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Abstract

In this paper we study the homogenization of a non-autonomous
parabolic equation with a large random rapidly oscillating potential in
the case of one dimensional spatial variable. We show that if the poten-
tial is a statistically homogeneous rapidly oscillating function of both
temporal and spatial variables then, under proper mixing assump-
tions, the limit equation is deterministic and convergence in probabil-
ity holds. To the contrary, for the potential having a microstructure
only in one of these variables, the limit problem is stochastic and we
only have convergence in law.

1 Introduction

Our goal is to study the limit, as ε→ 0, of the solution of the linear parabolic
PDE

∂uε

∂t
(t, x) =

1

2

∂2uε

∂x2
(t, x) + ε−γc

(
t

εα
,
x

εβ

)
uε(t, x), t ≥ 0, x ∈ IR;

uε(0, x) = g(x), x ∈ IR,

(1.1)
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where g ∈ L2(IR) ∩ Cb(IR), {c(t, x), t ∈ IR+, x ∈ IR} is a stationary random
field defined on a probability space (S,A, P ), such that

E c(t, x) = 0, t ∈ IR+, x ∈ IR, (1.2)

where E denotes expectation with respect to the probability measure P . In
all this paper, we will assume that the random field c is uniformly bounded,
i. e.

sup
t≥0, x∈IR, s∈S

|c(t, x, s)| <∞.

We define the correlation function of the random field c as follows :

Φ(t, x) := E [c(s, y)c(s+ t, y + x)] . (1.3)

We assume that Φ ∈ L1(IR× IR). Additional mixing conditions, specific
to each particular case, are formulated separately in each section.

We will consider various possible values for the parameters α, β ≥ 0, and
we will see that the correct value for γ, such that the limiting effect of the
highly oscillating term is non trivial, is

γ =

(
α

4
+
β

2

)
∨ α

2
,

and that the highly oscillating term can have three types of limit. If α = 0,
the result is similar to that obtained in [8], that is the limiting PDE is a type
of SPDE driven by a noise which is white in space, and correlated in time.
If β = 0, the limit is an SPDE driven by a noise which is white in time and
correlated in space. We believe that in all cases where α > 0 and β > 0, the
limiting PDE is deterministic. One intuitive explanation of this result, which
was first a surprise for the authors, is the following. In the case α, β > 0,
the limiting noise should be white both in time and space, i. e. the limiting
PDE should be a “bilinear” SPDE driven a space–time white noise. But we
know that the corresponding stochastic integral should be interpreted as a
Stratonovich integral, i. e. an Itô integral plus a correction term. However,
in the space–time white noise case, the correction term is infinite. Hence the
correct choice of γ forces the Itô integral term to vanish, which is necessary
for the “Itô–Stratonovich correction term” not to explode.

This result is consistent with those in Bal [1], where higher dimensional
time independent situations are treated, with the severe restriction that the
noise source c be a Gaussian random field, while our random field c is much
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more general. One reason why we restrict ourselves to the one–dimensional
case is that in higher spatial dimension (whether the problem is time de-
pendent or time independent), the limit will always be a deterministic PDE,
which restricts our motivation for studying that problem.

In fact, within the case α, β > 0, we have only been able to treat the
case where 0 < β ≤ α/2. The case 0 < α < 2β remains open. Our methods
do not seem to cover this last case.

Two variants of the same problem, but with coefficients not depending
upon time t, have already been considered in [13] and in [8]. The case of
random coefficients which are periodic in space was considered in [4].

The paper is organized as follows. In section 2 we state the Feynman–
Kac formula for the solution uε of equation (1.1). Section 3 is devoted to a
presentation of the various statements to be proved in the paper. In section
4 we give a criterion for convergence in law, which is used later. In section 5
we treat the case α = 0, β > 0. In section 6 we treat the case 0 ≤ 2β ≤ α,
starting with the case β > 0, and finally ending with the case β = 0, α > 0.

2 The Feynman–Kac formula

Let {Bt; t ≥ 0} denote a standard Brownian motion defined on the proba-
bility space (Ω,F , IP). The pair

({c(t, x), t ≥ 0, x ∈ IR}, {Bt; t ≥ 0})

is defined on the product probability space (Ω × S,F ⊗ A, IP × P ), so that
{c(t, x), t ≥ 0, x ∈ IR} and {Bt; t ≥ 0} are mutually independent.

The solution of equation (1.1) is given by the formula

uε(t, x) = IE

[
g(x+Bt) exp

(
ε−γ

∫ t

0

c

(
s

εα
,
x+Bs

εβ

)
ds

)]
= IE

[
g(x+Bt) exp

(
ε−γ

∫ t

0

∫
IR

c

(
s

εα
,
x+ y

εβ

)
L(ds, y)dy

)]
,

(2.1)

where L(t, x) denotes the local time at time t and at level x of the process
B, and IE denotes expectation with respect to IP. We shall use the notation
Xx
t = x+Bt.
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3 Statement of the results

We gather here the statements to be proved in the rest of the paper.

3.1 The case α = 0, β > 0, γ = β/2

In this case we need the following additional assumptions.
For each x ∈ IR, t → c(t, x) is a. s. of class C2, and the IR3–valued

random field

{(c(t, x), c′(t, x), c′′(t, x)); (t, x) ∈ IR+ × IR}, (3.1)

is stationary, has zero mean, and is uniformly bounded; here and later on in
this section we use the notation

c′(t, x) =
∂c

∂t
(t, x), c′′(t, x) =

∂2c

∂t2
(t, x).

We assume that random field (3.1) is “φ–mixing in the x direction”, in
the sense that the function φ : IR+ → IR+ defined by

φ(h) = sup
A∈Gx, B∈Gx+h, P (A)>0

|P (B|A)− P (B)|,

where

Gx = σ{c(t, z), t ≥ 0, z ≤ x} Gy = σ{c(t, z), t ≥ 0, z ≥ y},

satisfies
φ ≤ C(1 + h)−(3+δ), (3.2)

for some C, δ > 0.
We assume moreover that (by stationarity, the following quantities do not

depend on t)∫ ∞
−∞
|Ec(t, 0)c(t, x)|dx <∞,

∫ ∞
−∞
|Ec′(t, 0)c′(t, x)|dx <∞,

∫ ∞
−∞
|Ec′′(t, 0)c′′(t, x)|dx <∞.

In fact, these estimates follow from (3.2) and the boundedness of the functions
in (3.1). Under those assumptions, we have the (see Theorem 5.10 below)
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Theorem 3.1. For any (t, x) ∈ IR+ × IR,

uε(t, x)→ u(t, x) := IE

[
g(Xx

t ) exp

(∫ t

0

∫
IR

L(ds, y − x)W (s, dy)

)]
in P–law, as ε→ 0, where W is a centered Gaussian noise which is “white in
space and coloured in time” (see (5.3) for the accurate definition), defined on
the probability space (S,A, P ), while L denotes the local time of a standard
one–dimensional Brownian motion defined on the probability space (Ω,F , IP).
In particular, L and W are independent.

The limiting SPDE in this case is best written in the form (see equation
(5.9) below)

∂u

∂t
(t, x) =

1

2

∂2u

∂x2
(t, x) +

∂(uW )

∂x
(t, x)− ∂u

∂x
(t, x)W (t, x), t ≥ 0, x ∈ IR;

u(0, x) = g(x), x ∈ IR.

Remark 3.2. The argument used in the proof of Theorem 3.1 can be easily
extended to prove weak convergence of all finite dimensional distributions of
uε towards those of u, but we were not able to check tightness and prove
convergence for the topology of locally uniform convergence (in t and x).

3.2 The case 0 < 2β ≤ α

We now introduce a new assumption, namely that

(Hum) αum(r) ≤ C(1 + r)−(3+δ),

where αum is the so–called the uniform mixing coefficient of the random field
c(t, x), defined as follows. For a set A ⊂ IR2 denote by FA the σ-algebra
generated by {c(t, x) : (t, x) ∈ A}. We set

αum(r) = sup |P (S1|S2)− P (S1)|,

where the supremum is taken over all S1 ∈ σ{c(t, x), t ≤ t0, x ∈ IR} and
S2 ∈ σ{c(t, x), t ≥ t0 + r, x ∈ IR}, with P (S2) > 0. By stationarity, the
supremum on the right hand side does not depend upon t0.

Under the assumption (Hum), we have the (see Corollary 6.9, Corollary
6.11 and Proposition 6.14)
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Theorem 3.3. As ε→ 0, uε(t, x) converges in probability, locally uniformly
in t and x, to the deterministic function u(t, x) given by

u(t, x) = IE[g(x+Bt)] exp (tΣ) ,

which is a solution of the deterministic parabolic PDE
∂u

∂t
(t, x) =

1

2

∂2u

∂x2
(t, x) + Σu(t, x), t ≥ 0, x ∈ IR;

u(0, x) = g(x), x ∈ IR.
(3.3)

Here

Σ =

{∫∞
0

IEΦ(r, Br)dr, if 2β = α,∫∞
0

Φ(r, 0)dr, if 2β < α,

and Φ has been defined by (1.3). Furthermore, for any compact set K ⊂ R
we have

lim
ε→0

E‖uε − u‖2
L2(((0,T )×K)) = 0.

3.3 The case β = 0, α > 0, γ = α/2

In addition to (Hum), we assume here that the following assumption holds :

(Hö) For each s ∈ IR the realizations c(s, y) are a.s. Hölder continuous in
y ∈ IR with a deterministic exponent θ > 1/3. Moreover,

|c(s, y1)− c(s, y2)| ≤ c|y1 − y2|θ,

with a deterministic constant c.

Remark 3.4. It is possible to weaken assumption (Hö), replacing the condi-
tion θ > 1/3 by the condition θ > 0, at the expense of replacing the exponent 3
in (Hum) with k+1, in case 1/(k+1) ≤ θ < 1/k, k ∈ N. Minor modifications
in our proofs are necessary for each value of k.

Under the three above assumptions, we have the (see Theorem 6.18 below)

Theorem 3.5. Under assumptions (Hö) and (Hum), as ε→ 0,

uε(t, x)→ u(t, x) := IE

[
g(Xx

t ) exp

(∫ t

0

∫
IR

W (ds, y)L(s, y − x)dy

)]
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in P–law in C(IR+× IR), equipped with the topology of local uniform conver-
gence in t and x, where W is a centered Gaussian noise which is “white in
time and coloured in space” (see Proposition 6.15) defined on the probability
space (S,A, P ), while L denotes the local time of a standard one–dimensional
Brownian motion defined on the probability space (Ω,F , IP). In particular, L
and W are independent.

In this case the limiting SPDE reads (in Stratonovich form) du(t, x) =
1

2

∂2u

∂x2
(t, x)dt+ u(t, x) ◦W (dt, x), t ≥ 0, x ∈ IR;

u(0, x) = g(x), x ∈ IR.

