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Introduction _
A pew class of backward stochastic differential equations has been studied by the authors in [3}, aad - o
it has been used by the second author in [4], in order to give a probabilistic formula for the given
solution of a system of parabolic pastial differential equation. : -
The aim of the present paper is to study the regularity properties of the solution of the backward whi
~ SDE (in short BSDE), and to deduce a converse of the results of [4], namely to show that a given of /
function expressed in terms of the solution of the DSDE solves a certain system of parabolic PDEs. Our vari
result generalizes the well-known Feynman-Kac formula {see Remark 3.3 below). It gives an existence
and uniqueness result for a system of quasilinear (and possibly degenerate) parabolic equations. We
also obtain an existence result for the viscosity solution of a quasilinear parabolic equation.
We shall extend .cur approach in a forthcoming publication, to the case of systems of quasilinear
parabglic ‘stochastic partial differential equations. Our approach may also prove useful for solving
certain equations on manifolds. _ - _
The paper is orgaaised as follows. In section 1, ‘we shall state our assumptions, aad recall some
results from previous work. In section 2, we establish some estimates and regularity results for the Oue
solution of the BSDE, in section 3 we shall relate it to 2 system of quasilinear parabolic PDEs, Finally, unb:
in 4, we relate the solution of the one-dimensional BSDE to the viscosity solution of a quasilinear
parabolic PDE, under much weaker assumptions. ' . r;l“:
) of L
1 Preliminaries I
In all what follows, we shall work on a fixed finite tlime interval [0, T]. We suppose given on a probability - mab
space (R, F, P) a d-dimensional standard Wiener process {Wi; 1 € [0,7:]}-. For0gt<r<T, we Lemr
_define J'-':.—. a{W, - W,; t <3< r) and F] denoles the completion of }'-', with the P-null sets of 7. I gi
We shall write ¥, for 77 and F* for FF. ) s . )
Forany 0< t £ r < T, p € N, we denote by M?(¢,#; IR”) the subset of L2 x (t,r}, dP xds, IR") | ()
' )

consisting of Fi-progresively measurable processes. . .

CHR",R"), Cii(R",R"), C;(IR*,RY) will denote respectively the set of functions of class C*
from I into IRY, the set of those functions of class C* whose partia} derivatives of order less than .
&r equal to k are bounded (and hence the function itself growths at most like a linear function of the
variable z at infinity), and the set of those functions of class G* which, together with all their partial
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derivatives of or_dei less than or equal to k, grow at most like a polynomial i:uncl.ion- of the variable =

at infinity. . . )
We are given b € C}{IR%; R?) and o € C},(R% R#*4), and for each ¢ € [0,T), z € IR, we denote
by {X}*, t £ s < T} the unique strong solution of the following SDE :

t

Xt .
1t is well-known (see e.g. Stroock [8]) that the random field {Xt=,0€t<s < T, z €R‘} basa
version which is a.s. jointly continvous in {t, s, 7), together which its z partial derivatives of order one

and two. . ) .
Moreover, sup,g,¢r{1X] + VX4 [D*X*)) € N,51L7(Q), for each ¢ and z, where VX!* and
DX denote respectively the fiat and sccond order partial decivative of X[* with respect to z.
Let us now recall the notion of detivation on Wiener space. We denote by S the.set of random

variables £ of the form :

‘T

= pWlba- - Wha))

where f € CE(IRY), hy,y.voihn € L3O, T RY), and W{hi) = [T (hi(s), dW.) is the Wiener integral
of h; with respect to {W,; 0 S 3 = TY i~} denctes the scalar product in IRY]. To such a random
variable ¢, we associate a “derivated process” {D,{; r € {0, T]} defined as :

D& =3 22 W), WAL
=l 1] .- B
For £ € S, we define its 1,2-norm by : ‘
, ) o
Hellza = B+ E [ D&l

One can show (see e.g. Nualart-Pardoux [2]) that D. : § — L}{§ x (0,T); R*) is closable, as an
unbounded operator from L) inte L} x (0,T);. R*), hence D. can be extended as an operator
from its domain which coincides with p? & gihha into L2(f1 x {0,T) ). Note that if £ € D' s
F* measurable, D,§{ =0 forr € {0, 7]\ [t, s}. We shall denote by Dig, 1.€i £ d, the i-th component

of D,£.. ) o
1t follows from the closedness property of . that the following, results can be proved by approxi-

mation.

