
Chapitre 3

More on diffusion approximation
of fixed–size population models

3.1 Introduction

Here we shall start with an alternative to the Wright–Fisher model, na-
mely the continuous–time Moran model. We shall then present the look–down
construction due to Donnelly and Kurtz [7] (see also [8]), and show that this
particular version of the Moran model converges a. s., as the population size
N tends to infinity, towards the Wright–Fisher diffusion.

3.2 The Moran model

Consider a population of fixed size N , which evolves in continuous time
according to the following rule. For each ordered pair (i, j) with 1 ≤ i "=
j ≤ N , at rate 1/2N individual i gives birth to an individual who replaces
individual j, independently of the other ordered pairs. This can be graphically
represented as follows. For each ordered pair (i, j) we draw arrows from i to
j at rate 1/2N . If we denote by P the set of ordered pairs of elements of the
set {1, . . . , N}, µ the counting measure on P , and λ the Lebesgue measure
on IR+, the arrows constitute a Poisson process on P × IR+ with intensity
measure (2N)−1µ× λ.

Suppose now that as in the preceding chapter the population includes
two types of individuals, type a and type A. Each offspring is of the same
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Fig. 3.1 – The Moran model
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type as his parent, we do not consider mutations so far. Denote

Y N
t = number of type A individuals at time t.

Provided we specify the initial number of type A indviduals, the above model
completely specifies the law of {Y N

t , t ≥ 0}. We now introduce the proportion
of type A individuals in rescaled time, namey

XN
t = N−1Y N

Nt, t ≥ 0.

Note that in this new time scale, the above Poisson process has the intensity
measure µ× λ. We have, similarly as in Theorem 2.1.1,

Theorem 3.2.1. Suppose that XN
0 ⇒ X0, as N → ∞. Then XN ⇒ X in

D(IR+; [0, 1]), where {Xt, t ≥ 0} solves the SDE

dXt =
√

Xt(1−Xt)dBt, t ≥ 0.

Proof: As for Theorem 2.1.1, the proof goes through two steps.
Proof of tightness One needs to show that IE[|XN

t −XN
s |2] ≤ c(t− s)2.

Identification of the limit Note that the process {ZN
t := Y N

Nt, t ≥ 0}
is a jump Markov process with values in the finite set {0, 1, 2, . . . , N}, which,
when in state k, jumps to

1. k − 1 at rate k(N − k)/2,
2. k + 1 at rate k(N − k)/2.

In other words if QN denotes the infinitesimal generator of this process,

QNf(ZN
t ) = ZN

t (N − ZN
t )

[
f(ZN

t + 1) + f(ZN
t − 1)

2
− f(ZN

t )

]
.

In other words,

IE
[
f(XN

t+∆t)− f(XN
t )|XN

t = x
]

= N2x(1− x)

[
f

(
x + 1

N

)
+ f

(
x− 1

N

)

2
− f(x)

]
∆t + o(∆t)

=
x(1− x)

2
f ′′(x)∆t + o(∆t),

since from two applications of the order two Taylor expansion,

f
(
x + 1

N

)
+ f

(
x− 1

N

)

2
− f(x) =

1

2N2
f ′′(x) + o(N−2).

!
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Fig. 3.2 – The look–down construction

3.3 The look–down construction

Let us again consider first the case where the size N of the population is
finite and fixed. We redraw the Harris diagram of Moran’s model, forbidding
half of the arrows. We consider only arrows from left to right. Considering
immediately the rescaled time, for each 1 ≤ i < j ≤ N , we put arrows from
i to j at rate 1 (twice the above 1/2). At such an arrow, the individual at
level i puts a child at level j. Individuals previously at levels j, . . . , N −1 are
shifted one level up ; individual at site N dies.

Note that in this construction the level one individual is immortal, and
the genealogy is not exchangeable.