4 A criterion for convergence in law

In the cases where the limit is deterministic, convergence in law is equivalent
to convergence in probability. In fact in those cases we will establish conver-
gence in L2(P ). However, in the case where the limit is random, we are faced
with true convergence in law. The quantity which should converge in law is
a “partial expectation”, by which we mean an expectation with respect to
IP alone (and not with respect to IP × P ), or in other words a conditional
expectation. Taking the limit in law of such a quantity does not seem to be
very common. In this section, we establish a criterion for convergence in law
which is specially tailored for our needs.

Proposition 4.1. Let {Zε, ε > 0} be a collection of real-valued random
variables, and suppose that there exist a random variable Z and, for each
M > 0, random variables Zε

M and ZM such that

(i) For any M the sequence Zε
M converges to ZM in law, as ε→ 0;

(ii) It holds

|Zε − Zε
M | ≤

χε

M
, |Z − ZM | ≤

χ0

M
,

where the family of r. v.’s {χε, ε ≥ 0} is tight.

Then Zε converges to Z in law, as ε→ 0.
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Proof. Since {Zε, ε > 0} is tight, it suffices to show that for all ϕ ∈ C(IR)
with |ϕ(x)| ≤ 1 for all x ∈ IR, and ϕ globally Lipschitz,

Eϕ(Zε)→ Eϕ(Z) as ε→ 0.

Note that

Eϕ(Zε)−Eϕ(Z) = E[ϕ(Z)−ϕ(ZM)]+E[ϕ(Zε
M)−ϕ(Zε)]+Eϕ(ZM)−Eϕ(Zε

M).

If K stands for the Lipschitz constant of ϕ, then

|E {ϕ(Z)− ϕ(ZM) + ϕ(Zε
M)− ϕ(Zε)}| ≤ E inf

(
4,
K

M
(χε + χ0)

)
.

Consequently, as M →∞,

sup
ε>0
|E {ϕ(Z)− ϕ(ZM) + ϕ(Zε

M)− ϕ(Zε)}| → 0.

The result follows since by (i) for each fixed M , Eϕ(ZM)−Eϕ(Zε
M)→ 0, as

ε→ 0.

Corollary 4.2. Let X a Banach space, Ψ : Ω × X → IR a mapping and
{W ε, ε > 0} a family of X–valued random variables defined on (S,A, P ) be
such that

(i) x→ Ψ(ω, x) is continuous, in IP–probability,

(ii) ∀x ∈ X, ω → Ψ(ω, x) is F–measurable,

(iii) for some δ > 0, the family {IE|Ψ|1+δ(·,W ε), ε > 0} is tight.

If moreover W ε converges in law towards W , then as ε→ 0

IEΨ(·,W ε) converges in law to IEΨ(·,W ).

Proof. For M > 0 and z ∈ IR write ψM(z) = (z ∧M) ∨ (−M). Note that

|Ψ(·,W ε)− ψM ◦Ψ(·,W ε)| ≤ |Ψ|
1+δ(·,W ε)

M δ
.

Consequently, we can apply Proposition 4.1 with Zε = IEΨ(·,W ε), Z =
IEΨ(·,W ), Zε

M = IEψM ◦Ψ(·,W ε), ZM = IEψM ◦Ψ(·,W ), since by Lebesgue’s
dominated convergence theorem x→ IEψM ◦Ψ(·, x) is continuous from X into
IR.
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Remark 4.3. Writing

uε(t, x) = IE
[
g(Xx

t ) exp(Y ε
t,x)
]

we will check the third condition of the Corollary with δ = 1/3 and we shall
use the following Hölder inequality

IE

[
|g|4/3(Xx

t ) exp
(4

3
Y ε
t,x

)]
≤
(
IEg2(Xx

t )
)2/3

(IE exp(4Y x,ε
t ))1/3 .

So we have to check that the family {IE exp(4Y x,ε
t ), ε > 0} is tight.

5 The case α = 0, β > 0.

In this case, γ = β/2. Without loss of generality, we restrict ourselves to the
case β = 1. For each ε > 0, x ∈ IR, we define the process

Y ε
t,x =

1√
ε

∫ t

0

c

(
s,
Xx
s

ε

)
ds, t ≥ 0.

It will be convenient in this section to assume that for each x ∈ IR, t→ c(t, x)
is a. s. of class C2, and that the IR3–valued random field

{(c(t, x), c′(t, x), c′′(t, x)); (t, x) ∈ IR+ × IR}, (5.1)

is stationary, has zero mean, and is uniformly bounded; here and later on in
this section we use the notation

c′(t, x) =
∂c

∂t
(t, x), c′′(t, x) =

∂2c

∂t2
(t, x).

We assume that random field (5.1) is “φ–mixing in the x direction”, in
the sense that the function φ : IR+ → IR+ defined by

φ(h) = sup
A∈Gx, B∈Gx+h, P (A)>0

|P (B|A)− P (B)|,

where

Gx = σ{c(t, z), t ≥ 0, z ≤ x} Gy = σ{c(t, z), t ≥ 0, z ≥ y},
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satisfies
φ ≤ C(1 + h)−(3+δ),

for some C, δ > 0.
We assume moreover that (by stationarity, the following quantities do not

depend on t)∫ ∞
−∞
|Ec(t, 0)c(t, x)|dx <∞,

∫ ∞
−∞
|Ec′(t, 0)c′(t, x)|dx <∞,

∫ ∞
−∞
|Ec′′(t, 0)c′′(t, x)|dx <∞.

Remark 5.1. We suspect that the assumption of C2 regularity is much
stronger than what is necessary for the result that follows to hold. However,
in the case of weaker regularity assumptions, there are technical difficulties
which we were not able to overcome.

5.1 Weak convergence

The aim of this subsection is to prove the

Theorem 5.2. For each t > 0, x ∈ IR,

Y ε
t,x → Yt,x :=

∫ t

0

∫
IR

L(ds, y − x)W (s, dy), (5.2)

in P–law, as ε → 0, where, as above, L(t, y) is the local time at level y
and time t of the Brownian motion {X0

t , t ≥ 0} defined on (Ω,F , IP), and
{W (t, y), y ∈ IR} is a centered Gaussian random field defined on (S,A, P ),
with the covariance function

E(W (t, x)W (t′, x′)) =

{
Ψ(t− t′)|x| ∧ |x′|, if x x′ > 0;

0, if x x′ < 0,
(5.3)

where for each r ∈ IR,

Ψ(r) =

∫
IR

Φ(r, y)dy,

and the double integral in (5.2) is defined below. In particular (X,L) and W
are independent.
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We define

Wε(t, x) =
1√
ε

∫ x

0

c
(
t,
y

ε

)
dy, W ′

ε(t, x) =
1√
ε

∫ x

0

c′
(
t,
y

ε

)
dy.

Note that {Wε(t, x),W ′
ε(t, x)} is a random field defined on the probability

space (S,A, P ).
We first prove

Proposition 5.3. The sequence of random fields {(Wε,W
′
ε)} converges weakly

as random fields defined on the probability space (S,A, P ), as ε→ 0, in the
space C(IR+ × IR; IR2) equipped with the topology of uniform convergence on
compact sets, to a centered Gaussian random field

{(W (t, x),W ′(t, x)), t ≥ 0, x ∈ IR},

where the covariance function of {W (t, x)} is given by (5.3), and

W ′(t, x) =
∂W

∂t
(t, x), (t, x) ∈ IR+ × IR, a. s.

Proof: For the sake of clarity of the exposition, we prove the convergence
result for {W (t, x)}, while the proof for the pair {(W (t, x),W ′(t, x))} is es-
sentially identical. The last statement of Proposition 5.3 can be obtained by
taking the weak limit in the identity

Wε(t, x) = Wε(s, x) +

∫ t

s

W ′
ε(r, x)dr.

Tightness of the sequence of random fields {Wε, ε > 0} follows from the
proof of Proposition 6.15 below, upon interchanging the variables t and x.
Note that (Hö) and (Hum) are satisfied here, with t and x interchanged. We
postpone the proof to section 6 since the result needed there is more general.

Now it remains to identify the limit law of the vector of random processes

(Wε(t1, ·), . . . ,Wε(tn, ·)),

for any n ≥ 1, any 0 ≤ t1 < t2 < · · · < tn. It follows from Theorem 20.1 in
[3], together with the comments on pages 177 and 178 of that book that the
above converges as ε→ 0 towards an n–dimensional Wiener process

(W (t1, ·), . . . ,W (tn, ·)),
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which is such that the (i, j) entry of the covariance matrix of the random
vector (W (t1, x), . . . ,W (tn, x)) is Ψ(ti − tj)|x|. �

We can now proceed with the
Proof of Theorem 5.2 : We deduce from Itô’s formula that, if

Wε(t, x) :=

∫ x

0

Wε(t, y)dy,

Wε(t,X
x
t ) = Wε(0, x) +

∫ t

0

∂Wε

∂s
(s,Xx

s )ds

+

∫ t

0

Wε(s,X
x
s )dXx

s +
1

2

∫ t

0

∂Wε

∂x
(s,Xx

s )ds,

(5.4)

consequently

Y ε
t,x =

∫ t

0

∂Wε

∂x
(s,Xx

s )ds

= 2[Wε(t,X
x
t )−Wε(0, x)−

∫ t

0

∂Wε

∂s
(s,Xx

s )ds−
∫ t

0

Wε(s,X
x
s )dXx

s ].

(5.5)

The mapping which to f ∈ C(IR+ × IR) associates g(t, x) =
∫ x

0
f(t, y)dy is

continuous from C(IR+×IR) into itself. Hence it follows from Proposition 5.3
that (W ′

ε,Wε,Wε)⇒ (W ′,W,W) in C(IR+× IR)3 as ε→ 0, whereW(t, x) =∫ x
0
W (t, y)dy, t ≥ 0, x ∈ IR.
Moreover the mappings

f →
∫ t

0

f(s,Xx
s )dXx

s , f →
∫ t

0

f(s,Xx
s )ds

are continuous from C(IR+×IR) into L1(Ω,F , IP), equipped with the topology
of convergence in probability. Consequently

Y ε
t,x → 2

[
W(t,Xx

t )−W(0, x)−
∫ t

0

∂W
∂s

(s,Xx
s )ds−

∫ t

0

W (s,Xx
s )dXx

s

]
in P law and IP probability, hence also in P × IP law.

The result now follows from the
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Lemma 5.4. The following relation holds a. s.

W(t,Xx
t ) =W(0, x) +

∫ t

0

∂W
∂s

(s,Xx
s )ds+

∫ t

0

W (s,Xx
s )dXx

s

+
1

2

∫ t

0

∫
IR

L(ds, y − x)W (s, dy).

Proof: Let
Wn(t, x) = (W (t, ·) ∗ ρn)(x), (5.6)

where ρn(x) = nρ(nx) and ρ is a smooth map from IR into IR+ with compact
support, whose integral over IR equals one, and Wn(t, x) =

∫ x
0
Wn(t, y)dy.