Lemima 1.1 Forauny0<t<s&T, z€ Y, X € (ID'?)¢, and a version of {D.X4=; s,v € [0,T]}
is given by : . .

(") Drx:" =0, re [UITI \ (11’] .-
(i) Foranyt <r <T, {D. X", r < s T} is the unique solution of the linear SDE :

D = a(X¥)+ [ VXID X da

4 [ olixiD.xaw

where we use the convention' of summation over the repeated indez i, fromi=1toi= d, and oy
= denotes the i-th column of the mairiz o, . -

{ dX'* = HX)ds +o(X!=)dW,, t Ss T '
AR | (1)




We now iotroduce the BSDE. Let f : -[O,T] x RY x R* x R*** —+ R* be such that for any
s€0,T), (z.9:2) #(s,2,y,2) is of class C* and moreover : . -

() £(5,,0,0) € GRS RY),

(ii} the first order partial derivatives in y and z are bounded on T70,T) x RY x ¥ x R*™4, as well as
their detivatives of order ane and two with respect to z,y,2. '

Let g € C‘;‘(]R‘). For ay ¢t € [0,T) and z € RY, let {(Y}*,2*); t S 3 < T} denote the unique
‘element of M3(¢, T; ') x M1, T; R*") which solves the following BSDE (see 3 : ’

)+ [ oy ps [Lar 1SS T )
For further reference, let us indicate the method of construction of the solution (Y%, Z!#). Drop-

ping the superscript ¢,z for convenience, we construct the solution in three steps. . ’
First, given arbitrary ¥ € M?(,T; R*) and Z € M*(t,T; R**9), we solve the equation

i
!
i
i
i
.g:i;l"
¥

T T
Yo=g(Xa)+ [ (X ¥ 2 [ 2dW, tSs<T, 3
whose unique solution is given explicitly by : B .
Y, = B Mo(Xn) + [ FX T T,

{Z,, t € s < T} is the unique element of M3(¢t,T; R*™¥) which is given by Itd’s representatiol
theorem of Brownian martingales (see e.g. Karatzas-Shreve [1]), such that : s

/ T gidW, = g(X;-) +f R AT [g(Xr) +f SR AR AV

Next, given an arbitrary element Y € M*(1,T; R*), we solve the equation

T T : : . .
Y,ag(Xr){-f‘ f(X,.?,,Z,)dr—j‘ Z.dW, 1 <s<T, _ 0]

by the iterative procedure : _ )

7

L

0,

It.

T T -
Yor = X+ [ ST Z0Mr = [ Z7VaW,, S s ST nER,

where the n-th equation is solved with the heip of the first step.
Wo finally solve equatien (2) by the iterative procedure ;- :

Y® = 0,andfornelN,

Y.u-i- 1

T V T -
g Xr)+ j FOG Y2, 20 dr - j ZHaW,, t<s < T,
* [] .

where the n—th equation is solved with the help of the second step.
The convergence of the two approximating sequences is proved respectively on page 57-58 and 59

of 3.
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2 Regulatity of the solution of the backward SDE

We first estimate higher order moments of (¥'). We again suppress the superscript ¢, z for notational -
convenience. For z € R**¥, we denote ||z|| = 1/Tr(zz‘)_. : .

) ) ) HH

Lemma 2.1 Foranyp 2 1, . - _ 4 H
H

i

)

£ (ﬁm IYJ’) < oo - (5)

CogT

e e

Proof : Fr;)rn Tt6’s formula,

X = %8 =2 [ (X ¥ 2, Vi 42 [ (Ve 2w+ [ U2 IFer

and for any p 2 2,

Iy(Xr)_I” > IY,I?? -2 j"-" |Y‘-I=('_l)(f(x"’ Y., 2.}, }';,)d,-.