However the partition at time t induced by the ancestors at time 0 is
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exchangeable, since going back each pair coalesces at rate 1.
Consider now the case where there are two types of individuals, type a,

represented by black, and type A, represented by red. We want to choose
the types of the N individuals at time 0 in an exchangeable way, with the
constraint that the proportion of type red individuals is given. One possibility
is to draw whithout replacement N balls from an urn where we have put k
red balls and N −k black balls. At each draw, each of the balls which remain
in the urn has the same probability of being chosen.

It follows from the above considerations that at each time t > 0, the types
of the N individuals are exchangeable.

3.4 A. s. convergence as N →∞
We now want to let N → ∞. The look–down construction can be des-

cribed directly with an infinite population. The description is the same as
above, except that we start with an infinite number of lines, and that nobody
is dying any more.

Note that that possibility of just doing the same construction for N =∞
is related to the fact that in any finite interval of time, if we restrict ourselves
to the first N individuals, we have only to consider finitely many arrows. This
would not be the case with the standard Moran model, which could not be
described in the case N =∞. Indeed in the Moran model with infinitely many
individuals, there would be infinitely many arrows towards any individual i,
in any time interval of positive length. We notice the great power of the
look–down construction.

Consider now the case of two types of individuals. Suppose that the initial
colours of all individual at time t = 0 are i. i. d., red with probability x, black
with probability 1− x. Define

ηt(k) =

{
1, if the k–th individual is red at time t;

0, if the k–th individual is black at time t.

{η0(k), k ≥ 1} are i. i. d. Bernoulli random variables, while at each t > 0,
{ηt(k), k ≥ 1} is an exchangeable sequence of {0, 1}–valued random va-
riables. We have the following celebrated theorem due to de Finetti (see e.
g. [4], [1]) which says that an exchangeable sequence of {0, 1}–valued r. v. is
a mixture of i. i. d. Bernoulli.
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Theorem 3.4.1. Let {ξk, k ≥ 1} be a sequence of exchangeable {0, 1}–valued
random variables. Then there exists a probability Q on the set [0, 1] equipped
with its Borel σ–algebra such that for all n ≥ 1, (u1, . . . , un ∈ {0, 1}n,

IP(ξ1 = u1, . . . , ξn = un) =

∫

[0,1]

x
Pn

i=1 ui(1− x)n−
Pn

i=1 uiQ(dx).

In other words, there exists a [0, 1]–valued r. v. θ such that conditionally upon
θ = p, the ξk are i. i. d., Bernoulli with parameter p.

Consequently the following limit exists a. s.

Xt = lim
N→∞

1

N

N∑

i=1

ηi(t).

We now conclude that
Proposition 3.4.2. The [0, 1]–valued process {Xt, t ≥ 0} solves the Wright–
Fisher SDE in the weak sense, i. e. there exists a standard Brownian motion
{Bt, t ≥ 0} such that

dXt =
√

Xt(1−Xt)dBt, t ≥ 0.

Proof: First {Xt, t ≥ 0} is a Markov process. Indeed, conditionally upon
Xs = x, the ηs(k) are i. i. d. Bernoulli with parameter x, hence for any t > s,
Xt depends only upon the ηs(k) and the arrows which are drawn between
time s and time t, which are independent from {Xr, 0 ≤ r ≤ s}.

Now it remains to show is that the process {Xt, t ≥ 0} has the right
transition probability, i. e. (see Proposition 6.5.1 below) that for all n ≥ 1,
x ∈ [0, 1],

IEx[X
n
t ] = IEn[xDt ].

For all n ≥ 1,
Zn

t = IP(ηt(1) = · · · = ηt(n) = 1|Zt),

consequently

IEx[Z
n
t ] = IEx [IP(ηt(1) = · · · = ηt(n) = 1|Zt)]

= IP(ηt(1) = · · · = ηt(n) = 1)

= IP(the ancestors at time 0 of 1, . . . , n are red)

= IEn

[
xDt

]
,

where {Dt, t ≥ 0} is a death continuous–time process, which jumps from k
to k − 1 at rate k(k − 1)/2. !