Then from Itô’s formula

Wn(t,Xx
t ) =Wn(0, x) +

∫ t

0

∂Wn

∂s
(s,Xx

s )ds+

∫ t

0

Wn(s,Xx
s )dXx

s

+
1

2

∫ t

0

∂Wn

∂x
(s,Xx

s )ds

=Wn(0, x) +

∫ t

0

∂Wn

∂s
(s,Xx

s )ds+

∫ t

0

Wn(Xx
s )dXx

s

+
1

2

∫ t

0

∫
IR

L(ds, y − x)
∂Wn

∂x
(s, y)dy.

The Lemma now follows by taking the limit as n→∞, provided we take the
limit in the last term, which is done in the

Proposition 5.5. There exists a unique linear mapping

L→ {Λ(L); t ≥ 0, x ∈ IR}

from the set of jointly continuous L’s which are increasing with respect to the
t variable and have compact support in the x variable for all t, into the set
of centered Gaussian random fields, with the coraviance function given by

IE(Λt,xΛt′,x′) =

∫
IR

dy

∫ t

0

∫ t′

0

Ψ(s− r)L(ds, y − x)L(dr, y − x′),

where

Λt,x(L) = L2(IP)− lim
n→∞

∫ t

0

∫
IR

L(ds, y − x)
∂Wn

∂x
(s, y)dy.
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Proof: We first need to show that the right hand side of the formula for the
covariance function of the process {Λt,x(L), t ≥ 0, x ∈ IR} is well defined.
This follows from the fact that

0 ≤
∫

IR

dy

∫ t

0

∫ t′

0

|Ψ(s− r)|L(ds, y − x)L(dr, y − x′)

≤ Ψ(0)

∫
IR

L(t, y − x)L(t′, y − x′)dy

<∞.

The last inequality follows from the fact that both L(t, ·) and L(t′, ·) are
continuous and have compact support.

Now define

Λ
(n)
t,x (L) =

∫
IR

dy

∫ t

0

∂Wn

∂y
(s, y)L(ds, y − x)

=

∫
IR

∫
IR

ρ′n(y − z)

(∫ t

0

W (s, z)L(ds, y − x)

)
dydz.

In order to complete the proof of the Proposition, it suffices to show that

E
[
Λ

(n)
t,x (L)Λ

(m)
t′,x′(L)

]
→
∫

IR

dy

∫ t

0

∫ t′

0

Ψ(s−r)L(ds, y−x)L(dr, y−x′), (5.7)

as n,m→∞. Let

Σn,m(y, y′) =

∫
IR

∫
IR

1{zz′>0}|z| ∧ |z′|ρ′n(y − z)ρ′m(y′ − z′)dzdz′.

We have

E
[
Λ

(n)
t,x (L)Λ

(m)
t′,x′(L)

]
=

∫
IR

∫
IR

Σn,m(y, y′)dydy′
∫ t

0

∫ t′

0

Ψ(s−s′)L(ds, y−x)L(ds′, y′−x′).

Now an elementary computation based on integration by parts yields

Σn,m(y, y′) =

∫
IR

ρn(y − z)ρm(y′ − z)dz,

and (5.7) follows from this and the last identity. �
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We now turn to the case where L(t, x) is the local time of the standard
Brownian motion {Xt, t ≥ 0}, defined on the probability space (Ω,F , IP).
Thus we now define the stochastic process {Λt,x(L), t ≥ 0, x ∈ IR} on the
product probability space (S × Ω,A⊗F , P × IP), and denote ĪP := P × IP.
We have the

Proposition 5.6. For each fixed x ∈ IR, the process {Λt,x(L), t ≥ 0} has a
ĪP a. s. continuous modification.

Proof: We have, for 0 ≤ s < t,

ĪE (|Λt,x(L)− Λs,x(L)|p) = IE

(∣∣∣ ∫
IR

dy

∫ t

s

∫ t

s

Ψ(r − r′)L(dr, y)L(dr′, y)
∣∣∣p/2)

≤ Ψ(0)p/2IE

(∣∣∣ ∫
IR

(L(t, y)− L(s, y))2dy
∣∣∣p/2)

≤ Ψ(0)p/2IE

(∣∣∣∣sup
y

(L(t, y)− L(s, y))(t− s)
∣∣∣∣p/2
)
,

where we have used the following well known formula∫
IR

L(t, x)dx = t.

Now from (III) page 200 of Barlow, Yor [2], there exists a universal constant
cp such that

IE

(
sup
x

(L(t, x)− L(s, x))p/2
)
≤ cpIE

(
sup

0≤s≤t
|Xs|p/2

)
.

The above right hand side is finite, and

ĪE (|Λt(L)− Λs(L)|p) ≤ Cp(t− s)p/2,

from which the result follows, if we choose p > 2.

5.2 Convergence of the sequence uε

In order to deduce the convergence of uε from that of Y ε
t,x and Corollary

4.2, we need some uniform integrability under IP of the collection of random
variables {

exp

[
1√
ε

∫ t

0

c

(
s,
Xx
s

ε

)
ds

]
, ε > 0

}
.
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For each 0 < γ < 1/2, t > 0, ε > 0, we define the IR+–valued random
variables

ξεt,γ = sup
0≤s≤t, x∈IR

|Wε(s, x)|
(1 + |x|)1−γ , ηεt,γ = sup

0≤s≤t, x∈IR

∣∣∂Wε

∂s
(s, x)

∣∣
(1 + |x|)1−γ .

We now prove the

Lemma 5.7. For each t > 0, 0 < γ < 1/2 and ε0 > 0, the two collections of
random variables {ξεt,γ, 0 < ε ≤ ε0} and {ηεt,γ, 0 < ε ≤ ε0} are tight.

Proof: We have

ηεt,γ ≤ sup
x∈IR

∣∣∂Wε

∂s
(0, x)

∣∣
(1 + |x|)1−γ + sup

x∈IR

∫ t

0

∣∣∣∂2Wε

∂s2
(s, x)

∣∣∣
(1 + |x|)1−γ ds,

and similarly

ξεt,γ ≤ sup
x∈IR

|Wε(0, x)|
(1 + |x|)1−γ + sup

x∈IR

∫ t

0

∣∣∂Wε

∂s
(s, x)

∣∣
(1 + |x|)1−γ ds.

It remains to show that each of the four collections of r. v. appearing in the
two above right hand sides is tight. Each of the four terms can be treated by
the exact same argument as used in the proof of Lemma 5 page 295–296 of
[13], which we now reproduce for the convenience of the reader, in the case
of the first term of the second right–hand side. �

We drop the index t for simplicity, and define

ζεγ = sup
x∈IR

|Wε(x)|
(1 + |x|)1−γ .

We have the

Lemma 5.8. For any 0 < γ < 1/2 and ε0 > 0, the collection of random
variables {ζεγ, 0 < ε ≤ ε0} is tight.

Proof: Due to the symmetry it is sufficient to estimate |Wε(x)| for x > 0.

16



We have

E(|Wε(r)|2) = ε

r/ε∫
0

r/ε∫
0

E(c(x)c(y))dxdy

≤ 2ε

r/ε∫
0

∞∫
0

|E(c(0)c(x))|dsxdy

≤ 2rc0.

Denote by Gx = σ{c(y), y ≤ x} and

ηx =

∞∫
0

E(c(y + x)|Gx)dy.

Combining the estimate (2.23) in the case p = ∞ in Proposition 7.2.6.
from [5] with our condition that the correlation function Φ is both bounded
and integrable, we deduce that the stationary process {ηx, x ≥ 0} satisfies
|ηx| ≤ c1 a.s. for all x > 0, with a non-random constant c1. Moreover,∫ x

0

c(r)dr − ηx

is a square integrable Gx martingale. Denote it by Nx. Clearly

Wε(x) =

√
ε

c̄

∫ x/ε

0

c(y)dy

=

√
ε

c̄
Nx/ε +

√
ε

c̄
ηx/ε,

and thus we deduce from Doob’s inequality

E
(

sup
0≤x≤r

|Wε(x)|2
)
≤ 2

c̄2
E( sup

0≤x≤r/ε

(√
εN x

)2
) + 2

c2
1ε

c2

≤ 4

c̄2
E((
√
εNr/ε)2) + 2

c2
1ε

c2

≤ 8E(|Wε(r)|2) + 10
c2

1ε

c2

≤ C(ε+ r),

17



provided C = (16c0) ∨ (10c2
1/c

2). Now for j ≥ 1, M > 0,

P

(
sup

2j−1<r≤2j

|Wε(r)|
(1 + r)1−γ ≥M

)
≤ P

(
sup

0≤r≤2j
|Wε(r)| ≥ (1 + 2j−1)1−γM

)

≤ C(ε+ 2j)

M2(1 + 2j−1)2−2γ

≤ (ε ∨ 1)
2C

M2
(1 + 2j−1)2γ−1.

Summing up over j ≥ 1, we deduce that

P
(
ζεγ ≥M

)
≤ 2P

(
sup
r>0

|Wε(r)|
(1 + r)1−γ ≥M

)
≤ (ε ∨ 1)

4C

M2

∞∑
j=0

(1 + 2j)2γ−1

≤ (ε ∨ 1)
C ′

M2
.

This completes the proof of Lemma. �

We can now establish the required uniform integrability

Proposition 5.9. For each t > 0, x ∈ IR, the collection of random variables{
IE

(
exp

[
4√
ε

∫ t

0

c

(
s,
Xx
s

ε

)
ds

])
, ε > 0

}
is P–tight.

Proof: We make use of the following easy estimate : if Z is an N(0, 1)
random variable, c > 0 and 0 < p < 2,

IE exp(c|Z|p) ≤
√

2 exp

[
2− p

2
(4c)

2
2−p

]
. (5.8)

From the identity (5.4) in the proof of Theorem 5.2, we deduce that

4√
ε

∫ t

0

c

(
s,
Xx
s

ε

)
ds = 8Wε(t,X

x
t )− 8Wε(0, x)− 8

∫ t

0

∂Wε

∂s
(s,Xx

s )ds

− 8

∫ t

0

Wε(s,X
x
s )dBs.

18



Hence

IE

(
exp

[
4√
ε

∫ t

0

c

(
s,
Xx
s

ε

)
ds

])
≤ e−8Wε(0,x)

[
IE
(
e24Wε(t,Xx

t )
)]1/3

×
[
IE
(
e−24

∫ t
0
∂Wε
∂s

(s,Xx
s )ds
)]

1/3
[
IE
(
e−24

∫ t
0 Wε(s,Xx

s )dBs
)]1/3

.

It remains to dominate each of the 4 factors of the right–hand side of the
last identity by a tight sequence, which we now do, with the help of Lemma
5.7. Below γ is an arbitrarily fixed number in the interval (0, 1/2). Clearly,

−8Wε(0, x) ≤ 8|x|(1 + |x|)1−γξε0,γ,

and the sequence on the right-hand side is tight as well as the sequence of
the exponentials exp

(
8|x|(1 + |x|)1−γξε0,γ

)
. Next

24Wε(t, x+Bt) = 24

∫ x+Bt

0

Wε(t, y)dy

≤ 24|x+Bt|(1 + |x+Bt|)1−γξεt,γ

≤ 48[(1 + |x|)2−γ + |Bt|2−γ]ξεt,γ.