T T
+2p [ WGP, ZdW) +p [ 1Y P2
hence for some constant C, '
T . ‘
Vi +p [ P2 < (X

T T
+2Cp [ PO D] + P + A Z )i =2 [ VP01, 2.4W,)

where we have used the assumption on f. Had we done the same caleulation with the function v — w? =

remplaced by

-l,p.._,(ﬁ) = (uAn) '+ pn?*~Yu ~ n}t, n.E N, *

we would have obtained :
2y 4 T ¢ 2z 2, {'i: 1l
enalY) + [ @12 A dr 1 £
, 1 E
- 1 T, 2 2 ) .‘i: B
< paslls(Xa)) +2C [ @ (LI + %P+ Y12 HDdr ¥ |
=2 [ X Yr, ZedW.) il
: ) . H H
: -
We éan take the expectation in the last equation, and let n — +oco, in order to deduce by monotone i i i
convergence : . - . } :
}

el
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E(W.") 4 pE [ (%P2, Pdr < E(o(Xr))
2CPE [ 1PN+ P + %112 dr

It then follows by Halder’s inequality that there exists C’(p} such that :

EQW) + 55 [T MM Z)Par < Eo(Xe))

1CEE [+ 1ME, tsosT.

It follows from Gronwall's Lemma that

up E(|Y,” '. .
‘;fsprE(I [?) < o0 _ ' (n
and hence
r
E _[ IY,I’(M}“z,"’dr <oa- (8)
for an arbitrarily large p. : ' '

Now

1A

1A

oK) + C(p) [ (1 + 1% PPy

.
—2p [ WY, 2,4W,)

1A

£ |lotxa + o) [+ ey

<1£T

£ (g7

T 1 ..
-2 _IKI""“(‘K.Z,dl_rV,)]

+2pE [

sup
1<s<T

A ml"'"’(x.zrdwr)]
Ji

Hence (3) follows from the Burkhoider—Davis-—Gundy isequality, (7) and (8) (which again holds with
an arbitrarily large p).
Finally, forany t e <s<b< T,

[ 2w =Y.~ Yo+ [ ftr. X, 2)dr

sup
ag5ich

[ 2w < 2 0p %]+ "V r. X, Yo 2. ) dr

Hence, from Burkholder-Davis-Gundy's inequality, for any p > 2, 3 ¢ 3t

Hence, provide:

and (6) follows.
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r

2( | 2on])
a(ies[(fm)])
o[1+0-oriE [( [1z.par) ’D

1g [( / ‘.nz,.n’dr)m]

TIA

A

1A

Hence, provided b —a'< c;*/?,

E [(]‘ ||z.||*ar)m] <eo,

and (6) follows. . a
Let us now express Z in terms of the Wiener space derivative of ¥

M

Proposition 2.2 ¥, Z,e L*(¢,T; D" ’}, and a version af {DyY,, DyZ,; t < 0 €T, t<s5This
given by .

&)

(l) DyY,=0, D42, =0, t<s<§<T

(ii) For any ﬁ.ted de(t,T) and1 <i<d, {DiY,, DiZ,; 0 < s < T} is the umquc solution of the
BSDE :

. T , . T . -
DY, = ¢(Xz)DiXs + [ Fir, DiY., DiZ)r ~ [ DiZ.aw. , 9)

Fi(r,u,v) = f(Xn Y1, 2, )Dik, + f'(XnYnZv)u + f(X ¥ 2y

Moreover, for eny 1 i < d, {DiY,, t < s < T} is o version of{[Z Yo t £3 5T} (where (Z,);
- denote the i-th co[umu ot he matriz Z,).

Before proving the Proposition, let us establish the following simple but very useful Lernm:a, which
is a particular case of & much more general result in Ustunel {9). We nevertheless include a complete
proof for lhe convenience of the reader.

n holds with

Lemma 2.3 LetZ € M’{t T IR.‘) be such that ¢ & [T(Z,,dW,) satisfies £ € D', Then

. z; e LT, D), 1€i<d,

Dif =(2)i+ [ Diz.dW, ds x dP a.c.
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Proof : The fact that (10} implies { € D' and (11) is well known (see e.g. Nualart-Pardoux
[2], Proposition 3.4). Hencz we only need to prove (10). Let us assume that 4 = 1 for notational

convenience.
Note that if {10) holds, thea

T : - pT T .
€N, = 2B l 2+ E | [ 10,2, l*dsdr .
Hence the result follows if we show that the set
T .
(= [ zaw,; ze L Ti DY)

ia dense in D"* 1 L0, F}, P). But that follows from the fact that the above set contains {{ €
S N LY, F}, P); B¢ = 0}, which can be seen from Ocone's formula (see e.g. {2] Corollary A2)

T
¢= [ EDL/FYW,, .

that equation (9) has a unique solution follows easily from the results of {3), since fi(X,,¥;, 2 ) De X,
is bounded in L?(£1), p2 1, and (X, Y., 2), Ji{X.,Y., Z.) are bounded.
We first consider equation (3} with

which applies to such £'s. aQ
_ We can now proceed to the :
Proof of Proposition 2.2 We restrict ouraelves to the case d = 1. We first remark that the fact ' H

