
QUENCHED LARGE DEVIATIONS FOR ONE DIMENSIONAL
NONLINEAR FILTERING∗
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Abstract. Consider the standard, one dimensional, nonlinear filtering problem for diffusion
processes observed in small additive white noise: dXt = b(Xt)dt + dBt, dY ε

t = γ(Xt)dt + εdVt,
where B·, V· are standard independent Brownian motions. Denote by qε1(·) the density of the law
of Ξ1 conditioned on σ(Y ε

t : 0 ≤ t ≤ 1). We provide “quenched” large deviation estimates for the
random family of measures qε1(x)dx: there exists a continuous, explicit mapping J̄ : R

2 → R such
that for almost all B·, V·, J̄ (·, X1) is a good rate function, and for any measurable G ⊂ R,

− inf
x∈Go

J̄ (x,X1) ≤ lim inf
ε→0

ε log

∫
G

qε1(x)dx ≤ lim sup
ε→0

ε log

∫
G

qε1(x)dx ≤ − inf
x∈Ḡ

J̄ (x,X1).
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1. Introduction and statement of results. Consider the following one di-
mensional filtering problem, where the signal process X· and the observation process
Y ε
· , parametrized by a “small noise intensity” ε, are

dXt = b(Xt)dt + dBt, X0 ∼ p0(·),
dY ε

t = h(Xt)dt + εdVt.(1.1)

Here, B·, V· are independent standard one dimensional Brownian motions, and the
functions b, h, p0 satisfy the following assumptions:1

(A-1) b, h, b′, h′ are Lipschitz functions,
(A-2) h′(·) ≥ h0 > 0,
(A-3) | log p0(x) − log p0(y)| ≤ c(1 + |x| + |y|)|x− y|, x, y ∈ R, and

p0 is uniformly bounded.

For technical reasons, we need to impose the following additional restriction:

(A-4) h′b, h′h, h′′, hb are Lipschitz functions and lim|x|→∞ h′′(x) = 0.

(A-4) implies that, outside large compacts, the observation function h is essentially
linear. Let Ω1 = Ω2 = C([0, 1]; R), Ω = Ω1 × Ω2, Fi be the Borel σ-algebra on Ωi,
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1Due to the one dimensional nature of our model, no generality is lost in assuming the diffusion
coefficient of the signal process to be one. Indeed, if the signal process satisfies dΞt = β(Ξt)dt +
σ(Ξt)dBt, with σ uniformly bounded away from zero, then the transformation Xt = Ḡ(Ξt), with

Ḡ(x) =
∫ x

0
(1/σ)(u)du, allows one to rewrite the problem in the form (1.1).
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QUENCHED LARGE DEVIATIONS FOR FILTERING 1273

i = 1, 2, and F be the Borel σ-algebra on Ω; let P1, P2 denote the Wiener measure on
Ω1,Ω2, and P = P1 ⊗ P2. We define Bt(ω) = ω1(t), Vt(ω) = ω2(t), 0 ≤ t ≤ 1. The
pair (B, V ) is then distributed according to P . The solution (X,Y ε) of the SDE (1.1)
is then an F-measurable, C([0, 1]; R2)-valued, random variable.

Let µε
t (·) denote the conditional law of Xt conditioned on Yε

t = σ{Y ε
s , 0 ≤ s ≤ t},

which we consider as an F-measurable map from Ω to M1(R), the space of probability
measures on R. Note that µε

t is in fact measurable with respect to the ε-dependent
σ-algebra Yε

t ⊂ F .
It is known that µε

t is absolutely continuous, with µε
t (dx) = qεt (x)dx, and that

as ε → 0, the conditional law µε
1(dx) = qε1(x)dx of X1, given Yε

1 , converges to the
Dirac measure δX1

. (All these facts can be found, e.g., in [7].) In particular, X1 is
measurable with respect to the limiting σ-algebra Y0

1 , since h is one-to-one. It is known
from the results of Picard [7] that the conditional law µε

1 has a variance of order ε and
can be well approximated by a Gaussian law, which is given by an extended Kalman
filter.

Our goal in this paper is to establish a large deviations result in the following
sense. Let G be a measurable subset of R. By the above remarks, we know that
on the event {X1 �∈ G}, µε

1(G) → 0, P -almost surely. It turns out that it goes to
zero at exponential speed, i.e., roughly like exp[−c1(G)/ε]. What is the value of
c1(G) = − lim ε logµε

1(G) (if this limit exists), the “rate function” that tells us at
which speed the quantity P (X1 ∈ G | Yε

1) goes to zero, whenever X1 �∈ G? Clearly
c1(G) must depend on X1 (at least intuitively through its distance to G), and we shall
see that this is indeed the case. There is no surprise in the fact that c1(·) is random,
since it tells us at which exponential speed the random measures µε

1 converge to the
random measure µ0

1 = δX1 . Our results show that c1 does not depend on anything
else, in the sense that, conditionally on σ(X1), it is P -almost surely constant.