Hence from (5.8),

IE
(
e24Wε(t,Xx

t )
)
≤
√

2 exp
[
48(1 + |x|)2−γξεt,γ

]
exp

[γ
2

(
192ξεt,γt

1−γ/2)2/γ
]
.

Similarly,

−24

∫ t

0

∂Wε

∂s
(s,Xx

s )ds ≤ 24ηεt,γ

∫ t

0

(
|x+Bs|+

1

1− γ
|x+Bs|2−γ

)
ds,

so using Jensen’s inequality, we get

exp

(
−24

∫ t

0

∂Wε

∂s
(s,Xx

s )ds

)
≤ 1

t

∫ t

0

exp

[
24tηεt,γ

(
|x+Bs|+

1

1− γ
|x+Bs|2−γ

)]
ds,

from which the result follows as above. Next from Cauchy–Schwarz,

IE exp

(
−24

∫ t

0

Wε(s,X
x
s )dBs

)
≤
[
IE exp

(
−48

∫ t

0

Wε(s,X
x
s )dBs − 1152

∫ t

0

W 2
ε (s,Xx

s )ds

)]1/2

×
[
IE exp

(
1152

∫ t

0

W 2
ε (s,Xx

s )ds

)]1/2

≤
[
IE exp

(
1152

∫ t

0

W 2
ε (s,Xx

s )ds

)]1/2

,
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but ∫ t

0

W 2
ε (s,Xx

s )ds ≤
[
ξεt,γ
]2 ∫ t

0

(1 + |x+Bs|)2−2γds,

and we estimate this term again using Jensen’s inequality and the inequality
(5.8). �

It now follows from Theorem 5.2, Propositions 5.3 and 5.9, and the fact
that by formula (5.5) the exponent in the Feynman–Kac formula is a contin-
uous function of (W,W ′

t), that we can apply Corollary 4.2, yielding

Theorem 5.10. For any (t, x) ∈ IR+ × IR,

uε(t, x)→ u(t, x) := IE

[
g(Xx

t ) exp

(∫ t

0

∫
IR

L(ds, y − x)W (s, dy)

)]
in P–law, as ε→ 0.

Remark 5.11. Note that it is not clear how the limiting exponent in the
Feynman–Kac formula could be written in terms of W and B.

The corresponding limiting SPDE reads
∂u

∂t
(t, x) =

1

2

∂2u

∂x2
(t, x)dt+ u(t, x) ◦W (t, dx), t ≥ 0, x ∈ IR;

u(0, x) = g(x), x ∈ IR,

where the stochastic integral should be interpreted as an anticipative Strato-
novich integral, see [11], [12]. Since anticipating stochastic integrals are not
very easy to handle, we prefer to rewrite the above SPDE as follows, using
the same trick as in [13]. We note that u(t, x) ◦ W (t, dx) is a convenient
notation for the product

u(t, x)
∂W

∂x
(t, x) =

∂(uW )

∂x
(t, x)− ∂u

∂x
(t, x)W (t, x).

Hence we rewrite the above SPDE in the form
∂u

∂t
(t, x) =

1

2

∂2u

∂x2
(t, x) +

∂(uW )

∂x
(t, x)− ∂u

∂x
(t, x)W (t, x), t ≥ 0, x ∈ IR;

u(0, x) = g(x), x ∈ IR.
(5.9)
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6 The case 0 ≤ 2β ≤ α, α > 0

We first prove two Propositions which will be useful in two of the three
following subcases.

We first recall the definition of the uniform mixing coefficient αum(r) of
the random field c(t, x). We set

αum(r) = sup |P (S1|S2)− P (S1)|,

where the supremum is taken over all S1 ∈ σ{c(t, x), t ≤ t0, x ∈ IR} and
S2 ∈ σ{c(t, x), t ≥ t0 + r, x ∈ IR}, with P (S2) > 0. By stationarity, the
supremum on the right hand side does not depend upon t0.

Next we recall the definition of the maximum correlation coefficient ρ(r) :

ρmc(r) = sup |E(ξη)|,

where the supremum is taken over all r. v.’s ξ (resp. η), which are assumed to
be measurable with respect to σ{c(t, x), t ≤ t0, x ∈ IR} (resp. σ{c(t, x), t ≥
t0 + r, x ∈ IR}), and such that Eξ Eη = 0, |ξ| ≤ 1, |η| ≤ 1.

We shall assume in this section that there exists C, δ > 0 such that

(Hum) αum(r) ≤ C(1 + r)−(3+δ).

Proposition 7.2.2, page 346 of [5], with, using the notations there, s =∞,
r = 1, p =∞ and q = 1, yields the

Lemma 6.1. It follows from (Hum) that for some constant C ′,

ρmc(r) ≤ C ′(1 + r)−(3+δ),

and in particular ρmc ∈ L1(IR+).

An immediate consequence of the Lemma is the

Corollary 6.2. There exists a constant C such that for all t ≥ 0, x ∈ IR,

|Φ(t, x)| ≤ C(1 + t+ |x|)−(3+δ).
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Recall the function Φ defined in (1.3). It will be convenient in the sequel
to use the fact that there exists a bounded function Ψ : IR+× IR→ IR+ such
that

|Φ(s, x)| ≤ Ψ(s, x),

x → Ψ(s, x) is decreasing on IR+ for all s ∈ IR+, Ψ(s,−x) = Ψ(s, x), and∫ ∞
0

Ψ(t, 0)dt <∞;

∫ ∞
0

Ψ(t, x)dt → 0, as |x| → ∞. (6.1)

For example, we might set (for x > 0)

Ψ(t, x) = sup
s≥t
|y|≥x

|Φ(s, y)|.

In this case, (6.1) follows from our standing assumption (Hum), see Corollary
6.2.

Whithout loss of generality, we assume now that α = 1. Hence we want
to treat the case 0 ≤ β ≤ 1/2. The exponent in the Feynman–Kac formula
reads

Y ε
t =

1√
ε

∫ t

0

c

(
s

ε
,
x+Bs

εβ

)
ds.

Let us first prove the

Proposition 6.3. Assume that the condition (Hum) holds. Then for all
0 ≤ β ≤ 1/2, the limit relation holds in IP–probability

lim
ε→0

E exp(Y ε,x
t ) = exp(tΣ) (6.2)

with

Σ(β) =


∫ +∞

−∞
Φ(u, 0)du, if 0 ≤ β < 1/2,∫ +∞

−∞
IEΦ(u,Bu)du, if β = 1/2.

(6.3)

Proof: We only consider the case β = 1/2, for β ∈ (0, 1/2) the desired
statement can be justified in the same way with some simplifications.

We introduce a partition of the interval (0, t/ε) into alternating subinter-
vals of the form

Iεj =
(
(ε−1/3 + ε−ν)j, (ε−1/3 + ε−ν)j + ε−1/3

)
, j = 1, 2, . . . , Kε,
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J ε
j =

(
(ε−1/3 + ε−ν)j + ε−1/3, (ε−1/3 + ε−ν)(j + 1)

)
, j = 1, 2, . . . , Kε;

here Kε = [(ε−1t)/(ε−1/3 + ε−ν)], [·] stands for the integer part, and 0 < ν <
1/3. This implies that Kε = tε−2/3(1 + o(1)). Denote

ηεj =
√
ε

∫
Iεj

c
(
s,

x√
ε

+ B̃s) ds, ζεj =
√
ε

∫
J εj

c
(
s,

x√
ε

+ B̃s) ds

where the new Wiener process B̃s has been obtained from the original one
by the scaling

√
εB̃s/ε = Bs. We may assume without loss of generality that

the process B̃s is fixed. Then

Y ε,x
t =

Kε∑
j=0

(ηεj + ζεj ) + Vε,

where |Vε| ≤ Cε1/3 P × P-a.s.
Notice that, due to the standing assumptions on c(s, x), there exists a

constant C such that

|ηεj | ≤ Cε1/6, |ζεj | ≤ Cε1/2−ν . (6.4)

To use efficiently the mixing properties of the coefficients it is convenient
to represent Y ε,x

t as follows

Y ε,x
t =

∑
j is even

ηεj +
∑
j is odd

ηεj +
Kε∑
j=0

ζεj := Y ε
e + Y ε

o + Yε.

First, let us compute the limit of E exp(Y ε
e ). For the sake of definiteness we

may assume that Kε is odd. The case of even Kε can be treated in exactly the
same way. Using the notation Aεj = σ{c(s, x) : s ≤ (ε−1/3 + ε−ν)j, x ∈ R},
we have

E exp(Y ε
e ) = E exp

( (Kε−1)/2∑
j=0

ηε2j

)
= E

(
E
{

exp
( (Kε−1)/2∑

j=0

ηε2j

)∣∣∣Aε(Kε−2)

})

= E

(
exp

( (Kε−3)/2∑
j=0

ηε2j

)
E
{

exp(ηεKε−1)
∣∣Aε(Kε−2)

})
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= E

(
exp

( (Kε−3)/2∑
j=0

ηε2j

)[
E exp(ηεKε−1)+E

{
(exp(ηεKε−1)−E exp(ηεKε−1))

∣∣Aε(Kε−2)

}])
.

Since, according to (6.4), | exp(ηεKε−1) − E exp(ηεKε−1)| ≤ Cε1/6, then, by
Proposition 2.6 page 349 in [5], we have∣∣E{(exp(ηεKε−1)−E exp(ηεKε−1))

∣∣Aε(Kε−2)

}∣∣ ≤ Cαum(ε−1/3)ε1/6 ≤ Cε(3+δ)/3+1/6

Combining this estimate with the evident bound 1/2 ≤ E exp(ηεKε−1) ≤ 2,
we obtain

E exp(Y ε
e ) = E

(
exp

( (Kε−3)/2∑
j=0

ηε2j

)
E exp(ηεKε−1)

(
1 +O(ε(3+δ)/3+1/6)

))
with |O(ε(3+δ)/3+1/6)| ≤ Cε(3+δ)/3+1/6. Iterating this process, after Kε/2 steps
we arrive at the equality

E exp(Y ε
e ) =

(Kε−1)/2∏
j=0

E exp(ηε2j)
(
1 +O(ε(3+δ)/3+1/6)

)
.