7,7 € M¥e,T; R0 LT (D',

Hence g(Xz) + JT 1(X,, Vs Z.)ds € D', and it follows from Lemma 2.3 that Z € L(, T; (D',
andconsequently}',el)"z,tS_aST,aud[ortSBSs,lSiSd :

DY, = ¢(Xr)DiXr +
j:T[I;(XHYFIZ!’)D:Xr + f;{xrlyrrzr)p;'yr + f;{XﬂYH-Zr)Dzzr]dr .

_ [ T Diz.dW,

We next consider equation {4) with
Ve MT; RYNLI(LT; (D))

TFrom the last result, the corresponding approximating sequence satisfies Y7, 2" € L, T; (D))
nelN,a.nd{orisﬂﬁa.ISiS‘d,nEN, . _
| DiY™ = ¢'(X1)DiX1

+ LKA IR, + £(X Y ZDYs + X T EIDE i

T .
- j DiZ*'dW,, << T
: - .
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and E f§ |1
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Using estimates very similar to those on pages 57—

i 58 of [3), we first show that ET\DyZrPdr £C
and E [T |Dj¥7}4dr < C. Hence T '

E / T (DY - YLK B 20 — X Tr ZDEX,
X e 2% = (X Ve ZINDIY

UK T ZEPY = {1 K Ve ZNDIE] Y

tends Lo zero, as n — co. One can then show that Diy™, DjZ" ate Canchy in L8, T; (D")*), and
the limit satishes, for t £ 8 S s < T,1<i<4,

DiY, = ¢'(Xr) Dy X1
: fr—U;(XnYﬂ Zr)D;xr + f;(xn ?n Zr)D;?r + f;(xrgyr, Z,)D;Z,]dr

- j T Dig,dw;

The same kind of procedure applies to the second approximating sequence, which proves all but

the last statement of the Proposition.
" Finally, since for t <8 < s <T,

Y, 'n—j"f(x.,r:.é.)mjl' Z,dW, ,

DiY,

(Ze); - f‘ "X Yor Z0) Dy X + F{ X Yo, Z) Di,
X, Yo, Zo) D2 Jdr

- j; DiZ,dW, ,

for a.e. 3, the jump of DyY; at § = s equals Z,."With the version of De¥} that we have choosen above,

that means exactly that
DY, =2,, sae.
We next want to show that {DY,;t£s< T} procesaes an a.s. continuous version. For thal sake,
we first recall that the matrix valued process {VX, = '(%-,’5:!)‘« i<dt t € s €T} solves the following
SDE : , : = : :
1 t
VX, =1+ f B(X)VX,dr + [ al(X)VX, AW
[ ] - L]

The next formula is an inunediatc.: conscciuenm- of the uniqueness of the solution of the SDE satisfied

by D‘X -
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DX, = VX (VX)) o(Xs), t<HSs<T. ‘ (12)
1 Exd 2 Exdxd We now study th
Let {VY, VZ,; t £-5 & T} be the unique element of M3t T; R*™) x M*(1,T; ]R ) which Stroock [8] for the u
solves derivatives. Let us f
: _ . let Ajg(z) 2 A~g(:
VY, = ¢'( X7}V Xr (13 = orthonormal basis of
: ' : Let us state the
T : , . which are adaptation:
+j. [l Xe Y0 2V X + f;(X,-.K-,Z,_-)VY.- + (X, Yo, 2)V 2, )dr o by letting X! = X}

Lemma 2.7 For any

T
— [ vzaw, t<s<T.
j. s {1,....d}, bW ER

We sh.a.ll later iﬁterpret VY, (tesp. VZ,) as the rﬁatrix of first order partial derivatives of ¥, (resp. Z,)
with respect to z (z denoting again the initial condition for X,). For the time being, let us establish
the :

Lemma 2.4 Fort £0<s<T,
Dy, = W (VX‘)-lﬂ(x.)

and the process {D,Y,; t<a < T} as defined by Propontwn 2.2 is a.5. conlinuous.

