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Abstract: Let {W,; t €[0, 1]} be a standard &-dimensional Wiener process defined on a probability space (2, #, P), and let {#)
denote its natural filtration. Given a #, measurable d-dimensional random vector X, we look for an adapted pair of processes
{x(e), p(t}; 1 €[0, 1]} with values in R¥ and R¥** respectively, which solves an equation of the form:

x(r)+£lf(s, x(3), ¥(s)) ds+j;1[g(.s, x(s))+ y(s))dW, = X,

A linearized version of that equation appears in stochastic control theory as the equation satisfied by the adjoimt process. We atso
generalize our results to the following equation:

1 1
x(0)+ [ f(s, x(5), »(5)) ds+ [ g(s5, x(s5), y(5)) dW, = X
! I
under rather restrictive assumplions on g.
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1. Introduction

The equation for the adjoint process in optimal stochastic control (see Bensoussan [1], Bismut [2],
Haussmann [4], Kushner [6]) is a linear version of the following equation:

x(£) +£‘f(s, x(s), v(s)) ds+j:1[g(s, x(5)) +y(s)] dW(s) = X (1.1)

where { W(¢), 1 €0, 1]} is a standard k-dimensional Wiener process defined on (2, &#, P), { %, r<[0, 1]}
is its natural filtration (ie. &, = o(W(s), 0 <5< 1)), X is a given %#, measurable d-dimensional random
vector, and f maps £ X [0, 1] X RY X R*** into R”. f is assumed to be #® &, ® &,,.,/%#, measurable,
where 2 denotes the o-algebra of #-progressively measurable subsets of 2 x [0, 1]. We assume moreover
that f is uniformly Lipschitz with respect to both x and y. We are looking for a pair { x(¢), y(£); 1[0, 1]}
with values in R x R¥** which we require to be { 5 )} adapted. Note that it is the freedom of choosing
the process { y(f)} which will allow us to find an adapted solution. Indeed, in case y=0 and X is
deterministic, the above equation would have a unique %# "-adapted solution { x(¢)}, where F'=o(W(s)
— W(t); <5< 1). Note also that the following refation exists between { x(¢)}, { (1)} and {W(2)}:

y(e)= %(x, Wy —g(t, x(2)), tae.

where (x, W), denotes the joint quadratic variation process between x and W.
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QOur main result will be an existence and uniqueness result for an adapted pair {x(1), y(t); t €[0, 1]}
which solves (1.1). We expect that our result will prove to be useful in optimal stochastic control.
We shail also consider the more general equation

x(r) + fff(s, x(s), y(s)) s+ "g(s, x(s), y(s)) dW(s) =X (1.2)

where g: 2 X[0, 1] X R¥ X R“** > R?** and is #®@ %#,® &,..,/% .., Measurable, and satisfies a rather
restrictive assumption which implies in particular that the mapping y — g(s, x, y) is a bijection for any
(s, w, x).

The paper is organized as follows: in Section 2, we study a version of equation (1.1) where f and g do
not depend on x, in Section 3 we study equation (1.1), and in Section 4 we study equation (1.2). Let us
close this section with the introduction of some notations that will be used throughout the present paper.
M0, 1; R7) (resp. M?(0, 1; R7*%)) will denote the set of R“valued (resp. R“**-valued) processes which
are F-progressively measurable, and are square integrable over £ X (0, 1) with respect to P x A (here A
denotes Lebesgue measure over [0, 1]). For x € R¥, |x| will denote its Euclidean norm, An element
y € R?** will be considered as a d X k mairix; note that its Euclidean norm is given by |y | ={Tr(yy*),

and (y, z)=Tr(yz*).

2. A simplified version of equation {1.1)

As a preparation for the study of equation (1.1), we consider in this section simplified versions of that
equation. Let us first prove:

Lemma 2.1, Given X € L*(£2, #,, P; RY), fe M*(0, 1, RY) and g € M?(0, 1; RY*%), there exists a unique
pair (x, ¥) € M0, 1 RY) x M*(0, 1; R*™*) such that

x(f)+£1f(8) dH]:l[g(S)Hf(S)] dw(s)=X, 0<r<l (2.1)

Proof. Define
(1) = E%[X— [1s) ds], 0<r<l,
I

It follows from a well-known martingale representation theorem (see e.g. Karatzas and Shreve [3], p. 182)
that there exists y € M2(0, 1; R“**) such that

ng[X—fOlf(s) ds] = 5(0)+ [5(s) AW(s).