Since
(Kε−1)/2∏

j=0

(
1 +O(ε(3+δ)/3+1/6)

)
converges to 1 as ε→ 0, we have

lim
ε→0

E exp(Y ε
e ) = lim

ε→0

(Kε−1)/2∏
j=0

E exp(ηε2j) (6.5)

We proceed with estimating the term E exp(ηεj ). Using Taylor expansion of
the exponent about zero results in the following relation

E exp(ηεj ) = 1+Eηεj +
1

2
E
(
(ηεj )

2
)

+
1

6
E
(
(ηεj )

3
)

+
1

24
E
(
(ηεj )

4
)

+O(ε5/6), (6.6)

here we have also used the bound |ηεj | ≤ Cε1/6. By the centering condition
on c(·), Eηεj = 0. Considering λεj defined in the proof of Lemma 6.6 below in

the particular case γ = 1/3, ν = 0, we have that ηεj and λ
√
ε

j have the same
law. It then follows from (6.22) that

1

6

∣∣E((ηεj )3
)∣∣ ≤ Cε5/6,

1

24
E
(
(ηεj )

4
)
≤ Cε. (6.7)
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The contribution of the term 1
2
E
(
(ηεj )

2
)

can be computed as follows

1

2
E
(
(ηεj )

2
)

=
ε

2

∫
Iεj

∫
Iεj

E
{
c
(
r,

x√
ε

+ B̃r)c
(
s,

x√
ε

+ B̃s)
}
dsdr (6.8)

=
ε

2

∫
Iεj

∫
Iεj

Φ(r − s, B̃r − B̃s) drds := Ξε
j .

By definition and due to the properties of the Wiener process, the ran-
dom variables Ξε

j = Ξε
j(ω), j = 1, 2 . . . , Kε, are independent, identically

distributed and satisfy the following bounds

C0ε
2/3 ≤ Ξε

j ≤ C1ε
2/3, EΞε

j = Σ(1/2)ε2/3 +O(ε) (6.9)

with 0 < C0 < C1 < ∞ and |O(ε)| ≤ C2ε; the quantity Σ(1/2) has been
defined in (6.3). Combining (6.5)–(6.9) yields

lim
ε→0

E exp(Y ε
e ) = lim

ε→0

(Kε−1)/2∏
j=0

(1 + Ξε
j +O(ε5/6)) (6.10)

= exp
(

lim
ε→0

(Kε−1)/2∑
j=0

Ξε
j

)
= exp

(
lim
ε→0

[(Kε/2)EΞε
j ]
)

= exp
(tΣ(1/2)

2

)
in P probability, from the weak law of large numbers. Similarly

lim
ε→0

E exp(Y ε
o ) = exp

(tΣ(1/2)

2

)
. (6.11)

Exploiting exactly the same arguments one can show that

lim
ε→0

E exp(Yε) = 1

in P probability. In view of the strict convexity and the strict positivity for
x 6= 0 of the function ϕ(x) = ex − 1− x, this implies that, as ε→ 0,

Yε → 0 in P× P probability. (6.12)

Following the line of the proof of estimate (6.18) in Lemma 6.6 below, one
can show that

E exp(4Y ε
e,o) ≤ C, E exp(4Yε) ≤ C
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with a deterministic constant C. Thanks to these bounds we deduce from
(6.12) that

lim
ε→0

E exp(Y ε
e + Y ε

o + Yε) = lim
ε→0

E exp(Y ε
e + Y ε

o ) (6.13)

in P probability.
Denote

Aεe = σ
{
c(s, x) : s ∈

(Kε−1)/2⋃
j=0

Iε2j, x ∈ R
}
,

By construction,

dist
( (Kε−1)/2⋃

j=0

Iε2j,
(Kε−1)/2⋃

j=0

Iε2j+1

)
= ε−ν .

Therefore,

E exp(Y ε
e + Y ε

o ) = E
{

exp(Y ε
e )E

(
exp(Y ε

o )|Aεe
)}

=

E{exp(Y ε
e )}E{exp(Y ε

e )}+ o(ε2ν)

and

lim
ε→0

E exp(Y ε,x
t ) = lim

ε→0
E{exp(Y ε

e )} lim
ε→0

E{exp(Y ε
e )} = exp(tΣ),

as required. �

Now, consider the process exp
(
Y ε,x
t (ω)

)
exp

(
Y ε,x
t (ω1)

)
defined on the

product space Ω× Ω with the product measure P× P.

Proposition 6.4. Assume that the condition (Hum) holds. Then for all
0 ≤ β ≤ 1/2, the limit relation holds in IP× IP–probability

lim
ε→0

E
{

exp
(
Y ε,x
t (ω)

)
exp

(
Y ε,x
t (ω1)

)}
= exp(2tΣ) (6.14)

Proof: It is easy to check that for the standard Brownian motion Bs and
for any t > 0 the limit relation holds

lim
δ→0

meas
{
s ∈ [0, t] : |Bs(ω)−Bs(ω1)| < δ

}
= 0 (6.15)
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P× P-a.s. Due to the condition (Hum), for any pair (ω, ω1) such that (6.15)
is fulfilled, we have

lim
ε→0

E
{

exp
(
Y ε,x
t (ω)

)
exp

(
Y ε,x
t (ω1)

)}
= lim

ε→0
E
{

exp
(
Y ε,x
t (ω)

)}
lim
ε→0

E
{

exp
(
Y ε,x
t (ω1)

)}
,

and the desired statement follows from Proposition 6.3. �

The next result will be needed below

Lemma 6.5. Under our standing assumptions, for any ν ≥ 0, there exists a
constant C such that for all 0 ≤ s < t, IP a. s.,

E

(ε ∫ s2/ε2

s1/ε2
c
(
t,
x

ε
+ ενBt

)
dt

)6
 ≤ C|s2 − s1|3.

Proof: In all this proof, y stands for x/ε+ ενBs. Its dependence upon s, ε
and ω is harmless.

E

(
ε

∫ s2/ε2

s1/ε2
c
(
t, y
)
dt

)6

= ε6

s2/ε2∫
s1/ε2

. . .

s2/ε2∫
s1/ε2

E{c(t1, y) . . . c(t6, y)}dt1 . . . dt6.

Let us now introduce the set

S(r) =

{
(t1, . . . , t6) ∈

[s1

ε2
,
s2

ε2

]6

: max
1≤i≤6

min
j 6=i
|ti − tj| ≤ r

}
.

It is an easy exercise to check that

V (r) = Vol(S(r)) ≤ Cr3 (s2 − s1)3

ε6
.

If for some i ∈ {1, . . . , 6} it holds |ti − tj| ≥ r for all j 6= i (without loss of
generality i = 1), then, taking into account (Hum), we have

|E{c(t1, y)c(t2, y) . . . c(t6, y)}| = |E(c(t2, y) . . . c(t6, y)E{c(t1, y)|F{t2,...,t6}})|
≤ CE(|c(t2, y) . . . c(t6, y)|)(1 + r)−(3+δ)‖c(t1, y)‖L∞(A)

≤ (1 + r)−(3+δ)‖c‖6
L∞(A)

≤ C(1 + r)−(3+δ).
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Therefore

ε6

s2/ε2∫
s1/ε2

. . .

s2/ε2∫
s1/ε2

E{c(t1, y) . . . c(t6, y)}dt1 . . . dt6

≤ Cε6

√
6(s2−s1)/ε2∫

0

dV (r)

(1 + r)3+δ

≤ Cε6

∞∫
0

dV (r)

(1 + r)3+δ

= Cε6
(
V (r)(1 + r)−(3+δ)

)∣∣∞
0

+ (3 + δ)Cε6

∞∫
0

V (r)dr

(1 + r)(4+δ)

≤ C(s2 − s1)3

∞∫
0

r3 dr

(1 + r)(4+δ)
≤ C(s2 − s1)3.

�

6.1 The case α = 2β > 0

This is the “central case”, where α/4+β/2 = α/2. In this case, γ = β = α/2,
and we consider w. l. o. g. the case where γ = β = 1, α = 2. This means
that we consider the PDE

∂uε

∂t
(t, x) =

1

2

∂2uε

∂x2
(t, x) +

1

ε
c

(
t

ε2
,
x

ε

)
uε(t, x), t ≥ 0, x ∈ IR;

uε(0, x) = g(x), x ∈ IR,

(6.16)

whose solution is given by the Feynman–Kac formula

uε(t, x) = IE

[
g(x+Bt) exp

(
ε−1

∫ t

0

c

(
s

ε2
,
x+Bs

ε

)
ds

)]
.

We will show that the limit of uε(t, x), as ε → 0, is a deterministic
function.
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Let us define

Y ε
t,x = ε−1

∫ t

0

c

(
s

ε2
,
x+Bs

ε

)
ds,

Then
uε(t, x) = IE

[
g(x+Bt) exp(Y ε

t,x)
]
.

The random variable Y ε
t,x is defined on the product probability space (S ×

Ω,A⊗F , P × IP).
The limit of uε(t, x) will be obtained by a combination of Proposition 6.3

(in the case β = 1/2) and some uniform integrability property, which we now
establish. Let us prove the uniform in ε > 0 and ω ∈ Ω integrability with
respect to the measure P of the random variable

exp(Y ε
t ) = exp

(
ε

t/ε2∫
0

c
(
s,
x

ε
+Bs

)
ds

)
, t > 0.

Because we need slightly different versions of the same result in other sections
of this paper, we prove a more general result, which will be used in this section
with ν = 0.

Lemma 6.6. If the assumption (Hum) is satisfied, then for any θ > 0, there
exists a constant C(θ) such that for all ε > 0 and ν ∈ IR,

E exp

(
θε

t/ε2∫
0

c(s, xε
ν
2
−1 +Bενs)ds

)
≤ C(θ). (6.17)

Remark 6.7. The condition α(r) ≤ C(1 + r)−(1+δ/2), which is weaker than
(Hum), does imply that ρ ∈ L1(IR+). However, the proof would be slightly
more delicate. In particular, the parameter γ which appears in the proof
below should be choosen as a function of δ.

Proof: Let γ be an arbitrary positive number such that 0 < γ < 1/2,
and consider an equidistant partition of the interval [0, t

ε2
], the length of

all subintervals being equal to εγ−1 (without loss of generality we assume
that tε−(γ+1) is an integer and, moreover, an even number). We estimate
separately the contribution of all the subintervals with even numbers and of
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those with odd numbers. It suffices to show that, with δ = ν/2− 1,

E exp

(
2θ

tε−(γ+1)/2∑
j=1

ε

(2j−1)ε(γ−1)∫
2(j−1)ε(γ−1)

c(s, xεδ +Bενs)ds

)
≤ C, (6.18)

E exp

(
2θ

tε−(γ+1)/2∑
j=1

ε

2jε(γ−1)∫
(2j−1)ε(γ−1)

c(s, xεδ +Bενs)ds

)
≤ C.

We introduce the notation

λεj = 2θε

(2j−1)ε(γ−1)∫
2(j−1)ε(γ−1)

c(t, xεδ+Bενt)dt; F εj = σ{c(t, x) : t ≤ 2(j−1)ε(γ−1), x ∈ IR}.

Since |c(s, x)| ≤ C, we have the bound

|λεj| ≤ cεγ (6.19)

and, moreover,

E exp(λεj) = E
(

1 + λεj +
(λεj)

2

2!
+ · · ·+

(λεj)
k

k!