Proof : We deduce from the uniqueneé of the solution of equation {8} and formula (12) that :
| DiY, = VY(9X)oi(Xe), t<OST.
The first of the statements follows, hence
D.Y, = VY.(VX)Ya(X))

It then follows im

and the continuity of D,Y, follows from that of VY,, VX, and X, ' ‘D

From Proposition 2.2 and Lemma 2.4, we deduce that {Z,; t S5 < T} has an as. continuous
version, and we shall from now on identify {Z } with its contmuou; version. An lmmedlate consequence
of Proposition 2 ‘2 and Lemma 2.4 is now :

Corollary 2.8 For «
matriz of partial deri

Iterating the argu

Lermma 2.5 ForanyD<l<s<T. zE]R.‘
We now follow thi

Zy* = VYPH(VX) a( X)) h 28 (y%
: eorem 2. el
RY).

and in parliculer-

Z* = V}‘:"a(:) . Bcfore proceeding

o : o <)
Since one can establish L7(f1} estimates for sup, [VY,] as was done for sup, [¥}| in Lemma 2.1, we
deduce from the last Lemma : ' ' )

Corol]ary 2.10 For
denvutwes of order o

-

RS PP

Lemma 2.6 For-auﬁp 21,

E ( wup nz:*u') <o
tcosT
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[w]
We now study the regulasity with respect to z of Y. Our proof is an adaptation of that. of

Stroock [8] for the usual SDEs, but we include the continuity with respect to t of ¥** and its z—

derivatives, 'Let us first introduce some notations. If g is a function of z € RY, for h e R\ {0},
let Alg(z) & A Yg(z + f;e.) = g(=)], 1 €1 £ d, where ¢ denotes the i-th vector of an acbitrary
orthonormal basis of R*.

Let us state the main technical steps for Lhe process X' for further reference We omit the proofs
which are adaptations of those in [8]. Notc that we define X!*, Y=, Z! for any (s,1) € [0, T]?, z € R*
by letting Xi= = X,'w and similarly for Y}, while Z!" = 0 for s < L.

Lemma 2.7 For any p 2 2, there exists o constant & such that fnr‘ anyt vel0,T], o,z cRY, {
{1,....d}, h, & e R\ {0}, :

E ( mp KPSl +P) S

8 (o 1"~ X04P) S o0+ 15P) (= P+ 1= 01) W
(i) i

E (;2'.’21- IAiXi'.’ ~ A X l") ' : - an

Sl +[zP) (lz ~ =1 + |5 = kP + [t — ¢1F)

It then follows immediately, using Kolmogorov’s Lemma :
Corollary 2.8 For anyt € [0,7], = € RY, the mapping £ — X' is a.s. differentiable, nnd the
matriz of partial derivatives VX possesses g version which is a.s. cantinuous in (s,1,x).

lterating the argument, we obtain the existence of Jointly continuous'second derivatives.

We now follow the same procedure to establish :

Theorem 2.9 {¥!*; (s,8) € [0,T]%, v € R‘} has a version wfwsc trajectories belong to C®P3({0, TP x
Y. -

Before proceeding to the proof let us state the Corollary which we shall need in the next section :

Corollary 2.10 Forany i€ o, T], the mapping * — Y~ is of class C?, the function and its partial

derivatives of order ene and two being conlinvous in (2,7)

.

=121

P T —————
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Proof of Theorem 2.8 We shall only prove the analog of Lemma 2.1. Going back to the proof of
Lemma 2.1, and using (14) we deduce that for any p = 2, there exist c, and ¢ such that :

E(ng':grll’."’l’)sc,(lel') | . a8
and more(;ver _ '
T »2
E[([ zi)Pes) ]Sc,(1+lrl')- (1)

Next fortvie<s < T,
N 3 ' : ‘o . ’ b
yoe—yte = ([ (X + 205 - X5 ) X - X5
T ‘ : - ,
+ [ (s 02K = X4 dylts £, 200 = ¥e)
- itz 6,250 — Z0=)) dr

L
- [ (@ -z yaw,

otz ,7) = [ LB
Yoltyz; th2) = j: FES A
xeltz: €,2) = [ LES )

and

B = (n KO MK - XEF), Y 4 A X,

20 L NE - 28
Combining the argument of Lemma 2.1 -with (15), we obtain :

E ( ;up e - y,"#‘|”) ; (L +sl) x (le -7+ [t — ¢ S )

7 7 0<asT o
In fact we should restrict the sup to tV ' £ s £ T, but (20) follows then easily [rom that restricted

result. We have morcover @ .
T : - ! 'Iz
E ( [ iz -2, "'Jl'ds) ] < o1+ 12l (Js = 27 + 1t —tP")
iar )

T

We next have :

where =5 = (r,
Using again a
.g such that

Finally,

We claim tha
(21}, we can ded




iing back to the proof of
7-such that :

(18)
(19)
X5
t_ }/'t‘,:'}
N
) 0

ily from that restricted

P (21) .

