Quantifying and predicting the evolution of RNA viruses

evolutionary processes ↔ statistics of trees ↔ patterns of genetic diversity

 \rightarrow time resolved data allows direct observation

evolutionary processes ↔ statistics of trees ↔ patterns of genetic diversity

 \rightarrow time resolved data allows direct observation

Rapidly evolving populations

History of HIV

Sharp & Hahn, CSH Pers. Med, 2011

Klenerman, Fleming, Barnes, PLoS Pathogens, 2009

HIV-1 infection and immune selection

virus-immune system coevolution

- rapid evolution facilitates chronic infection
- paradigmatic example of host-parasite co-evolution
- can be studied in exquisite detail

Image: wikipedia

HIV-1 infection and immune selection

virus-immune system coevolution

- rapid evolution facilitates chronic infection
- paradigmatic example of host-parasite co-evolution
- can be studied in exquisite detail

Image: wikipedia

Sequencing of serial HIV-1 RNA samples

Sequencing of serial HIV-1 RNA samples

Sequencing of serial HIV-1 RNA samples

The dynamics of mutations

What is an appropriate model?

Why does it look like Bolthausen-Sznitman?

A large fraction of genetic variation is under selection

- \rightarrow there is a broad fitness distribution
- → successful parents have successful offspring

Desai, Walczak, Fisher, Genetics, 2013 Brunet et al, PRE, 2007

Branching process approximation:

 $P(n_i|\chi_i,\tau)$

RN and Hallatschek, PNAS, 2013

Does a sample (blue dots) have a common ancestor tau generations ago?

$$Q_b = \langle \sum_i \left(\frac{n_i}{\sum_j n_j} \right)^b \rangle = \begin{cases} \mathcal{O}(1/N) & \tau < T_c \\ \frac{\tau - T_c}{T_c(b-1)} & \tau > T_c \end{cases}$$

All other merger rates also suggest a Bolthausen-Sznitman coalescent

Allele frequency spectra

RN and Hallatschek, PNAS, 2013

Genetic diversity in adapting populations

Time scale of coalescence:

$$T_c \sim \frac{\sqrt{\log N}}{\sigma}$$

Universal: many selected mutations \rightarrow same tree statistics

RN and Hallatschek, PNAS, 2013 Desai, Walczak, Fisher, Genetics 2013

Continuous cross-over from neutral to strongly selected

RN, Kessinger, Shraiman. PNAS, 2013 Good et al, PloS Genetics, 2014

Continuous cross-over from neutral to strongly selected

RN, Kessinger, Shraiman. PNAS, 2013 Good et al, PloS Genetics, 2014

Continuous cross-over from neutral to strongly selected

Good et al, PloS Genetics, 2014

Extension to recombining populations

RN, Kessinger, Shraiman, PNAS, 2013

Site frequency spectra

Phylogenetic trees in different regions

Movie

Recombination facilitates adaptation

Constrasting behavior:

- Non-synonymous diversity is low, region specific rate of evolution
- Synonymous diversity keeps increasing, rate is identical across regions
- Synonymous diversity is inversely related to non-synonymous divergence

Recombination facilitates adaptation

Constrasting behavior:

- Non-synonymous diversity is low, region specific rate of evolution
- Synonymous diversity keeps increasing, rate is identical across regions
- Synonymous diversity is inversely related to non-synonymous divergence

Predicting Influenza evolution?

Predicting Influenza evolution?

Predicting Influenza evolution?

Best pick for new vaccine!

Given the branching pattern, can we

- predict fitness?
- pick the most likely progenitor of the future?

Fitness can be inferred from trees

$$P(\mathbf{x}|T) = \frac{1}{Z(T)} p_0(x_0) \prod_{i=0}^{n_{int}} g(x_{i_1}, t_{i_1}|x_i, t_i) g(x_{i_2}, t_{i_2}|x_i, t_i)$$

RN, Russell, Shraiman. eLife, 2014

Fitness can be inferred from trees

 $\partial_t g(x,t'|y,t) = [y - 2\phi_\omega(y,t)]g(x,t'|y,t) - \sigma^2 \partial_y g(x,t'|y,t) + D\partial_y^2 g(x,t'|y,t)$

RN, Russell, Shraiman. eLife, 2014

Fitness can be inferred from trees

 $\partial_t g(x,t'|y,t) = [y - 2\phi_\omega(y,t)]g(x,t'|y,t) - \sigma^2 \partial_y g(x,t'|y,t) + D\partial_y^2 g(x,t'|y,t)$

RN, Russell, Shraiman. eLife, 2014

High fitness corresponds to local bursts

At short times:

$$\int dx \, g(x,t|y,t') \sim e^{y(t-t')}$$

the product of propagators and prior: $\sim e^{yT-y^2/2}$

High fitness corresponds to local bursts

tree: data/20150105_tree_20y.json

RN, Russell, Shraiman. eLife, 2014

http://flu.tuebingen.mpg.de

tree: data/20150105_tree_20y.json

RN, Russell, Shraiman. eLife, 2014

http://flu.tuebingen.mpg.de

Past evolution of influenza A/H3N2 is predictable

- requires only tree as input: generally applicable
 - \rightarrow emerging diseases
 - \rightarrow cancer cell populations

nextflu

with Trevor Bedford, available at nextflu.org

nextflu

with Trevor Bedford, available at nextflu.org

Summary

- HIV-1 evolution can be followed in exquisite detail
- RNA virus evolution is driven by ubiquitous selection
- Genealogies share properties with the Bolthausen-Sznitman coalescent
- Fitness can be inferred from trees
- Influenza evolution is predictable
- Browser-based tools to integrate information

Acknowledgements – HIV

Discussions: Thomas Leitner, LANL

Web design: Bianca Regenbogen, Tübingen

erc

Acknowledgements – Theory and Influenza

Boris Shraiman

Oskar Hallatschek

Colin Russell

Trevor Bedford