We finally define y(¢)=5y(t) —g(t), 0<t<1. It is easily seen that the pair (x, y) which we have
constructed solves (2.1), and that any solution to (2.1) takes the above form. O

We now consider the equation
x(1)+ ['f(s. y(5)) ds+ ['[(s) + ()] dW(s) = X (22)

where now f: 2 X (0, ) X R"** > R? is #® B, /%, measurable (# denotes the o-algebra of progres-
sively measurable subsets of 2 > (0, 1)) with the property that

f(-,0) e M*0, 1; RY) (2.3i)
and there exists ¢ > 0 such that

| £(1, y,)-f(r, )’2)|*§-Cf}’1_)"2[ (2—3ii)
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for any y,, y,€R“**, and (f, @) a.e. Note that (2.3} + (2.3ii) imply that f(-, y(-)) € M?(0, 1; R?)
whenever y € M2(0, 1; R¥*%).

Proposition 2.2. Let X LXQ, %, P; R?), g€ M0, 1; R“**) and f: 2X (0, ) XR** =R be a
mapping satisfying the above requirements, in particular (2.3). Then there exists a unique pair (x, y)€

M0, 1; RY) x M0, 1; R¥**) which satisfies (2.2).

Proof. Unigueness. Let (x;, ;) and (x,, »,) be two solutions. It follows from Itd’s formula applied to
| x,(s) — x,(s)|* from s=¢ to s=1 that

5(0) = xo() 12+ [ 131(8) ()17 ds
= =2[}(/(s, (N = £(s, 1(5)). () = xafs) ds
2 (x(s) = xa(s), Dnds) = mals)] )
It follows from well-known inequalities for semi-martingales that sup, ., ., | x,(2) — x,(r) |? is P-integra-

ble. Since moreover y, — ¥, € M2(0, 1; R9*F), the above stochastic integral is P-integrable and has zero
expectation. We obtain T

Elx() =x(0) 17+ Ef 1 31(s) = (s) | ds
= =25 [ (J{s, 2u() =15, (). () = xa(s)) ds
AE[ 10(5) = 32(s) 1 ds + 26 [ |x,(5) — xa(s) 1> ds

Uniqueness now follows from Gronwall’s Lemma.

Existence. With the help of Lemma 2.1, we define an approximating sequence by a kind of Picard
iteration. Let yo(t)=0, and {(x,(t), »,(1)); 0<t<1},,, be a sequence in M0, 1; R?)X
M0, 1; R**) defined recursively by

1 1
x,(6)+ [ £(s, 7o 1(s)) ds+ [ [g(s) +p.(s)] aW(s) = X. (2.4),
! I
Using again the 116 formula and the same inequah‘ties as above, we get (with K= 2¢?)
1
E(1%,41() =%, () P} + Ef | yun(s) =3, ()1 > ds
f
1 1
<KE [ 1%,41(5) = %,(s) 1 ds + JE [ 1 3,(s) ~y,_a(s) | ds.
t . ¢

Define u,(¢)=Ef! | x,(s)—x,_(s)]? ds and u,(#) = Ef,' | ,(5) = ¥,_1(5)|? ds, for n 21 (x4(1) =0).
The last inequality implies that

d
—a(un—f-l(t) exl)+eKrUn+l(t)‘<~% eKrUn(t)’ (25)
Integrating from 7 to 1, we obtain
1 : 1
u,, (1) +] X0y, (s) ds< 3 [ eK(s—1)u,(s) ds.
f r
It follows in particular that

1 -
j; eXy  (r)dr<2 e e®
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with &= EfJ | »,(#) |* dt = sup, _, .,v,(2); but also then

u,,,(0) <277C X, (2.6)
However, from (2.5) and (d/d¢)u,,,(2) < 0, we deduce that

841(0) < Ku,.,.,(0) + 31, (0) < 27"K + 4, (0)
with K = zK e*, from which follows immediately

0,41(0) <27"(nK + 0,(0)). 27

Since the square roots of the right hand sides of (2.6) and (2.7) are summable series, we have that {x_}
{resp. {y,}) is a Cauchy sequence in M?(0, 1; R¥) (resp. in M?*(0, 1; R**%)). Then from (2.4),, {x,} is
also a Cauchy sequence in L*(2; C(0, 1; R?)), and passing to the limit in (2.4), as n — oo, we obtain that
the pair (x, y) defined by
x= lim x,, y= lim y,
n—> o0 "= o0

solves equation (2.2).