We call our result “quenched” (borrowing that terminology from the theory of
random media), meaning that the randomness of the observation process is frozen.
One could also discuss a “semiquenched” large deviations statement by computing
the P1-almost sure limit (if it exists) of

ε log

∫ ∫
G

qε1(x + X1)dxdP2,

while an “annealed” large deviations result would describe the asymptotic behavior
of

ε logE

∫
G

qε1(x + X1)dx.

Finally, one could also consider large deviations questions at the level of the con-
ditional measure itself, for example questions concerning the rate of decay of prob-
abilities of the form P (qε1(x)dx ∈ A), with A a measurable subset of the space of
probability measures on R. We hope to study all these elsewhere.

Let us now state our result. Define

J̄ (x,X1) =

∫ x

X1

(h(y) − h(X1))dy.

Our main result is the following theorem. For standard definitions concerning the
large deviation principle (LDP), see [3]. For a set G ⊂ R, we denote by Go its interior
and by Ḡ its closure.
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1274 ÉTIENNE PARDOUX AND OFER ZEITOUNI

Theorem 1.1. Assume (A-1)–(A-4). Then the family of (random) probability
measures qε1(x)dx satisfies a quenched LDP (on the space R equipped with the stan-
dard Euclidean norm) with continuous good rate function J̄ (·, X1). That is, for any
measurable set G ⊂ R,

− inf
x∈Go

J̄ (x,X1) ≤ lim inf
ε→0

ε log

∫
G

qε1(x)dx ≤ lim sup
ε→0

ε log

∫
G

qε1(x)dx

≤ − inf
x∈Ḡ

J̄ (x,X1), P − a.s.(1.2)

In fact, we have the estimate, valid for any fixed compact set K0 ⊂ R,

lim
ε→0

sup
x∈K0

|ε log qε1(x) + J̄ (x,X1)| = 0, P − a.s.(1.3)

(It will be obvious from the proof that the fixed time 1 can be replaced by any
fixed time t ∈ (0,∞); that is, the statement of Theorem 1.1 remains true with qεt and
Xt replacing qε1 and X1.)

Remarks.
1. In the particular case h(x) = x, Theorem 1.1 can be deduced from the results

of [10].
2. The reader could wonder why the statement (1.2) is equivalent to the large

deviations principle on R for P -almost ω, since in (1.2), the null set on which the
statement does not hold true may depend on G. Note, however, that once the in-
equalities in (1.2) hold true for each interval G = (a, b) on a set of full measure Ωa,b,
we can set

Ω′ = ∩a,b∈QΩa,b

and conclude that P (Ω′) = 1 while (1.2) holds true for all ω ∈ Ω′ and all open
intervals G with rational endpoints. Since the latter are a base for the topology on R,
one concludes (see, e.g., [3, Theorem 4.1.11]) that the full LDP holds for each ω ∈ Ω′.

We conclude this introduction with some comments about previous work and
possible applications and extensions of our result. Our motivation for the study of
the large deviations of the optimal filter is their utility in a variety of applications
such as tracking (see [9]) or the study of the filter memory length (see [1]). In the one
dimensional linear observation case studied in [10], precise pointwise estimates can be
derived by comparison with the linear filtering problem, whose (Gaussian) solution is
known explicitly. In contrast, here, the main tool used in the proof of Theorem 1.1
is the representation, due to Picard [7], of the density qε1 in terms of an auxiliary
suboptimal filter, and the availability of good estimates on the performance of this
suboptimal filter. These results are not available in the general multidimensional
case. When they are, e.g., in the setup discussed in [8], we believe our analysis can
be carried through. Hence, while our result is presently limited to one dimension,
we expect that its multidimensional extension to the case where the dimensions of
the state and observation coincide, and the observation function is one-to-one, could
be deduced from the results of [8]. Extension to the case where the dimension of the
observation is smaller than the dimension of the state (which is the most relevant case
for applications) would require completely new additional ideas, since the result would
be of a completely different nature (the limiting measure is no longer necessarily a
Dirac measure, and even when it is, the convergence to the Dirac measure is at
different speeds for different coordinates).
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QUENCHED LARGE DEVIATIONS FOR FILTERING 1275

We finally note that Hijab [4] has derived a (path) quenched large deviations for
the conditional density for systems in which both the signal and the observation noises
are small. This is related, by a time change, to looking at short times (of order εT )
of the filtering equations

dXε
t =

1

ε
b̄(Xε

t )dt + dBt, Xε
0 = x,

dY ε
t = h(Xε

t )dt + εdVt.

(Hijab’s results are not stated in this way, but are equivalent to the description given
here. Note that his setup is more general than ours in that it applies to the multi-
dimensional setup and allows for general regular diffusion coefficients.) Hijab’s results
are not directly comparable with the LDP we derive here because of the different time
interval on which they apply, and also because of the different type of conditioning.
(His statement looks at the conditional density as a continuous functional of the
observation trajectory, and considers the LDP when this trajectory is frozen. It is
thus not directly applicable as a quenched statement.)

We refer the reader to [5] for a general introduction to stochastic calculus and
stochastic differential equations, and to [6] for an exposition of nonlinear filtering
theory.