)
+ ◦(εγ+1), (6.20)

provided k ≥ ( 1
γ

+ 1). The last term on the right hand side admits the

bound | ◦ (εγ+1)| ≤ κ(ε)εγ+1, where κ is a deterministic function defined
on IR+, which is such that κ(ε) → 0, as ε → 0. Since the random field
{c(t, x), t ≥ 0, x ∈ IR} is centered, Eλεj = 0. Then

E((λεj)
2) = 4θ2ε2

(2j−1)ε(γ−1)∫
2(j−1)ε(γ−1)

(2j−1)ε(γ−1)∫
2(j−1)ε(γ−1)

E
(
c(t, xεδ +Bενt)c(s, xε

δ +Bενs)
)
dsdt

≤ cε2

ε(γ−1)∫
0

ε(γ−1)∫
0

ρ(t− s)dtds

≤ Cε1+γ;

(6.21)
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For m ≥ 2 we obtain

|E(λεj)
m| ≤ cmε

m

(2j−1)ε(γ−1)∫
2(j−1)ε(γ−1)

. . .

(2j−1)ε(γ−1)∫
2(j−1)ε(γ−1)

|E
(
c(t1, xε

δ +Bενt1) . . . c(tm, xε
δ +Bενtm)

)
|dt1 . . . dtm

= cmε
m

(2j−1)ε(γ−1)∫
2(j−1)ε(γ−1)

. . .

(2j−1)ε(γ−1)∫
2(j−1)ε(γ−1)

∣∣∣E(c(t1, xεδ +Bενt1)
m∏
i=2

c(ti, xε
δ +Bενti)

)∣∣∣dt1 . . . dtm
≤ cmε

m‖c(·, ·)‖m∞

ε(γ−1)∫
0

. . .

ε(γ−1)∫
0

ρ( min
2≤i≤m

|ti − t1|)dt1 . . . dtm

≤
m∑
i=2

cmε
m

ε(γ−1)∫
0

. . .

ε(γ−1)∫
0

ρ(|ti − t1|)dt1 . . . dtm

≤ cmε
mε(γ−1)(m−1) = cmε

(1+(m−1)γ).

(6.22)

Combining (6.20)–(6.22) together gives

E exp(λεj) ≤ 1 + cε(γ+1). (6.23)

Now, letting L = t/(2εγ+1), we can estimate the left hand side of (6.18) as
follows
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E exp
( L∑
j=1

λεj
)

= E

(
E
{

exp
( L∑
j=0

λεj
) ∣∣F εL−1

})

= E
[

exp
( L−1∑
j=0

λεj

)
E
{

exp
(
λεL
) ∣∣F εL−1

}]
= E exp

( L−1∑
j=0

λεj

)
E
(

exp(λεL)
)

+ E
[

exp
( L−1∑
j=0

λεj

)
E
{[

exp
(
λεL
)
− E exp

(
λεL
)] ∣∣F εL−1

}]
≤ (1 + cε(1+γ))E exp

( L−1∑
j=0

λεj

)
+ E

[
exp

( L−1∑
j=0

λεj

)
E
{[

exp
(
λεL
)
− E exp

(
λεL
)] ∣∣F εL−1

}]
Using successfully Proposition 7.2.6 from [5], the obvious inequality

‖ exp(ξ)− E exp(ξ)‖∞ ≤ ‖ exp(ξ)‖∞‖ξ‖∞,

the bound (6.19), and the fact that γ < 1/2, we obtain the inequality∣∣E{[ exp
(
λεL
)
− E exp

(
λεL
)] ∣∣F εL−1

}∣∣ ≤ cα(ε(γ−1))‖ exp
(
λεL
)
− E exp

(
λεL
)
‖
L∞

≤ c‖ exp
(
λεL
)
‖
L∞
‖λεL‖L∞α(ε(γ−1))

≤ cεγ(ε(γ−1))−(3+δ)

= cε(2−γ+δ−γδ)

≤ cε(γ+1).

Finally, we conclude that

E exp
( L∑
j=0

λεj
)
≤ E exp

( L−1∑
j=0

λεj
)
(1 + cε(γ+1)).
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Iterating this inequality, we get after L steps:

E exp
( L∑
j=0

λεj
)
≤
(
1 + cε(γ+1)

)L ≤ (1 + cε(γ+1)
)(t/ε(γ+1)) ≤ exp(2ct).

The contribution of the odd terms can be estimated exactly in the same way,
and the proof is complete. �

Proposition 6.8. We have that

E
((

IE(g(x+Bt)[e
Y ε,xt − etΣ])

)2
)
→ 0

as ε→ 0, where

Σ =

∫ ∞
0

IEΦ(r, Br)dr.

Proof: We have to compute

E
((

IE(g(x+Bt)[e
Y ε,xt − etΣ])

)2
)

(6.24)

=

∫
Ω

∫
Ω

g(x+Bt(ω))g(x+Bt(ω
′))E

(
eY

ε,x
t (ω)+Y ε,xt (ω′)

)
IP(dω)IP(dω′)

− 2etΣIEg(x+Bt)

∫
Ω

g(x+Bt(ω))EeY
ε,x
t (ω)IP(dω) + (IEg(x+Bt))

2e2tΣ.

It follows from Proposition 6.3, Proposition 6.4 and Lemma 6.6 that

EeY
ε,x
t → etΣ, (6.25)

in IP–probability as ε→ 0, and

EeY
ε,x
t (ω)+Y ε,xt (ω′) → e2tΣ (6.26)

in IP(dω)× IP(dω′)–probability as ε→ 0. Passing to the limit, as ε→ 0, on
the right-hand side of (6.24) we arrive at the required assertion. �

An immediate consequence of the last Proposition is the
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Corollary 6.9. For any t > 0 and x ∈ IR, the limit in probability u(t, x) of
uε(t, x) is given by

u(t, x) = IE[g(x+Bt)] exp (tΣ) ,

which is a solution of the deterministic parabolic PDE
∂u

∂t
(t, x) =

1

2

∂2u

∂x2
(t, x) + Σu(t, x), t ≥ 0, x ∈ IR;

u(0, x) = g(x), x ∈ IR.
(6.27)

We will now state an additional result.

Proposition 6.10. Under the assumptions of the above results, the collection
{uε(t, x), t ≥ 0, x ∈ IR}ε>0 is tight in C([0,∞)× IR).

The proof of this proposition is the object of the next subsection. We
first state a clear consequence of the last two statements

Corollary 6.11. As ε → 0, uε(t, x) → u(t, x) in probability, locally uni-
formly in t and x.

6.2 Proof of Proposition 6.10

We begin by proving tightness of the family{
IE
[
exp(Y ε

t,x)
]
, t ≥ 0, x ∈ R

}
in the topology of locally uniform convergence. This tightness is an imme-
diate consequence of the following two inequalities (see Theorem 20 from
Appendix I in [7]):

E
∣∣∣IE( exp(Y ε

t,x)
)
− IE

(
exp(Y ε

s,x)
)∣∣∣5 ≤ CN |t− s|5/2 (6.28)

and

E
∣∣∣IE( exp(Y ε

t,x)
)
− IE

(
exp(Y ε

t,y)
)∣∣∣5 ≤ CN |x− y|9/4 (6.29)

for all s, t ∈ [0, N ] and x, y ∈ [−N,N ], and the estimate

E IE
(

exp(Y ε
t,x)
)
≤ C. (6.30)
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The latter estimate follows from Lemma 6.6.
We first prove inequality (6.28) which is easier.
Without loss of generality we assume that t > s. Then, considering the

evident inequality
ea − eb ≤ (ea + eb)(a− b), (6.31)

we obtain

E

[∣∣∣IE( exp(Y ε
t,x)
)
− IE

(
exp(Y ε

s,x)
)∣∣∣5] ≤ E

[∣∣∣IE{( exp(Y ε
t,x) + exp(Y ε

s,x)
)
|Y ε
t,x − Y ε

s,x|
}∣∣∣5]

≤ E
[(

IE|Y ε
t,x − Y ε

s,x|6
)5/6(

IE
(

exp(Y ε
t,x) + exp(Y ε

s,x)
)30
)1/6]

≤
(
E IE|Y ε

t,x − Y ε
s,x|6

)5/6(
E IE

(
exp(Y ε

t,x) + exp(Y ε
s,x)
)30
)1/6

Lemma 6.6 implies that

E
[(

exp(Y ε
t,x) + exp(Y ε

s,x)
)30
]
≤ C (6.32)

with a constant C that does not depend on ε. It follows from Lemma 6.5
that

E
[
|Y ε
t,x − Y ε

s,x|6
]
≤ C|t− s|3.

Combining the last three estimates we obtain (6.28).
We proceed with the proof of (6.29). In this case the proof is more

involved. We have

IE
(

exp(Y ε
t,x)
)
− IE

(
exp(Y ε

t,y)
)

= IE

(
exp

[
ε

t/ε2∫
0

c
(
s,
x

ε
+Bs

)
ds

]
− exp

[
ε

t/ε2∫
0

c
(
s,
y

ε
+ B̃s

)
ds

])
,

(6.33)

where Bs and B̃s are two standard Wiener processes.
Let B1

s , B
2
s and B3

s be three standard independent Wiener processes, and
denote

τx−yε = inf{t > 0 :
x

ε
+B1

t =
y

ε
+B2

t }

= inf{t > 0 :
x− y
ε

+B1
t = B2

t }.
(6.34)
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We set 
Bs = B1

s for s ≤ τx−yε ,

B̃s = B2
s for s ≤ τx−yε ,

Bs = B̃s = B3
s −B3

τx−yε
+B1

τx−yε
+ x

ε
for s ≥ τx−yε .

Then Bs and B̃s are two standard Wiener processes such that x
ε

+ Bs and
y
ε

+ B̃s coincide for s ≥ τx−yε .
The next statement is easy to prove using the well–known reflection prin-

ciple

Lemma 6.12. Let {Bt, t ≥ 0} be a standard Brownian motion, x ∈ IR and
τx := inf{t > 0, Bt = x}. Then

IP(τx > t) = IP(−|x| < Bt < |x|) ≤
√

2

π

|x|√
t
.

It follows that

IP

(
τx−yε >

|x− y|
ε2

)
≤ c |x− y|1/2. (6.35)

Assuming without loss of generality that x−y > 0, we introduce the following
two events and the corresponding indicator functions:

I+
ε = {ω ∈ Ω : τx−yε >

x− y
ε2
}, I−ε = {ω ∈ Ω : τx−yε ≤ x− y

ε2
},

I+
ε = 1I+ε , I−ε = 1I−ε ; (6.36)

here 1 stands for the indicator function of a set. Letting

Zε
t = exp(Y ε

t,x)− exp(Ỹ ε
t,y)

with

Y ε
t,x = ε

t/ε2∫
0

c
(
s,
x

ε
+Bs

)
ds, Ỹ ε

t,y = ε

t/ε2∫
0

c
(
s,
y

ε
+ B̃s

)
ds,
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we have

E
∣∣IE(Zε

t )
∣∣5 = E

∣∣IE(I+
ε Z

ε
t ) + IE(I−ε Z

ε
t )
∣∣5

≤ 24E
∣∣IE(I+

ε Z
ε
t )
∣∣5 + 24E

∣∣IE(I−ε Z
ε
t )
∣∣5

= J1 + J2.