- 1 R
AY)F = /n (X 4 ARAL XL

+ [ [ lEmhnine + (RS + AEEIz] o

- j i 85ZH=dW, |

(r X‘-‘ + MRALXL=E V= + MALYSS, Z= + AhA Z"')
Usmg again arguments slrmlar to those in Lemma 2.1 and (16), we abtain that thece exlsts ¢ and’

E ( sup |A".Y.‘*|') < o1+ + A1),
1<akT o

E [(j'r]tﬂiz:‘u’)’h] < o {1+ |=I* + [AIY)

: -- L 1 i :
aiye - aix!t® = ([ o0 + alXEIR) 23X

1 . R . . ‘
- u FXE" 4 ARALXES )d.\) aLxe

JALXE — LSS5 )ALXT = 1dAdr
*f f A ~ fE ) s

)A,\ 29 |dMdr

We clum that, again by the pracedure of Lemma 2.1, using the propert:es of f and (17), (20),
“{21), we can deduce : |

laiy” — Af.-Y.""'I') C,(l + 2l + (2] + DIt + A1)

x|t — x’|’ +]k - .wr -

< oL+l + 121 + A" + [}

e

x(jz =3P +lh - KPP+

SpC Pt n e
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Let us only indicate how we-r,an treat the “hardest” term : '
W N At e ¥
£ [ ([Esheizs - nEsg A,
RGBTSR Ad e
< o8 [ A2 - 8207l 104X — LK< dr L
. y l . . ) . ‘ Thec
. AeE j laizel ([ =t — = |dx) ALY = ALY PN dr % where
<iE (s\ip |aiY= - Ai.v"“l') £ Proo
-2 ar<d . r - r .} (vua
- g ;
S /2 2 W
b A e i a2 g, '
He(b-a)E / [ ’ Thec
-~ g A N Yk ) Y oane I
+2 |E ( ||6;,Z."‘||‘dr) ] JE [( [Ze5A -y |’d).dr).] :
_ . \] [ .[. - j: ./u - is of
"~ We note that the two first ‘berms on the right are substracted from the left terms of the full P-mo
inequality, with (b — a) small enough, and the last term is estimated with the help of (23, (13), (20) s
-#nd (21). Note also that we choose first =T, a=T —a, then b=T —a, a= T —2a, etc. .. o Yo
As a by-product of the above proof, we obtain : . : . '
Corollary 2,11 {(VY}*, VZ7), t < 5 < T}, the unique solution of the BSDE (13), is.the gradient
of {(Y**, 2'*), 1 < 3 < T} with respect to z. : E s '
C e . ) v -
Proof : This follows easily from the fact that (17) bolds true with 4,4’ € IR if we define Al ks =
Ly . - .«
a—%’:——, and that by definition of the partial derivatives, )
e , i . . N - -
W ymaiyves, 2 ymalzs . 1
. —0 Dz M=oY _ _g Pt
* 3 Backward SDEs and systems of quasilinear parabolic partial differ-
ential equations 7 o
. We now relate our BSDE to the following system of quuiliuea.r- parabolic differential equalions :
. e T TR R . 5 . apa : Lo It
& 3&%@#};* Lultyz) + f(t,zu(t,2), (Vue)(t,2)) = 0 e

(24)

.‘?‘ p
L
R

) &= gl=)

whereu : Ry xRS — IR*, and .
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Lﬂl
cu=| : |
Luy

=3 L5 (e itt z)——— + ):Mt =)

ig=l

" Let us first recall a result from [4] :

tios w2 e >-Qg z e RS,
olution’ of the BSDE: _(29)."

Proof : UseIté's formula applied to u(a,}{"’) between s =t and s=T, and note that {SfR2X =
Hy }(anX"')} sotves the BSDE- (2) © R =}
are now in a position to prove the converse to the above result :

Theorem 3.2 Under the assumptions stated in section I,

)’] N " ’ : u(t z).é— bl t)O, reR*
erms of the full

£ (23), (15), (20)
2a, elc... o _

is of clnss ot "([0 T] % IR.‘) and solves eguation (2{).