Convention. Throughout the paper, when relevant, we make explicit on what
parameters constants depend, even if the actual value of the constant may change
from line to line. When nothing explicit is mentioned, i.e., a generic constant C is
used, it is understood that it may depend on the trajectories {X·}, {V·}, but not on
ε. For ∞ > t > 0, we use the notation ||f ||t = sups≤t |f(s)|, with ||f || := ||f ||1/ε.
Finally, we use θt to denote the shift operator, e.g., θtm̃(·) = m̃(t + ·).

2. Picard’s formulation and a path integral. The filtering problem we are
going to analyze is (1.1), and the assumptions (A-1)–(A-4) will be assumed to hold
throughout the paper. We also note that since nothing is changed (in terms of the
filtering problem) by adding a constant to the observation function h, we may and
will assume throughout the paper that h(0) = 0.

It is known from the results of Picard [7] that the conditional law qε1(x)dx has
a small variance, and that there exist finite dimensional filters that provide good
approximations of the unknown state. We shall now recall the formula derived by
Picard [7] for qε1(x), which was used there to study approximate filters. It will be an
essential tool for our large deviation results.

Define the approximate filter

dMε
t = b(Mε

t )dt +
1

ε
(dY ε

t − h(Mε
t )dt),

with Mε
0 = 0, and let m̄s = Mε

1−s and m̃s = m̄εs, s ∈ [0, 1/ε].
One of the main contributions of Picard in [7, Proposition 4.2] was to express the

conditional density qε1(x) in terms of the law of an auxiliary process {X̄x
1−t, 0 ≤ t ≤ 1},

which fluctuates backward in time, starting at time 1 from the position x, around the
trajectory of the approximate filter Mε

· . Performing a time change and a Girsanov
transformation, Picard’s result can be rewritten as follows.2 Define the process

dZ̃ε,x
s =

[
−h(Z̃ε,x

s ) + m̃sh
′(Z̃ε,x

s ) − εb(Z̃ε,x
s )
]
ds +

√
εdW̃s, Z̃ε,x

0 = x,

2For completeness, and since the computations involved are somewhat lengthy, we present the
derivation in an appendix at the end of the paper.
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1276 ÉTIENNE PARDOUX AND OFER ZEITOUNI

with W̃ a standard Brownian motion, independent of B·, V·. Throughout, we let E

and P denote expectations and probabilities with respect to the law of the Brownian
motion W̃·. Then a version of the conditional density of X1, given Yε

1 , is given by

qε1(x) =
ρε1(x)∫

R
ρε1(x)dx

,(2.1)

where

ρε1(x) := e−F (x,m̃0)/εE

[
exp

(
Iε(Z̃

ε,x
1/ε, 0) +

∫ 1/ε

0

g1(Z̃
ε,x
s , m̃s)ds +

1

ε

∫ 1/ε

0

g2(Z̃
ε,x
s , m̃s)ds

)]
,

(2.2)

and

F (z,m) =

∫ z

0

(h(y) − h(m))dy −mh(z) + h(m)z,

Iε(z,m) = log p0(z) +
1

ε
F (z,m),

g1(z,m) = −mh′(z)b(z) +
mh′′(z)

2
+ h(z)b(z) − h′(z)

2
− εb′(z) − h(z)b(m),

g2(z,m) = h(z)h(m) − h2(m)

2
−mh(z)h′(z) +

m2h′(z)2

2
.

Note that assumptions (A-1)–(A-4) ensure that, for each given m, g1(·,m), g2(·,m)
are Lipschitz functions with Lipschitz constant uniformly bounded for m in compacts.

It is important to note that, above and throughout the paper, expressions of the
form E(·) may still be random, due to their possible dependence on B·, V·. Thus, any
equality between such expressions is to be understood in an almost sure sense. We
will not explicitly mention this in what follows.

Equipped with (2.2), one is tempted to apply standard tools of large deviations
theory, viz. the large deviations principle for Z̃ε,x

· and Varadhan’s lemma, to the
analysis of the exponential rate of decay of the P expectation in (2.2). This temptation
is quenched when one realizes that, in fact, the rate of growth of ρε1 is exponential
in 1/ε2, and it is only after normalization that one can hope to obtain the relevant
1/ε asymptotics. This fact, unfortunately, makes the analysis slightly more subtle.
In the next section, we present several lemmas, whose proof is deferred to section 4,
and show how to deduce Theorem 1.1 from these lemmas. Before closing this section,
however, we state the following easy a priori estimates. Recall that, according to our
convention, ||X||1 = sups≤1 |Xs|.