In order to estimate J1 we use the inequality

∣∣IE(I+
ε Z

ε
t )
∣∣5 ≤ (IE[(I+

ε )1+δ]
) 5

1+δ

[
IE
(
|Zε

t |
1+δ
δ

)] 5δ
1+δ

≤ c(x− y)
5

2(1+δ)
[
IE
(
|Zε

t |
1+δ
δ

)] 5δ
1+δ

;

here we have also used (6.35). This yields, with δ = 1/9,

J1 ≤ c (x− y)9/4E
([

IE
(
|Zε

t |10
)]1/2)

≤ c (x− y)9/4
[
EIE

(
|Zε

t |10
)]1/2

.

But from Lemma 6.6, there exists C such that for all ε > 0,

E
(
|Zε

t |10
)
≤ C.

Consequently
J1 ≤ c |x− y|9/4. (6.37)

We proceed with estimating J2. With the help of (6.31), we obtain

2−4J2 ≤ E IE
(
I−ε |Zε

t |5
)

≤ IEE
[
I−ε
(

exp(Y ε
t,x) + exp(Ỹ ε

t,y)
)5|Y ε

t,x − Ỹ ε
t,y|5
]

≤
(

IEE
([(

exp(Y ε
t,x) + exp(Ỹ ε

t,y)
)]30))1/6

×
(

IEE
[
I−ε |Y ε

t,x − Ỹ ε
t,y|6
])5/6

.

Again from Lemma 6.6, we conclude that the first factor on the right-hand
side is bounded, uniformly in ε :

IEE
([(

exp(Y ε
t,x) + exp(Ỹ ε

t,y)
)]30)

≤ C. (6.38)
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Denoting Rε(s) = c(s, x
ε

+Bs)− c(s, yε + B̃s), for the second factor we get

E
[
I−ε |Y ε

t,x − Ỹ ε
t,y|6
]

= I−ε E

[(
ε

τx−yε∫
0

Rε(s)ds
)6
]
;

here we have also used the definition of I−ε . It follows from Lemma 6.5 that

E

[(
ε

τx−yε∫
0

Rε(s)ds
)6
]
≤ c(ε2τx−yε )3.

This yields, since ε2τx−yε ≤ |x− y| on the set I−ε ,(
IEE

[
I−ε |Y

x,ε
t − Ỹ y,ε

t |6
])5/6

≤ c
(

IE I−ε (ε2τx−yε )3
])5/6

≤ C|x− y|5/2;
(6.39)

Combining this bound with (6.38) and then with (6.37), we arrive at (6.29).
From estimates (6.28)–(6.30) we deduce that for any N > 0 there is

CN > 0 such that
E sup

|x|≤N,
0≤t≤N

IE exp(Y ε
t,x) ≤ CN . (6.40)

In exactly the same way one can prove the estimate

E sup
|x|≤N,
0≤t≤N

IE exp(2Y ε
t,x) ≤ CN . (6.41)

We can clearly deduce from (6.40)

E sup
|x|≤N,
0≤t≤N

IE
{
|g(x+ εBt/ε2)| exp(Y ε

t,x)
}
≤ CN‖g‖L∞(R)

. (6.42)

Furthermore, (6.28)–(6.29) imply (see the proof of Theorem 20 in Appendix
I from [7])

sup
ε>0

P
{

sup
QNδ

∣∣IE{ exp(Y ε
t,x)− exp(Y ε

s,y)
}∣∣ ≥ η

}
−→ 0, (6.43)
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as δ → 0, for any η > 0 and N > 0; here QNδ stands for the set

QNδ = {(t, s, x, y) ∈ [0, N ]2 × [−N,N ]2 : |t− s| ≤ δ, |x− y| ≤ δ}.

From (6.43) and (6.41) follows

lim
δ→0

sup
ε>0

E sup
QNδ

∣∣IE{ exp(Y ε
t,x)− exp(Y ε

s,y)
}∣∣ = 0. (6.44)

Let us first prove the tightness of {uε}ε>0 for g ∈ C∞0 (R). It suffices to
prove that

E
∣∣∣IE(g(x+Bt) exp(Y ε

t,x)
)
− IE

(
g(x+Bs) exp(Y ε

s,x)
)∣∣∣5 ≤ CN |t− s|5/2 (6.45)

and

E
∣∣∣IE(g(x+Bt) exp(Y ε

t,x)
)
− IE

(
g(y +Bt) exp(Y ε

t,y)
)∣∣∣5 ≤ CN |x− y|9/4 (6.46)

for all s, t ∈ [0, N ] and x, y ∈ [−N,N ].
For g ∈ C∞0 , the inequality (6.45) can be justified in exactly the same

way as we proved (6.28), taking into account the fact that g is uniformly
Lipschitz, and we leave its proof to the reader.

In order to derive the second estimate we recall the definition of τ εx−y, I
+
ε

and I−ε (see (6.34) and (6.36)), let

Zεt =
(
g(x+ εBt/ε2)Y

ε
t,x − g(y + εB̃t/ε2)Ỹ

ε
t,y

)
,

and rewrite the left-hand side of this estimate as follows

E
∣∣IE(Zεt )

∣∣5 = E
∣∣IE(I+

ε Zεt ) + IE(I−ε Zεt )
∣∣5

≤ 24E
∣∣IE(I+

ε Zεt )
∣∣5 + 24E

∣∣IE(I−ε Zεt )
∣∣5

= J1 + J2.

Using the arguments of the proof of inequality (6.37) we readily obtain

J1 ≤ c‖g‖5

L∞(R)
|x− y|9/4. (6.47)

We turn to J2 and consider two different cases. Namely, t ≥ |x− y| and
t < |x − y|. In the former case we have I−ε g(x + εBt/ε2) = I−ε g(x + εB̃t/ε2).
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With the help of (6.31) this yields

J2 ≤ IEE
[
I−ε ‖g‖5

L∞

(
exp(Y ε

t,x) + exp(Ỹ ε
t,y)
)5|Y ε

t,x − Ỹ ε
t,y|5
]

≤
(

IEE
([
‖g‖

L∞

(
exp(Y ε

t,x) + exp(Ỹ ε
t,y)
)]30))1/6

×
(

IEE
[
I−ε |Y ε

t,x − Ỹ ε
t,y|6
])5/6

,

and, by (6.32) and (6.39), we obtain

J2 ≤ c‖g‖5 |x− y|5/2. (6.48)

In the case t < |x− y|, in view of (6.45) we have

E|uε(t, x)− uε(t, y)|5 ≤ 34
(
E|uε(t, x)− uε(0, x)|5 + E|uε(0, x)− uε(0, y)|5

+ E|uε(0, y)− uε(t, y)|5
)

≤ C(t5/2 + |g(x)− g(y)|5 + t5/2).

Since t < |x− y| and g is smooth, we finally conclude that

E|uε(t, x)− uε(t, y)|5 ≤ C|x− y|5/2.

This completes the proof of the tightness of {uε} in the case of a C∞0 (IR)
initial function.

As a consequence we deduce the following property of {uε}, in the case
g ∈ C∞0 (IR), by the exact same argument which led us to (6.44). For any
N > 0,

lim
δ→0

sup
ε>0

E sup
QNδ

∣∣IE{g(x+ εBt/ε2) exp(Y ε
t,x)− g(y + εBs/ε2) exp(Y ε

s,y)
}∣∣ = 0.

(6.49)
It remains to prove that (6.49) holds true for any g ∈ Cb(IR).

We next assume that g ∈ Cb(R) and has a compact support. For an
arbitrary ν > 0 denote by gν a C∞0 function such that |g − gν |L∞ < ν. Then

40



by (6.49) and (6.42) we get

lim sup
δ→0

sup
ε>0

E sup
QNδ

∣∣IE{g(x+ εBt/ε2) exp(Y ε
t,x)− g(y + εBs/ε2) exp(Y ε

s,y)
}∣∣

≤ lim sup
δ→0

sup
ε>0

E sup
QNδ

∣∣IE{(g(x+ εBt/ε2)− gν(x+ εBt/ε2)
)

exp(Y ε
t,x)
}∣∣

+ lim
δ→0

sup
ε>0

E sup
QNδ

∣∣IE{gν(x+ εBt/ε2) exp(Y ε
t,x)− gν(y + εBs/ε2) exp(Y ε

s,y)
}∣∣

+ lim sup
δ→0

sup
ε>0

E sup
QNδ

∣∣IE{(gν(y + εBs/ε2)− g(y + εBs/ε2)
)

exp(Y ε
s,y)
}∣∣

≤ CNν + 0 + CNν = 2CNν.

Since ν > 0 is arbitrary, the last relation implies (6.49) for g ∈ Cb(R) with
compact support.

It remains to justify (6.49) for a generic g ∈ Cb(R). We will use the
localization arguments based on the following statement.

Lemma 6.13. For any δ > 0 and N > 0 there is M = M(δ,N) such that
for each g ∈ Cb(R) with supp(g) ∩ [−M,M ] = ∅ the inequality holds

E sup
|x|≤N,
0≤t≤N

IE
{
|g(x+ εBt/ε2)| exp(Y ε

t,x)
}
≤ δ‖g‖

L∞(R)
.

Proof. From (6.41), all we need to do is to estimate

sup
|x|≤N,0≤t≤N

√
IE [g2(x+Bt)].

The result follows from the fact that for any η > 0, we can choose M large
enough such that

IP

(
sup

|x|≤N,0≤t≤N
|x+Bt| > M

)
≤ η.

Next, for an arbitrary ν, representing the function g as g = g1
ν,N +

g2
ν,N with g1

ν,N having a compact support and g2
ν,N such that supp(g2

ν,N) ∩
[−M(ν,N),M(ν,N)] = ∅, one gets in the same way as above

lim sup
δ→0

sup
ε>0

E sup
QNδ

∣∣IE{g(x+εBt/ε2) exp(Y ε
t,x)−g(y+εBs/ε2) exp(Y ε

s,y)
}∣∣ ≤ CNν.

Since ν > 0 is arbitrary, this yields (6.49) for a generic g ∈ Cb(R) and
completes the proof of Proposition 6.10.

41



6.3 The case 0 < 2β < α

Without loss of generality we choose α = 1 and 0 < β < 1/2. Hence γ = 1/2.
We know from Proposition 6.3 that

Y ε,x
t =

1√
ε

∫ t

0

c
(s
ε
,
x+Bs

εβ

)
ds,

converges, as ε → 0, in IP–probability weakly under P to the Gaussian law
N(0, t

∫
IR

Φ(u, 0)du).
We now note that the r. v. Y ε

t,x can be rewritten as

Y ε
t,x =

√
ε

∫ t/ε

0

c
(
s, xε−β +Bsε(1−β)

)
ds.