Proof i Frorm Theorém 2.9, 4 ¢ ¢o3(0,T) m‘) Let b > 0 be suck that ¢+ A < T. Clearly,

yig, = Yo, Henge

), is the grodient w(t +hy5) - u(t, ) = u(t+h'za-uu+hx:fn)+u(=+h.x:m—u(t.=)
l ‘ : +h t4+h . .

- f Lu(f + b, X;)dr = j * (Fuo)(t b X 5)dWs

L

define AR = . .
. _'. +h
R j XY 2 j z'—'dw,

wherc we lmve used Itos fonnula {and the fact. t.hat ult,

t_'io(.t‘ Lty -—T Wehave
n .

. " )
artial differ- oz -tz = - ): j e XE2) 4 FORER Y%, 28 ")]dr
‘ T[4z - (Y X )dW,
sl equations : +§ \ At "( "")(t‘“‘ )]

It now follows from Theorem 2.9 and Lemma 2.5 that, if we l.ake 2 uequenoe of mezhes i= tu

g <. cfn=T such that lip—ree 8UPiga-1{li41 —{3) = 0, we obtain in the limit :

)
w(tiz) = o2)+ [ Wufe,2) + Jlom Jule2), (9t z))

]ds

Hhence u € CY([0, T] x ]R‘} and satisfies the equation (‘24)

o ot a1 T TN

) € C’(R‘)) and the ‘BSDE Let now _

s e e 2

FER A RO




Remark 3.3 In the classical case where k=1and

f(t!ziylz) = c{t =)y ¥ -

our result reduces to the classical Feynma.n—[{ac formula. Indeed in that case the BSDE (2} hu the
explicit solution :

-

Yt.c = c_r Tefr XN '}drg(xT) f f'a(..x )dnzl,-dw

and

=

" E(Y,")

B

Sl

4 Backward SDEs and viscosity solutions of quasﬂmear
parabol:c PDEs

We now restrict ourselves to the case k = 1, and we shall show that when the coefficients f and g are
Lipschitz continuous, the BSDE provides the unique viscosily solution of a quasilinear parabolic PDE.
The results of this section are particular cases of results in Peng [5]. However, we present then for the
sake of completeness, and because the argumeat here is simpler than that in [5]. :

We first -recall a technical Lemma. Let f = 2 x [0,T] x R* x R* — R* be P @ B @ B,/5
measurable, where P.denotes the o-algebra of {F:}-progressively measurable subsets of £ x {0,T). as
usual, we shall wrile f(t, v, 7) inslead of f{w,1,¥,z). We assume that

J(,0,0) € M?(0,T) ) (25)

and that lhere_ exists ¢ > 0 such that .

. : lf(f,yﬂ} Sy, N S elly =yl + |z = 1) (26)
Given @, § € L’(n Fr,P) and F € M¥0,7), let {{Y;, Z,),t = Q}. (resp. {(?.,-Z.},t > 0)) denote
the unique solution of the BSDE
V=@t [ floYoz)a- [ Zaw, e
(resp.”of the BSDE : ' :

. Y.=a+f(;(f:z,,z.}+F,}a,—fz.dw,). )

We have the following comp'a.rison result :

wf

Lemma 4.1 Let @ 2045, £,20 a5, tae Then ¥, 2 Y, ;.3., ta.ec.

;

Proof :
in (y,2).

Wen
with res
Theorem

and n
continuol
Hower
viscosity :

Definitio
sub-solulic

w € CH(

u is said i

We can

" Theorem

PDE (30).

Proof: U
(30). Thep
We first

Let now
We can
We then

Let {(7,,




the BSDE (2) has the

wefficients f and g are
itlinear parabolic PDE.

ve present then for the

-

RYbe PR B ®BuB -

ubsets of 1 x [0,7]. as

(25)

L (2)
?(‘Zd,t 2 0}) denote
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Proof : ‘This result is proved in Proposition 2.4 of [5) under the additional assumption that f is C'
in (y,2). The present result follows by a standard approximation argument. ' o

We now use again the notations from section 2, assuming only that b, o, f, ¢ are globally Lipschitz
with respect to (z,¥,z), uniformly in ¢ -this last precision concerns only f. We define again, as in
Theorem 3.1, ' - :

u(t,z) 2V (29)