Lemma 2.1. ||X||1 < ∞, P -almost surely,

|||m̃||| := lim sup
ε→0

sup
t∈[0,1/ε]

|m̃t| < ∞, P − a.s.,

and for Tε = log(1/ε), |||m̃X ||| := sups∈[0,Tε] |m̃s −X1|,

lim sup
ε→0

|||m̃X ||| = 0, P − a.s.(2.3)

Further, there exists a constant CV,X depending only on {X·, V·} such that

sup
s∈[0,Tε]

|m̃s −X1| ≤ CV,X/
√
Tε, P − a.s.
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QUENCHED LARGE DEVIATIONS FOR FILTERING 1277

Proof of Lemma 2.1. The statement that ||X||1 < ∞ is part of the statement
concerning existence of solutions to the SDE (1.1). Next, we prove that

lim sup
ε→0

sup
t≤1

|Mε
t | < ∞.(2.4)

Indeed, fix constants C = C(||X||1) and ε0 such that h(y)− h(x) + supε≤ε0 εb(x) < 0
for all x ≥ C and |y| ≤ ||X||1 (this is always possible because b, h are Lipschitz and
h′ > h0). Define the stopping times τ0 = 0, θ0 = 0 and

τi = inf{t > θi−1 : Mε
t = C}, θi = inf{t > τi : Mε

t = C + 1}.

By definition, Mε
t ≤ C + 1 for t ∈ [τi, θi], while for t ∈ [θi, τi+1] it holds that for all

ε < ε0,

Mε
t = Mε

θi +

∫ t

θi

[
b(Mε

s ) +
1

ε
(h(Xs) − h(Mε

s ))

]
ds + Vt − Vθi ≤ C + 1 + 2||V ||1.

We conclude that supt≤1 M
ε
t ≤ C+1+2||V ||1 < ∞ for all ε < ε0. A similar argument

shows that inft≤1 M
ε
t ≥ −(C + 1 + 2‖V ‖1).

To see the stated convergence of m̃s to X1, recall that Xt and Vt are almost surely
Hölder(η) continuous for all η < 1/2. Fix t0 = 1 − 2εTε, t1 = 1 − εTε, δε = 1/

√
Tε,

and write Yt = Mε
t −X1. With these notations,

Yt = Yt0 +

∫ t

t0

[
b(Mε

s ) +
h(Xs) − h(X1)

ε

]
ds +

1

ε

∫ t

t0

(h(X1) − h(Mε
s ))ds + (Vt − Vt0).

By the first part of the lemma, it holds that |Yt0 | ≤ C. We first show that for some
τ ∈ (t0, t1) it holds that |Yτ | ≤ δε. Indeed, assume without loss of generality that
Yt0 > δε. Then, by the Hölder property of X· and V·, it holds that

sup
t∈(t0,t1)

|Vt − Vt0 | ≤ C(εTε)
η, sup

t∈(t0,t1)

|Xt −Xt0 | ≤ C(εTε)
η.

Hence, if a τ as defined above does not exist, then necessarily, using the Lipschitz
continuity of h,

−C ≤ C1εTε

(
1 +

(εTε)
η

ε

)
− h0δεTε + C1(εTε)

η,

which is clearly impossible unless ε ≥ ε0 for some ε0 > 0. Now, for τ < t ≤ 1 we
claim that it is impossible that Yt > 2δε. Indeed, let θ′ = inf{τ < t ≤ 1 : Yt = 2δε}.
Repeating the argument above, we now obtain that if such a θ′ exists, it must hold
that for some θ < 2εTε,

δε ≤ C1θ + C1
θη+1

ε
+ C1θ

η − h0δεθ

ε
,

which again is impossible, unless ε ≥ ε′0, for some ε′0 > 0. The case of Yt < −2δε for
some t > t0 being handled similarly, the conclusion follows.
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1278 ÉTIENNE PARDOUX AND OFER ZEITOUNI

3. Auxiliary lemmas and proof of Theorem 1.1. Let us set Jε(x) :=
ρε1(x)eF (x,m̃0)/ε and

L̄ε(x, t) = exp

(∫ t

0

(
g1(Z̃

ε,x
s , m̃s) +

1

ε
g2(Z̃

ε,x
s , m̃s)

)
ds

)
(3.1)

and

Lε(x, t) = exp(Iε(Z̃
ε,x
t , 0))L̄ε(x, t).(3.2)

Although both L̄ε(x, t) and Lε(x, t) depend on the path m̃·, we omit this dependence
when no confusion occurs, while Lε(x, t,m·) will denote the quantity Lε(x, t) with m̃·
replaced by m·, and similarly for L̄ε.

The following are the auxiliary lemmas alluded to above. The proof of the first,
Lemma 3.1, is standard, combining large deviations estimates for solutions of SDEs
(see, e.g., [2, Theorem 2.13, p. 91]) with Varadhan’s lemma (see, e.g., [3, Theo-
rem 4.3.1, p. 137]), and is omitted.

Lemma 3.1 (finite horizon LDP). Fix T < ∞ and a compact K ⊂⊂ R. Define

IT (x, z) := sup
φ∈H1:φ0=x,φT =z

∫ T

0

g2(φs, X1)ds−
1

2

∫ T

0

[
φ̇s + h(φs) −X1h

′(φs)
]2

ds.

Then, uniformly in x, z ∈ K, P -almost surely,

lim sup
δ→0

lim sup
ε→0

∣∣∣ε log E

[
L̄ε(x, T )1{|Z̃ε,x

T
−z|<δ}

]
− IT (x, z)

∣∣∣ = 0.