3. Equation (1.1)
We can now study the equation
x(t)+j;]f(s, x(s), y(s)) ds+j;][g(s, x(s)) +y(s)] dW(s) =X (3.1)

where f: 2% (0, 1) x R X R** “ RY is @ B,® B, /FB, measurable and g: 2 X (0, 1) X RY - R¥*¥
is e B,/%,, measurable, with the properties that

f(-,0,00€e M*(0,1; RY),  g(-,0,0)e M0, 1; R¥*¥) (3.2i)
and there exists ¢ > 0 such that

|f(ts X1s J’I) _f([a Xy )’2)1 gc(|x1 —x|+ |y1_J’2|)» (3-2ij)

|g(e, x) =g, x3) | <clx;—x,] (3.2iii)

for all x, x,, x,€R% y, y, »ER™ (1, ) ae. Note that (3.2i) + (3.2ii) + (3.2iii) imply that
fCG, x(ry(CNEM0,1; RY) and g(-, x(), y(-)) € M?(0, 1; R¥*¥), whenever x € M*(0,1; RY), y €
M?(0, 1; RI™5).

Theorem 3.1. Given X € L*(2, #,, P; R?), f and g given as above and satisfying in particular (3.2), there
exists a unique pair (x, y) € M*(0,1; RY) x M0, 1; R***) which solves equation (3.1).

Proof. Unigueness. Let (x,, y;) and (x,, y,) be two solutions in M2(0, 1; R¥) x M0, 1; R“**). By a
similar argument as that in Proposition 2.2,

Elxi(t) = x () 1P+ Ef 1 32(s) = 32(s) 1 ds
= —2E['(f(s, 1(s), 1(5) = £(s, x2(5), 32(5)), xi(s) = xa(s)) ds
~E[ 1505, x(s)) ~ 8(s, 1a(s)) I ds
~2E[ (55, x1()) = 85, x2(5)), 7() =3(5)) ds

- 1 1
<2E [ Ix(s) = x,(s) [P ds+ 1E[ | 3y (s) = 3a(s) 12 ds
’ I

for a certain constant ¢. The result follows.
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Existence. We will now construct an approximating sequence using a Picard type iteration with the help
of Proposition 2.2. Let xq(1)=0, and {(x,(z), y,(1)); 0<t<1},,, be a sequence in M3(0,1; R?) x
MZ2(0, 1; R¥*¥) defined recursively by
T T
5 (1) + 105 %) 3a(6) ds+ [T[g(s xur(0) +0()] () =X, O<r<l (33)
t 1

Using a by now ‘usual’ procedure, we obtain

E(1% () =5, 1P) +3E[ 1 3,00() =3, ()1 s

e[ B[ 1x0er(s) =2, ()1 ds+ B[ 1,(5) = %, ()1 s ). (3.4)

Define u (t)=Ef' | x,(5) — x,_1(5) | * ds. It follows from (3.3):

_ dum+1

d¢ (t)_cun-i-](t)“(-cun(t): un-l-l(l):O!

or
1 c{s—1t)
u”l(t)scf e u,(s) ds.
t

Tterating that inequality, we deduce that

(ce)"

73

u,,1(0) < u,(0).

