp[∇b(0)t]
(
Nα({z∗ +N−αz}N − z∗)− z

)
,
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which converges to 0 as N → ∞, uniformly in t ∈ [0, T ] and x ∈
D([0, T ]; IRd). We want to study the moderate deviations of ZN , or in other
words the large deviations of ZN,α = NαZN . In what follows, we shall denote
by ZN,α

z the process ZN,α starting from ZN,α(0) = z. Since from (8), ZN,α
z ,

which from now on denotes the process ZN,α starting from ZN,α(0) = z,

is given as ZN,α
z = Fz,N(Ỹ N,α), the following statement is a consequence of

Theorem 4.7, (27) and Corollary 4.2.21 from [2].

Theorem 4.10. Assume that (H.1) and (H.2) hold. The collection of pro-
cesses {ZN,α

z (t), 0 ≤ t ≤ T}N≥1 satisfies a large deviations principle with
speed aN and the good rate function

Iz,T (φ) = Λ∗(F−1
z (φ))

=

{
Λ∗
(
φ(·)− z −∇b(0)

∫ ·
0
φ(s)ds

)
if φ(0) = z;

+∞, otherwise.

More precisely, for any Borel subset Γ ⊂ D([0, T ]; IRd),

− inf
φ∈Γ̊

Iz,T (φ) ≤ lim inf
N

aN log IP(ZN,α
z ∈ Γ)

≤ lim sup
N

aN log IP(ZN,α
z ∈ Γ) ≤ − inf

φ∈Γ
Iz,T (φ) .

Since the mapping Fz has the nice property that Fz(x)(t) − Fz′(x)(t) =
exp[∇b(0)t](z − z′), it follows readily again from Corollary 4.2.21 in [2] that
the above result can be extended to the following statement.

Theorem 4.11. Assume that (H.1) and (H.2) hold. For any closed set
F ⊂ D([0, T ]; IRd), for any sequence zN → z,

lim sup
N→∞

aN log IP(ZN,α
zN
∈ F ) ≤ − inf

φ∈F
Iz,T (φ) .

For any open set G ⊂ D([0, T ]; IRd), for any sequence zN → z,

lim inf
N→∞

aN log IP(ZN,α
zN
∈ G) ≥ − inf

φ∈G
Iz,T (φ) .

From this last Theorem, we can deduce, with the same proof as that of
Corollary 5.6.15 in [2], the following Corollary.
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Corollary 4.12. Assume that (H.1) and (H.2) hold. Let K denote an arbi-
trary compact subset of IRd.

For any closed set F ⊂ D([0, T ]; IRd),

lim sup
N→∞

aN log sup
z∈K

IP(ZN,α
z ∈ F ) ≤ − inf

φ∈F,z∈K
Iz,T (φ) .

For any open set G ⊂ D([0, T ]; IRd),

lim inf
N→∞

aN log inf
z∈K

IP(ZN,α
z ∈ G) ≥ − sup

z∈K
inf
φ∈G

Iz,T (φ) .

4.7 Wentzell–Freidlin theory and extinction of an epi-
demic

We now define

V (z, z′, t) = inf
φ, φ(0)=z,φ(t)=z′

Iz,t(φ),

V (z, z′) = inf
t>0

V (z, z′, t),

V a = inf
z, z1=−a

V (0, z),

where a > 0, and we recall that we have translated the endemic equilibrium
z∗ at the origin.

We can now state our main result.

Theorem 4.13. Assume that (H.1) and (H.2) hold. For some a > 0, let
TNz,a := inf{t > 0, ZN,α

z,1 (t) ≤ −a}, where ZN,α
z,1 (t) denotes the first coordinate

of the process ZN,α
z (t). The following hold.

For any z ∈ IRd such that z1 > −a, and any η > 0,

lim
N→∞

IP
(
ea
−1
N (V a−η) < TNz,a < ea

−1
N (V a+η)

)
= 1 ,

and
lim
N→∞

aN log IE(TNz,a) = V a .

Given Corollary 4.12, the proof of the above result follows the exact same
steps as that of Theorem 5.7.11 in [2], with some minor modifications, to
adapt to the fact that our processes have discontinuous trajectories, see the
proof of Theorem 7.14 in [5], or of Theorem 4.2.17 in [1].

Recall that a−1
N = N1−2α. In the CLT regime, α = 1/2, a−1

N = 1, while in
the LD regime, α = 0, a−1

N = N .
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4.7.1 Interpretation. The critical population size

Going back to the original coordinates, i.e. z∗ 6= 0, we should interpret
ZN,α(t) as ZN,α(t) = Nα(ZN(t)−z∗). So (dropping the index for the starting
point in order to simplify our notations), TNa is the first time when ZN

1 (t) ≤
z∗1 −aN−α. For TNa to be finite, we need to have z∗1 −aN−α ≥ 0, since ZN

1 (t)
cannot become negative. This is of course no problem for the limit theorem,
since aN−α → 0 as N → ∞, while z∗1 is fixed. However, a deviation of the
order of −aN−α is enough for ZN

1 (t) to hit zero, if z∗1 is of the order of N−α,

which means that N is of the order of (z∗1)−1/α. eN
1−2αV a is the order of

magnitude of the time needed for ZN
t − zt to make a deviation of size aN−α.