It is worth noting the following simpler representation of IT (x, z):

IT (x, z) = sup
φ∈H1:φ0=x,φT =z

[
X1(h(z) − h(x)) − h(X1)(z − x)

− 1

2

∫ T

0

[
φ̇s − (h(X1) − h(φs))

]2
ds

]
.(3.3)

From this representation, the following is immediate:

IT (X1, X1) = 0,(3.4)

and, with VT (x) := IT (x,X1), it holds that

VT (x) →T→∞ −X1h(x) + h(X1)x.(3.5)

This, and standard large deviations considerations, give the next result.
Corollary 3.2. Fix a compact set K ⊂⊂ R. Then uniformly in x, z ∈ K,

P -almost surely,

lim sup
T→∞

lim sup
δ→0

lim sup
ε→0

∣∣∣ε log E

[
L̄ε(x, T )1{|Z̃ε,x

T
−z|<δ/2}1{|Z̃ε,x

T/2
−X1|<δ/2}

]
− h(X1)x + h(x)X1 − IT/2(X1, z)

∣∣∣
= lim sup

T→∞
lim sup

δ→0
lim sup

ε→0

∣∣∣ε log E

[
L̄ε(x, T )1{|Z̃ε,x

T
−z|<δ/2}1{|Z̃ε,x

T/2
−X1|<δ/2}

]
− IT (x, z)

∣∣∣
= lim sup

T→∞
lim sup

δ→0
lim sup

ε→0

∣∣∣ε log E

[
L̄ε(x, T )1{|Z̃ε,x

T
−z|<δ/2}

]
− IT (x, z)

∣∣∣ = 0.
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QUENCHED LARGE DEVIATIONS FOR FILTERING 1279

The key to the proof of Theorem 1.1 is a localization procedure that allows one
to restrict attention to compact (in time and space) subsets. A first coarse step in
that direction is provided by the next two lemmas.

Lemma 3.3 (coarse localization 1). For each η > 0 there exist constants M1 =
M1(|||m̃|||, η, |X1|) and ε00 = ε00(|||m̃|||, η, |X1|) such that, for all ε < ε00,∫

ρε1(x)1{|x|>M1/
√
ε}dx ≤ e−η/ε inf

|x|<1
ρε1(x) ≤ e−η/ε

∫
ρε1(x)1{|x|≤M1/

√
ε}dx,

P − a.s.(3.6)

Lemma 3.4 (coarse localization 2). For each η > 0 and M1, ε00 as in Lemma 3.3,
there exist constants Mi = Mi(|||m̃|||, η, |X1|), i = 2, 3, with M3 ≤ M2 and ε0 =
ε0(|||m̃|||, η, |X1|) < ε00, such that for all ε < ε0, uniformly in |x| ≤ M1/

√
ε,

Jε(x) ≤ 2E

[
Lε

(
x,

1

ε

)
1{||Z̃ε,x||≤M3/ε}

]
,(3.7)

and uniformly in |z| ≤ M3/ε, T < 1/ε,

E

[
Lε

(
z,

1

ε
− T, θT m̃

)]
≤ 2E

[
Lε

(
z,

1

ε
− T, θT m̃

)
1{||Z̃ε,z||1/ε−T≤M2/ε}

]
.(3.8)

The following comparison lemma is also needed.
Lemma 3.5. There exists a function g : R+ 
→ R+, depending on |||m̃|||, |X1|, η

only, with g(δ) →δ→0 0, and an ε1 = ε1(|||m̃|||, X1, η) < ε0 such that for all ε < ε1,
t ∈ [1/2ε, 1/ε], and |x|, |y| ≤ M3/ε, |x− y| < δ,

ε log

(
E(Lε(x, t, θ

1/ε−tm̃)1{||Z̃ε,x||t≤M2/ε})

E(Lε(y, t, θ1/ε−tm̃)1{||Z̃ε,y||t≤M2/ε})

)
≤ g(δ),(3.9)

and there exists a constant C1(|||m̃|||, X1, η) such that, for all ε < ε1,

sup
t∈[1/2ε,1/ε]

ε

∣∣∣∣∣∣log

⎛⎝ E

[
Lε(x, t, θ

1/ε−tm̃)1{||Z̃ε,x||t≤M2/ε}

]
E

[
Lε(X1, t, θ1/ε−tm̃)1{||Z̃ε,X1 ||t≤M2/ε}

]
⎞⎠∣∣∣∣∣∣ ≤ C1(1 + |x|).(3.10)

The last step needed in order to carry out the localization procedure is the fol-
lowing.