Hence it follows from Lemma 6.6 with ν = (1− β) that

sup
ε>0

E
(
exp[4Y ε

t,x]
)
≤ C.

Consequently, by the same arguments as those in the previous section, we
can show the

Proposition 6.14. As ε → 0, uε(t, x) converges in probability, locally uni-
formly in t and x, to u(t, x), which is given by

u(t, x) = IE[g(x+Bt)] exp (tΣ′) ,

and solves the deterministic parabolic PDE
∂u

∂t
(t, x) =

1

2

∂2u

∂x2
(t, x) + Σ′u(t, x), t ≥ 0, x ∈ IR;

u(0, x) = g(x), x ∈ IR,
(6.50)

where Σ′ =
∫∞

0
Φ(u, 0)du.

6.4 The case β = 0

In this case, γ = α/2. Without loss of generality, we restrict ourselves to the
case α = 1.

We will study the limiting behaviour of uε as ε → 0 under the following
additional assumption:
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(Hö) For each s ∈ IR the realizations c(s, y) are a.s. Hölder continuous in
y ∈ IR with a deterministic exponent θ > 1/3. Moreover,

|c(s, y1)− c(s, y2)| ≤ c|y1 − y2|θ,

with a deterministic constant c.

Of course, (Hum)] is still assumed to be in force.
Proposition 6.3 still applies here. However, it is not sufficiently precise

to be useful in this case. The reason is that the limit of uε will not be
deterministic in this case. Convergence will be only in law, not in probability
or in mean square. Going back to the proof of Proposition 6.8, which is not
valid in the present case, we note that while the limiting law of Y ε

·,x(ω) is the
same as above, that of (Y ε

·,x(ω), Y ε
·,x(ω

′)) will be dramatically different.
Consider the exponent in the above Feynman–Kac formula, written in its

first form. It reads

Y ε
t,x =

1√
ε

∫ t

0

c
(s
ε
, x+Bs

)
ds =

∫ t

0

W ε(ds, x+Bs),

where

W ε(t, x) :=
1√
ε

∫ t

0

c
(s
ε
, x
)
ds.

We have the

Proposition 6.15. Under assumptions (Hö) and (Hum), as ε→ 0,

W ε → W

in P–law, as random elements of C(IR+ × IR) equipped with the topology of
locally uniform convergence in t and x, where {W (t, x), t ≥ 0, x ∈ IR} is a
centered Gaussian process with covariance function given by

E(W (t, x)W (t′, x′)) = t ∧ t′ ×R(x− x′),

with

R(x) =

∫
IR

Φ(r, x)dr.
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Proof: The convergence of finite dimensional distributions is a direct con-
sequence of the functional Central Limit Theorem for stationary processes
having good enough mixing properties. Namely, according to the state-
ments in [3], Chapter 4, §20, under the assumption (Hum), for any finite
set x1, x2, . . . , xm the family

{W ε(·, x1), . . . ,W ε(·, xm)}

converges in law, as ε→ 0, in the space (C([0, T ]))m, towards am-dimensional
Wiener process with covariance matrix

σij =

∞∫
0

E
(
c(s, xi)c(0, xj)+c(s, xj)c(0, xi)

)
ds =

∞∫
−∞

Φ(s, xi−xj)ds = R(xi−xj).

The desired result will follow if we prove the tightness of {W ε, ε > 0} in
C(IR+ × IR). In order to prove that this family is tight it suffices to show
that there are two numbers ν1 > 0 and ν2 > 2 such that

E|W ε(s1, y1)−W ε(s2, y2)|ν1 ≤ C(|s1 − s2|ν2 + |y1 − y2|ν2)

with a constant C which does not depend on ε.
It follows from Lemma 6.5 that

E

(
ε−1/2

s2∫
s1

c
( t
ε
, y
)
dt

)6

≤ C(s2 − s1)3.

Similarly, by (Hö) and (Hum) one has

E

(
ε−1/2

s∫
0

(
c
( t
ε
, y1

)
− c
( t
ε
, y2

)
dt

)6

= ε3

s/ε∫
0

. . .

s/ε∫
0

E{(c(t1, y1)− c(t1, y2)) . . . (c(t6, y1)− c(t6, y2))}dt1 . . . dt6

≤ Cε3|y1 − y2|6θ

√
6T/ε∫
0

dVT (r)

(1 + r)3+δ
,
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where VT (r) stands for the volume of the set

ST (r) =

{
(t1, . . . , t6) ∈

[
0,
T

ε

]6

: max
1≤i≤6

min
j 6=i
|ti − tj| ≤ r

}
.

Straightforward computations show that

VT (r) ≤ Cr3T
3

ε3
,

This yields

E

(
ε−1/2

s∫
0

(
c
( t
ε
, y1

)
− c
( t
ε
, y2

)
dt

)6

≤ CT 3|y1 − y2|6θ
∞∫

0

r3dr

(1 + r)4+δ

Since θ > 1/3, this implies the desired estimate. �

As we shall see below, the exponent in the Feynman–Kac formula con-
verges towards∫ t

0

W (ds, x+Bs) =

∫ t

0

∫
IR

W (ds, y)L(s, y − x)dy,

where again L(t, z) stands for the local time of the process B at time t and
location z.

Let us note that the left hand–side of the last identity can be defined
without any reference to local time. Recall that W and B are independent,
hence it suffices to define the stochastic integral∫ t

0

W (ds, f(s)), t ≥ 0,

with f ∈ C(IR+).

Proposition 6.16. To any f ∈ C(IR+), we associate the continuous centered
Gaussian process

{Yt :=

∫ t

0

W (ds, f(s)), t ≥ 0}

with the covariance function (t ∧ t′)R(0), which is, for each t > 0, the limit
in probability as n→∞ of the sequence

Y n
t :=

[t2n]∑
k=1

[
W (k2−n, f(k2−n))−W ((k − 1)2−n, f(k2−n))

]
.
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Proof: The fact that {Y n
t , n ≥ 1} is a Cauchy sequence in L2(P ) will follow

from the fact that E(Y n
t Y

m
t ) converges to a finite limit as n and m tend to

infinity. This is indeed the case, since for n > m,

E(Y n
t Y

m
t ) = [t2−n]2n

[t2m]∑
`=1

`2n−m∑
k=(`−1)2n−m

R(f(k2−n)− f(`2−m))

→ tR(0),

as n and m tend to infinity, with n > m. The fact that Yt is Gaussian and
centered follows easily, as well as the formula for the covariance. �

Note that the conditional law of Yt =
∫ t

0
W (ds, x + Bs), given {Bs, 0 ≤

s ≤ t} is the law N(0, tR(0)). It does not depend on the realization of
{Bs, 0 ≤ s ≤ t}, in agreement with Proposition 6.3. However, Yt does
depend on {Bs, 0 ≤ s ≤ t}. This follows in particular from the fact that if
B and B′ are two trajectories of the Brownian motion,

E

[∫ t

0

W (ds,Bs)

∫ t′

0

W (ds,B′s)

]
=

∫ t∧t′

0

R(Bs −B′s)ds.

The uniform integrability here is easy to establish. Indeed, we saw in the
previous section that it is sufficient to prove that the collection of r. v.{

IE exp(2Y ε
t,x), ε > 0

}
is P–tight. Since those are non–negative random variables, a sufficient con-
dition is that

sup
ε>0

EIE exp(2Y ε
t,x) <∞,

and we can very well interchange the order of expectation. Now Lemma 6.6
above, in the case ν = 2, implies that

sup
ε>0

E

(
exp

[
1√
ε

∫ t

0

c
(s
ε
, x+Bs

)
ds

])
≤ C,

where C is a finite constant. This is easily seen by making the following
change of variable :

1√
ε

∫ t

0

c
(s
ε
, x+Bs

)
ds = η

∫ t/η2

0

c(r, x+Bε2r)dr,
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with η =
√
ε.

We can now establish the

Theorem 6.17. Under assumptions (Hö) and (Hum) for each (t, x) ∈ IR+×
IR,

uε(t, x)→ u(t, x) := IE

[
g(Xx

t ) exp

(∫ t

0

∫
IR

W (ds, y)L(s, y − x)dy

)]
in P–law, as ε→ 0.

Proof: Note that

Y ε
t,x =

∫ t

0

∫
IR

W ε(ds, y)L(s, y − x)dy

=

∫
IR

W ε(t, y)L(t, y − x)dy −
∫ t

0

∫
IR

W ε(s, y)L(ds, y − x)dy

Define the functional Ψt,x : [0, t]× IR→ IR as

Ψt,x(ϕ) := IE

[
g(Xx

t ) exp

(∫
IR

ϕ(t, y)L(t, y − x)dy −
∫ t

0

∫
IR

ϕ(s, y)L(ds, y − x)dy

)]
.

All we have to show is that

uε(t, x) = Ψt,x(W
ε)→ Ψt,x(W )

in P–law, which follows from Proposition 6.15 and uniform integrability, since
Ψt,x is continuous. �

The corresponding limiting SPDE reads (in Stratonovich form) du(t, x) =
1

2

∂2u

∂x2
(t, x)dt+ u(t, x) ◦W (dt, x), t ≥ 0, x ∈ IR;

u(0, x) = g(x), x ∈ IR.

We can rewrite this SPDE in Itô form as follows du(t, x) =
1

2

∂2u

∂x2
(t, x)dt+

1

2
u(t, x)R(0)dt+ u(t, x)W (dt, x), t ≥ 0, x ∈ IR;

u(0, x) = g(x), x ∈ IR.
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Let us finally improve the convergence result stated in Theorem 6.17. First
of all, it is not hard to show that this result can be extended to the proof
of the convergence of the finite dimensional distributions of uε towards those
of u. In other words, for all n ≥ 1, all (t1, x1), . . . (tn, xn) ∈ IR+ × IR,
(uε(t1, x1), . . . , uε(tn, xn)) converges weakly to (u(t1, x1), . . . , u(tn, xn)) as ε→
0. Finally tightness in C(IR+× IR) of the collection of random fields{uε, ε >
0} in easier to prove than in the above sub–sections. Indeed, an imme-
diate adaptation of the proof of Proposition 6.15 yields that the collec-
tion {Y t,x

ε , t ≥ 0, x ∈ IR}ε>0, defined on the product probability space
(Ω×S,F ⊗A, IP×P ), is tight in C(IR+× IR). This, combined with the uni-
form integrability of exp(Y t,x

ε ) and the continuity of g, implies the tightness
of uε. We have proved

Theorem 6.18. Under assumptions (Hö) and (Hum), as ε→ 0,

uε(t, x)→ u(t, x) := IE

[
g(Xx

t ) exp

(∫ t

0

∫
IR

W (ds, y)L(s, y − x)dy

)]
in P–law in C(IR+ × IR) equipped with the topology of locally uniform con-
vergence in t and x.
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