This, together with (3.4), implies that {x,} is a Cauchy sequence in M?(0, 1; R“) and { 5.} a Cauchy
sequence in M2(0, 1; R“**). Then, from (3.3), { x, } converges also in L*(£; C(0, 1; R¥)). It then follows
from (3.3) that

x= lim x,, y= lim y,

n=*0oQ n—oc

solves equation (3.1). O

4. Equation (1.2)
We now consider the equation
x(1)+ [f(s, x(s), y(2)) ds+ ["g(s, x(s), y(s)) aW(s) = X | (4.1)

where X € LY(Q, #, P;RY), f:2X (0, ) xR'XR* >R is Po B, ® #,,,/H#, measurable and
22X, DXRIXR SRV is PO B, ® By /B4y, Measurable, and they satisfy:

f(-,0,0) e M*(0, 1; RY), g(-,0,0)e M*{0, 1; RI*¥); (4.2i)
there exists ¢ > 0 such that

FA(2, xq, 7)) = f(e, xp m) |+ g(2, x, p) —g(t, x5, )| <e(|x — X[+ |3 —»ml) (4.2ii)

for all x,, x, €RY, y,, ¥, ERY* (1, w) a.e.; and there exists « > 0 such that

1g(t, x, ;) —glt, x, w=aly—mnl (4.2iii)
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for all x €RY, y,, y, € R, (4, w) a.c. Note that (4.2iii) is satisfied is the case of equation (3.1), with
a = 1. Moreover, (4.2ii) + (4.2iii) implies that for all x € R and (¢, «) ae.,
y—g(t, x, 5)

is a bijection from R¥** onto itself. Indeed, the one-to-one property follows at once from (4.2ii) and the
onto property from continuity (4.2i), injectivity, and the fact that

lim |g(r, x, p)| =+
[¥]—=+oo

for all x e R, (¢, w) a.e. (see the comment following the proof of Theorem 4.1 in Protter [7]). We have:

Theorem 4.1. Under the above conditions on X, f and g, in particular (4.2), there exists @ unigue pair
(x, )€ M0, 1; RY) X M0, 1; R?*¥) which solves equation (4.1).

Proof. The proof is an adaptation, with essentially obvious changes, of the proofs of the previous results.
We just indicate the three steps, and explain the one new argument which is needed in the first step. The
first step consists in studying the equation

x(1) +‘j;1f(s) ds+j:1g(s, y(5)) dW(s) = X (4.3)

where g satisfies the simplified version of (4.2) obtained by suppressing the dependence in x. The second
step solves the equation

x(e) + ff(s, ys)) ds+ [ 'g(s, y(s)) dW(s) =X

where f and g satisfy the simplified version of (4.2) obtained by suppressing the dependence in x, and the
third step solves equation (4.1). Let us only consider equation (4.3). From Lemma 2.1, there exists a unique
pair {(x, ¥) such that

1 1_
x(:)+]f(s) ds+fy(s)dW(s)=x.
! 4
It remains to show that given 5 € M2(0, 1; R“**), there exists a unique y € M*(0, 1; R***) such that

g(1, }’(f)) =3(f) (1, w)ae.

1t follows from the properties of g that for any (¢, w, y) €[0, 1] X £ X R“*%, there exists a unique
element ¢ (w, y) of R¥*% such that

g(t, @, g0, ¥))=y.

It remains only to show that ¢ is Q@ #,,.,/%,., measurable.
We can, without loss of generality, assume that £ = C([0, 1]; R*), W,(w) = w(r) and %, is the Borel
field over £2. Note that the mapping

G(t, w, y)=(t, w, g1, w, ¥))

is a bijection from &= [0, 1] X £ x R?** into itself. Since & is a complete and separable metric space, it
follows from Theorem 10.5, page 506 in Ethier and Kurtz [3] that G™! is Borel measurable, ie.
#([0,1) ® %, ® #,,., measurable. By considering for each ¢ the restriction of the same map to
[0, £] % C(0, t]; R¥**) x R¥** we obtain that G~! is #® #,,, measurable, which proves the above
assertion for ¢. O

Remark 4.2. It would be nice to solve the above equations for an arbitrary (non-necessarily square
integrable) final condition X. That extension of our resuits would foliow from the following result. Let X,
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X, € L2, %, P; R?), and let {x,(¢)}, {x,(¢)) denote the corresponding solutions of equation (4.1).
Then x, = x, on [0, 1] X { X, = X, }. However, even in the simplest case of equation (2.1) with f= 0 and
=0,

x () =E(X/% ), i=11,

and the above result does not hold, except if { X, = X, } €%,.
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