Lemma 3.6 (localization). Fix a sequence Tε as in Lemma 2.1. Then there
exist constants Ci = Ci(|||m̃|||,M1,M2,M3, X1) > 0, i ≥ 2, and ε2 = ε2(|||m̃|||,
M1,M2,M3, X1) < ε1 such that, for all ε < ε2, |x| ≤ M1/

√
ε, |z| ≤ M3/ε, δ < 1, and

1 ≤ T ≤ Tε,

E

[
L̄ε(x, T )1{|Z̃ε,x

T
−z|<δ}1{||Z̃ε,x||T≤M3/ε}

]
≤ exp

(
C2

ε
−

C3(|z| − |x|)2+
ε

+
C4(|x| + |z|)

ε

)
,(3.11)

and, uniformly for |z −X1| < 1, |x−X1| < 1,

E

[
L̄ε(x, T )1{|Z̃ε,x

T
−z|<δ}1{||Z̃ε,x||T≤M3/ε}

]
≥ exp

(
−C2

ε

)
.(3.12)
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1280 ÉTIENNE PARDOUX AND OFER ZEITOUNI

We may now proceed to the proof of Theorem 1.1, as a consequence of the above
lemmas. Fix an η > 0 as in Lemma 3.3, and for δ > 0, T > 0 to be chosen below,
with T < Tε, Tε as in Lemma 2.1, define

J̃ε(x) = E

(
Lε

(
x,

1

ε

)
1{||Z̃ε,x||T≤M3/ε,||Z̃ε,x||≤M2/ε}

)

=

M3/εδ∑
i=−M3/εδ

E

(
Lε

(
x,

1

ε

)
1{||Z̃ε,x||≤M2/ε,||Z̃ε,x||T≤M3/ε,|Z̃ε,x

T
−iδ|≤δ/2}

)

=:

M3/εδ∑
i=−M3/εδ

J̃ε,T (x, iδ).(3.13)

Set Zε,x
T = σ(Z̃ε,x

t , t ≤ T ). Using the Markov property, and the fact that M3 < M2,
one may write, for |z| < M3/ε,

J̃ε,T (x, z) = E

[
L̄ε(x, T )1{|Z̃ε,x

T
−z|≤δ/2}1{||Z̃ε,x||T≤M3/ε}

·E
(
Lε

(
Z̃ε,x
T ,

1

ε
− T, θT m̃

)
1{||Z̃ε,x||≤M2/ε} | Z

ε,x
T

)]
.(3.14)

Applying (3.9) and the Markov property, it follows that on the event {|Z̃ε,x
T − z| ≤

δ/2} ∩ {||Z̃ε,x||T ≤ M3/ε}, one has for ε < ε1, and |x| ≤ M1/
√
ε, |z| ≤ M3/ε,

E

(
Lε

(
Z̃ε,x
T ,

1

ε
− T, θT m̃

)
1{||Z̃ε,x||≤M2/ε} | Z

ε,x
T

)
= E

(
Lε

(
Z̃ε,x
T ,

1

ε
− T, θT m̃

)
1{supT≤t≤1/ε |Z̃ε,x

t |≤M2/ε} | Z
ε,x
T

)
≤ eg(δ)/εE

(
Lε

(
z,

1

ε
− T, θT m̃

)
1{sup0≤1/ε−T |Z̃ε,z

t |≤M2/ε}

)
= eg(δ)/εE

(
Lε

(
z,

1

ε
− T, θT m̃

)
1{||Z̃ε,z||1/ε−T≤M2/ε}

)
.

Substituting in (3.14), one concludes that for all ε < ε1 and |x| ≤ M1/
√
ε, |z| ≤ M3/ε,

J̃ε,T (x, z)e−g(δ)/ε ≤ E

[
L̄ε(x, T )1{|Z̃ε,x

T
−z|≤δ/2}1{||Z̃ε,x||T≤M3/ε}

]
(3.15)

· E

[
Lε

(
z,

1

ε
− T, θT m̃

)
1{||Z̃ε,z||1/ε−T≤M2/ε}

]
:= Ĵε,T (x, z) ≤ J̃ε,T (x, z)eg(δ)/ε.

Next, using (3.10) in the first inequality and Lemma 3.6 in the second, it follows that
for all ε < ε2; T ∈ (1, Tε), Tε as in Lemma 2.1; and some constants Ci independent
of T , ε,
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QUENCHED LARGE DEVIATIONS FOR FILTERING 1281

Ĵε,T (x, z) ≤ E

[
L̄ε(x, T )1{|Z̃ε,x

T
−z|≤δ/2}1{||Z̃ε,x||T≤M3/ε}

]
· E

[
Lε

(
X1,

1

ε
− T, θT m̃

)
1{||Z̃ε,X1 ||1/ε−T≤M2/ε}

]
eC1(|z|+1)/ε

≤ exp

(
C2

ε
−

C3(|z| − |x|)2+
ε

+
C5(|x| + |z|)

ε

)
· E

[
Lε

(
X1,

1

ε
− T, θT m̃

)
1{||Z̃ε,X1 ||1/ε−T≤M2/ε}

]
.(3.16)

Similarly, for all ε < ε2 and |x−X1| ≤ 1, |z −X1| ≤ 1,

Ĵε,T (x, z) ≥ exp

(
−C2

ε

)
E

[
Lε

(
X1,

1

ε
− T, θT m̃

)
1{||Z̃ε,X1 ||1/ε−T≤M2/ε}

]
.(3.17)