This is sufficient to extinguish an epidemic, provided z∗1 is of the same order,
so that the corresponding critical size is Nα ∼ (1/z∗1)1/α, which is roughly
the CLT critical population size raised to the power 1/2α.

4.7.2 The value of V a in the SIS model

In the particular case of the SIS model, we can compute explicitly the value
of the quasi–potential V a. In this case, d = 1, the linearized ODE around
the endemic equilibrium translated at 0 reads

ẋ = −(λ− γ)x+ u,

and the cost functional to minimize is

IT (u) =
λ

4γ(λ− γ)

∫ T

0

u(t)2dt .

We are looking for the minimal cost for driving x from 0 to −a. We now
exploit the Pontryagin maximum principle, see [8]. The Hamiltonian reads

H(x, p, u) = −(λ− γ)px+ pu− λ

4γ(λ− γ)
u2 .

The optimal control û must maximize the Hamiltonian, so it satisfies û =
2γ(λ−γ)

λ
p. Since the final time is free and the system is autonomous, the

Hamiltonian vanishes along the optimal trajectory, so that along such a tra-
jectory, either p = 0, in which case û = 0, or else x = γ

λ
p, hence û = 2(λ−γ)x.

Finally the pieces of optimal trajectory which move towards the origin cor-
respond to u ≡ 0, those which move away from the origin (this is the case we
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are interested in) satisfy the time reversed ODE ẋ = (λ − γ)x. There is no
optimal trajectory from x = 0 to x = −a. However, if we start from x = −ε,
the optimal trajectory is x(t) = −e(λ−γ)tε, so û(t) = −2(λ − γ)e(λ−γ)tε, the
final state −a is reached at time (λ − γ)−1 log(a/ε), and the optimal cost
is λ

2γ
(a2 − ε2). A possible sub–optimal control starting from 0 is as follows.

Choose u = −1 for a time of order ε, until x(t) reaches −ε, which costs or
the order of ε, and then choose the optimal feedback, until −a is reached.
Letting ε→ 0, the cost converges to

V̄a =
λ

γ

a2

2
.

4.8 Comparison between the CLT, MD and LD

We do that comparison in case of the SIS model, for which we have explicit
expressions for the rate functions and the quasi–potentials. We still translate
z∗ at the origin, and start our process at the origin : ZN

0 = 0. We fix a > 0
and want to compare (for t large) the upper bounds for IP(NαZN

t ≥ a) in
the three cases α = 1/2 (the central limit theorem), 0 < α < 1/2 (moderate
deviations) and α = 0 (large deviations).

We start with the central limit theorem. It is easy to see that Ut =
limN→∞

√
NZN

t solves the SDE

Ut = −(λ− γ)

∫ t

0

Usds+
√

2γ(λ− γ)/λBt,

so that the asymptotic variance of Ut is γ/λ. Consequently for a > 0 fixed
and any η > 0, there exist t and N large enough such that we have the
following upper bound for the probability of a positive deviation of

√
NZN

t

IP(
√
NZN

t ≥ a) ≤ exp

{
−λa

2

2γ
+ η

}
.

Consider next the moderate deviations. Theorem 4.10 combined with
the computation from the last subsection indicates that for 0 < α < 1/2, any
η > 0, there exists t and N large enough such that

IP(NαZN
t ≥ a) ≤ exp

{
−N1−2α

(
λa2

2γ
− η
)}

.
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We finally consider the large deviations. Here we need to assume that
a < γ/λ. We exploit the computations from sections 4.2.6 and A.6 in [1].
The optimal trajectory to go from ε to a is the original ODE, but time
reversed, i.e. it follows the ODE ẋt = β2(xt) − β1(xt). The running cost is

(β2(xt)− β1(xt)) log
(
β2(xt)
β1(xt)

)
, so the total cost is

∫ Ta

Tε

log

(
β2(xt)

β1(xt)

)
(β2(xt)− β1(xt))dt =

∫ Ta

T.eps

log

(
β2(xt)

β1(xt)

)
ẋtdt

=

∫ a

ε

log

(
β2(x)

β1(x)

)
dx

→ a+
(γ
λ
− a
)

log

(
1− aλ

γ

)
, as ε→ 0.

Consequently, from Theorem 3.4, for any η > 0, there exists t and N large
enough such that

IP(ZN
t ≥ a) ≤ exp

{
−N

[
a+

(γ
λ
− a
)

log

(
1− aλ

γ

)
− η
]}

.