. and note that the estimate {20) still applies, and hence u is loc'a.lly Lipachitz in = and Hélder
continuous in {, and therefore u is Holder continuous in (3, z). ;
However, we do not expect that u is differentiable in (¢, z). We are going to show that u is the

viscosity solution of the backward parabolic PDE

(T, z) =g(z) . :
beﬁnition 4.2 Let u € C({0,T] x RY) satisfy u(T,z) = g(z),z € R, u is said to be o viscosity

sub-solution (resp. super-solution) of equation (4.6} if in addition for any (1,2} € {0,T) R and
@ € CY{(0,T) x %) such that p(t,2) = u(t,z) and (1,2} is @ minimum {resp. mozimum) of ¢ — u,

%{t,:) + Ltp(i,:) + f(tl ;-‘P(‘a :)r(vW)ttlx)) >0

a .
(resp. 22.4,2) + Lo(t,2) + S8, 296,21, (Tpo)(2)) 00
u is said o be a viscosity solution of (30) if it is both a viscosity sub-and super-solution of (30). o

We can now 'es.tablish the main result of this section

-’

- Thet;reni 4.3 The function u defined by (4.5) is the unigue viscosily solution of the backward parabolic

PDE (30}.

Proof : Uniqueness follows from Ishii-Lions [7). We shall show that u is a viscosity sub-solution of

(30). The property of being a super-solution could be proved analogously.
We first note that for 0 < t <t+h<Tandz € RY,

‘ - . ) A
uty ) = ule b, X+ [ Sl XER Y, Z)ds - [" zaw,

Let now p € CY3((0, T) x IR¥) satisfy p{t, z) = u(t,) and > u on (6,7} x R%.
" We can without loss of génerality assume that ¢ has bounded derivatives.
We then have ) : :

i N 12 N Faadr L 1,x iz .
. P(tihlxig-h)“‘P(tlx) + -/' f(’lxo l}’- !zl st

) 14 A
- [ ZH=dW, 2 0
[ B

7

Let (V.. Z.)tSs<t+ h} denote the solution of the BSDE

RAT LIS AL j.’“ fir X2,V 2 ) - j““mw,' @

ar

{%"‘-(t.z)+Lu{t,z)+f(t,z.u(t,:),(Vua)(i,z))-—:0' o o (30)

Doy




-From Lemma 4.1,
olt,2)} Splt+h x+,,)+j Ha, X .?.,Z)da-_[ Z.dW,

and from Jtd's formula

J Ml 20, XI%) + Lo, XE7) 4 S0, X Vo Tl
+ j‘ [Vools, X1=) = Z.JdW, 2 0.
We note 7, =Y, ~ s, X), 2, =2, - Vpals, X,
The last inequality can be rewritlen as :

SN2 + Lop)(s, X0 +1(, X% pls, X2%) + T (szn's. X)) + Z.)\ds @
32

— N Z,dW, 20
We deduce from (31) and Itd's formnla that {(Y,, Z)t<sSt+h)is s the unique solut:on of the
BSDE

Vo= (U324 Lo XY S Kl XY + F (P} K1) + B

. II-HI z dw
We waant to compare {(¥;, Z,)} with the solution {(7,,0),(t<s gt +h}of the BSDE

om [TIGE + Lo)r) + £ 20l ) + T (Tl Dl (33)

We note that gince  has bounded denvatwes.

- sup E(lp(r'}{"’) 'P(r!:}ln) ~0ash—0
tgre |+k

sup  E((0Ve)(r, X"") = (@V)(r2)) = ash 0.

l(' t+h
It is then easy to deduce from the techmquu of section 1 :

E ( wp V=Vl + [ |z,|=ds)' = 0(h)
t<oi+h [ .
Now from (32) ¥, 2 0,t s S i+ h, hence ) )
R, 2 —elh)
where e(h) — 0 as b — 0. Hence
1 Be o
L [NEE + Lokrm) + (2000 5) + T (T Dl 2 —e(h)
Moreover it follows readily from (33) that there exists a constant T such that

1}’,]<th<5<:+&

%10+ Lt )+ [ 2D z)20

We remuk that ¥ clearly depends on h, also thss was not made ucphat We ﬁnally conclude that .

e e o R
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R e
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Remark 4.4 We note that, wﬂ.h the help of the techmque.s in ng [6], it is poss:ble to relax the
assumphon of uniform Lipschitz continuity of f with respect to y. - o
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