We next note that, due to the quadratic growth of F (x,X1) as |x| → ∞, there exists
a compact set K1, depending on |||m|||, X1, η, Ci only, such that

sup
(x,z)∈(K1×K1)c

C2

ε
−

C3(|z| − |x|)2+
ε

+
C5(|x| + |z|)

ε
− F (x,X1)

ε

≤ −F (X1, X1)

ε
− C2

ε
.(3.18)

Thus, using (3.16) in the first inequality, (3.18) in the second, and (3.17) in the third,

sup
|x|≤M1/

√
ε,|z|≤M3/ε,

(x,z)∈(K1×K1)c

Ĵε,T (x, z)e−F (x,X1)/ε

≤ E

[
Lε

(
X1,

1

ε
− T, θT m̃

)
1{||Z̃ε,X1 ||1/ε−T≤M2/ε}

]
· sup

|x|≤M1/
√

ε,|z|≤M3/ε,

(x,z)∈(K1×K1)c

exp

(
C2

ε
−

C3(|z| − |x|)2+
ε

+
C5(|x| + |z|)

ε
− F (x,X1)

ε

)

≤ E

[
Lε

(
X1,

1

ε
− T, θT m̃

)
1{||Z̃ε,X1 ||1/ε−T≤M2/ε}

]
exp

(
−C2

ε
− F (X1, X1)

ε

)
≤ Ĵε,T (X1, X1)e

−F (X1,X1)/ε.(3.19)

It follows by substituting (3.19) into (3.15) that for all ε small enough and any T ∈
(0, Tε),

sup
|x|≤M1/

√
ε,|z|≤M3/ε

J̃ε,T (x, z)e−F (x,X1)/ε ≤ e2g(δ)/ε sup
x∈K1,z∈K1

J̃ε,T (x, z)e−F (x,X1)/ε.

(3.20)

We may, by enlarging K1 if necessary, assume also that [−1, 1] ⊂ K1. With η and
K1 as above, next choose T large enough, δ small enough (with g(δ) < η/8), and
ε3(δ, T, η, |||m̃|||, |||m̃X |||, X1) < ε2 such that, for all ε < ε3, the following hold:

• The errors in the expression in Corollary 3.2 and in (3.5) are each bounded
above by η/8, uniformly in x, z ∈ K1.

• |F (x, m̃0) − F (x,X1)| ≤ η/8, uniformly in x ∈ K1 (which is possible by
Lemma 2.1 and the uniform continuity of F (x, ·) for x in compacts).
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1282 ÉTIENNE PARDOUX AND OFER ZEITOUNI

• ε log 2 ≤ η/8.
• ε log(2M3/εδ) ≤ η/8.

Hence, for x ∈ K1 and all ε < ε3,

ε log ρε1(x) = −F (x, m̃0) + ε log E

(
Lε

(
x,

1

ε

))
by (2.2)

≤ −F (x, m̃0) + ε log E

(
Lε

(
x,

1

ε

)
1{||Z̃ε,x||≤M3/ε}

)
+ ε log 2 by (3.7)

≤ −F (x,X1) + ε log E

(
Lε

(
x,

1

ε

)
1{||Z̃ε,x||≤M3/ε}

)
+

η

4
by ε < ε3

≤ −F (x,X1) + ε log J̃ε(x) +
η

4
by (3.13)

≤ −F (x,X1) + ε log sup
z∈K1

J̃ε,T (x, z) +
η

2
by (3.13) and (3.20)

≤ −F (x,X1) + sup
z∈K1

[
ε log E(L̄ε(x, T )1{|Z̃ε,x

T
−z|≤δ/2})

+ ε log E

(
Lε

(
z,

1

ε
− T, θT m̃

)
1{||Z̃ε,z||1/ε−T≤M2/ε}

)]
+

5η

8
by (3.15)

≤ −F (x,X1) + sup
z∈K1

[
h(X1)x− h(x)X1 + IT/2(X1, z)

+ ε log E

(
Lε

(
z,

1

ε
− T, θT m̃

)
1{||Z̃ε,z||1/ε−T≤M2/ε}

)]
+

7η

8
by Corollary 3.2

≤ h(X1)x− h(x)X1 − F (x,X1) + η

+ sup
z∈K1

[
IT/2(X1, z) + ε log E

(
Lε

(
z,

1

ε
− T, θT m̃

))]
=: −J̄ (x,X1) + η + Cε,(3.21)

where Cε depends only on ε, and not on x, and is defined by the last equality. Similarly,
for all x ∈ K1 and all ε < ε3,

ε log ρε1(x) = −F (x, m̃0) + ε log E

(
Lε

(
x,

1

ε

))
by (2.2)

≥ −F (x, m̃0) + ε log E

(
Lε

(
x,

1

ε

)
1{||Z̃ε,x||T≤M3/ε,||Z̃ε,x||≤M2/ε}

)
≥ −F (x,X1) + ε log E

(
Lε

(
x,

1

ε

)
1{||Z̃ε,x||T≤M3/ε,||Z̃ε,x||≤M2/ε}

)
− η

4
by ε < ε3

= −F (x,X1) + ε log J̃ε(x) − η

4
by definition

≥ −F (x,X1) + ε log sup
z∈K1

J̃ε,T (x, z) − η

4
by definition
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QUENCHED LARGE DEVIATIONS FOR FILTERING 1283