We note that Moderate Deviations resembles much more the CLT than Large
Deviations. The fact that the discontinuity in the form of the rate function is
exactly at α = 0 is typical of random variables with light tails. The situation
would be quite different with heavy tails, see e. g. section VIII.4 in Petrov
[7].

Note however that for small a,

a+
(γ
λ
− a
)

log

(
1− aλ

γ

)
∼ λa2

2γ
,

which is not too surprising, and in a sense reconcile Large Deviations and
Moderate Deviations.

5 Appendix

In this Appendix, we establish the following technical result.

Proposition 5.1. LetM be a standard Poisson random mesure on IR2
+, and

M(dt, du) =M(dt, du)− dt du the associated compensated measure. If ϕ is
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an IR+–valued predictable process such that
∫ T

0
ϕtdt has exponential moments

of any order, and a ∈ IR, then for any 0 ≤ t ≤ T ,

IE

[
sup

0≤s≤t
exp

{
a

∫ s

0

∫ ϕr

0

M(dr, du)

}]
.

(
IE exp

{
(e2a − 1− 2a)

∫ t

0

ϕsds

})1/2

.

Proof Consider with b ≥ 0 the process

(28) Xt = a

∫ t

0

∫ ϕs

0

M(ds, du)− b
∫ t

0

ϕsds .

It follows from Itô’s formula that

eXt = 1− b
∫ t

0

eXsϕsds+ a

∫ t

0

∫ ϕs

0

eXs−M(ds, du)

+ (ea − 1− a)

∫ t

0

∫ ϕs

0

eXs−M(ds, du) .

From Lemma 5.2 below, Mt =
∫ t

0

∫ ϕs
0
eXs−M(ds, du) is a martingale. Hence

eX is a martingale if b = (ea−1−a), a submartingale if we replace = by<, and
a supermartingale if we replace = by >. Consequently if b ≥ (ea − 1 − a),
IEeXt ≤ 1. Now, using first Doob’s L2 inequality for submartingales, and
later Schwartz’s inequality, we have

IE

[
sup

0≤s≤t
exp

{
a

∫ s

0

∫ ϕr

0

M(dr, du)

}]
. IE exp

{
a

∫ t

0

∫ ϕs

0

M(ds, du)

}
= IE

(
exp

{
a

∫ t

0

∫ ϕs

0

M(ds, du)− b
∫ t

0

ϕsds

}
exp

{
b

∫ t

0

ϕsds

})
≤
(

IE exp

{
2a

∫ t

0

∫ ϕs

0

M(ds, du)− 2b

∫ t

0

ϕsds

})1/2

×
(

IE exp

{
2b

∫ t

0

ϕsds

})1/2

If 2b = e2a − 1 − 2a, it follows from the previous argument that the first
factor on the second right hand side is less than or equal to 1, hence the
result follows. �

In order to complete the proof of Proposition 5.1, we still need to establish
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Lemma 5.2. The process ϕ satisfying the same assumptions as in Propo-
sition 5.1, and Xt being given by (28), Mt =

∫ t
0

∫ ϕs
0
eXs−M(ds, du) is a

martingale.

Proof It is plain that Mt is a local martingale, whose predictable quadratic
variation is given as

< M >t=

∫ t

0

e2Xsϕsds

≤ exp
{

2a
∫ t

0

∫ ϕs
0
M(ds, du)

}∫ t
0
ϕsds, if a > 0 ;

≤ exp
{
−2(a+ b)

∫ t
0
ϕsds

}∫ t
0
ϕsds, if a ≤ 0 .

All we need to show is that the above quantity is integrable. It is clearly
a consequence of the assumption in case a < 0. In case a > 0, the second
factor of the right hand side has finite exponential moments, so is square
integrable, and all we need to show is that

(29) IE exp

{
4a

∫ t

0

∫ ϕs

0

M(ds, du)

}
<∞.

Using Itô’s formula we have

Yt = exp

{
8a

∫ t

0

∫ ϕs

0

M(ds, du)− (e8a − 1)

∫ t

0

ϕsds

}
= 1 + (e8a − 1)

∫ t

0

∫ ϕs

0

Ys−M(ds, du).

The same computation with ϕs replaced by ϕns = ϕs∧n, and then Ys replaced
by Y n

s would show that Y n
t is a martingale satisfying IEY n

t = 1. But 0 ≤
Y n
t → Yt a.s., hence Fatou’s Lemma implies that IEYt ≤ 1. Since

4a

∫ t

0

∫ ϕs

0

M(ds, du) = 4a

∫ t

0

∫ ϕs

0

M(ds, du)−e
8a − 1

2

∫ t

0

ϕsds+
e8a − 1

2

∫ t

0

ϕsds,

it follows from Schwartz’s inequality that

IE exp

{
4a

∫ t

0

∫ ϕs

0

M(ds, du)

}
≤
√

IEYt

√
IE exp

{
(e8a − 1)

∫ t

0

ϕsds

}
,

and the result follows from our assumption on ϕ. �
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