≥ −F (x,X1) + sup
z∈K1

[
ε log E(L̄ε(x, T )1{|Z̃ε,x

T
−z|≤δ/2})

+ ε log E

(
Lε

(
z,

1

ε
− T, θT m̃

)
1{||Z̃ε,z||1/ε−T≤M2/ε}

)]
− 5η

8
by (3.15)

≥ −F (x,X1) + sup
z∈K1

[
h(X1)x− h(x)X1 + IT/2(X1, z)

+ ε log E

(
Lε

(
z,

1

ε
− T, θT m̃

)
1{||Z̃ε,z||1/ε−T≤M2/ε}

)]
− 7η

8
by Corollary(3.2)

≥ h(X1)x− h(x)X1 − F (x,X1) − η

+ sup
z∈K1

[
IT/2(X1, z) + ε log E

(
Lε

(
z,

1

ε
− T, θT m̃

))]
= −J̄ (x,X1) − η + Cε,(3.22)

where Cε is the same as in (3.21). Since J̄ (·, X1) is continuous and J̄ (X1, X1) = 0, it
follows from (3.22) that

lim inf
ε→0

ε log

∫
R

ρε1(x)dx− Cε ≥ −2η.(3.23)

On the other hand, for ε < ε3,

ε log

∫
R

ρε1(x)dx ≤ ε log(1 + e−η/ε) + ε log

∫
|x|≤M1/

√
ε

ρε1(x)dx by Lemma 3.3

≤ ε log(1 + e−η/ε) + ε log 2 + ε log

(
2M3

εδ

)
+ sup

|x|≤M1/
√
ε,|z|≤M3/ε

ε log
(
J̃ε,T (x, z)e−F (x,X1)/ε

)
by Lemma 3.4 and (3.13)

≤ 5η

8
+ sup

x,z∈K1

ε log
(
J̃ε,T (x, z)e−F (x,X1)/ε

)
by (3.20)

≤ 5η

8
+ ε log

(
sup
x∈K1

ρε1(x)

)
≤ 2η + Cε − inf

x
J̄ (x,X1) = 2η + Cε(3.24)

by (3.21) and J̄ (x,X1) ≥ 0.

Consider now an open ball B(x0, r) ⊂ R. Then, using (3.24) in the first inequality
and (3.22) in the last,

lim inf
ε→0

ε log

∫
B(x0,r)

qε1(x)dx = lim inf
ε→0

[
ε log

∫
B(x0,r)

ρε1(x)dx− ε log

∫
R

ρε1(x)dx

]

≥ lim inf
ε→0

[
ε log

∫
B(x0,r)

ρε1(x)dx− Cε − 2η

]
≥ −J̄ (x0, X1) − 3η.
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1284 ÉTIENNE PARDOUX AND OFER ZEITOUNI

Since η is arbitrary, one deduces that

lim inf
ε→0

ε log

∫
B(x0,r)

qε1(x)dx ≥ −J̄ (x0, X1).(3.25)

To see the complementary upper bound for the ball B(x0, r), enlarge K1 if neces-
sary so that B(x0, r) ⊂ K1 (decreasing ε3 above as a byproduct). Then, using (3.23)
in the first inequality and (3.21) in the last,

lim sup
ε→0

ε log

∫
B(x0,r)

qε1(x)dx = lim sup
ε→0

[
ε log

∫
B(x0,r)

ρε1(x)dx− ε log

∫
R

ρε1(x)dx

]

≤ lim sup
ε→0

[
ε log

∫
B(x0,r)

ρε1(x)dx− Cε + 2η

]
≤ − sup

x∈B(x0,r)

J̄ (x,X1) + 3η + lim sup
ε→0

ε log(2r).

Since η is arbitrary, the above, (3.25), and the continuity of J̄ (·, X1) imply that

lim
r→0

lim sup
ε→0

ε log

∫
B(x0,r)

qε1(x)dx = lim
r→0

lim inf
ε→0

ε log

∫
B(x0,r)

qε1(x)dx = J̄ (x0, X1).

Next, [3, Theorem 4.1.11], the above, Remark 2 following Theorem 1.1, and the
continuity of J̄ (·, X1) imply that the weak LDP holds for the sequence of (random)
measures µε

1(dx) = qε1(x)dx on R. To prove the full large deviations principle, it
remains, by [3, Lemma 1.2.8], to prove the exponential tightness of the sequence µε

1.
That is, for each given L we must find a constant CL such that

lim sup
ε→0

ε log

∫
[−L,L]c

qε1(x)ds < −L.(3.26)

Since the proof of (3.26) uses some estimates from the proof of Lemma 3.3, to avoid
repetitions we postpone it to the end of section 4.

Finally, we note that (1.3) is an immediate consequence of the estimates (3.21),
(3.22), (3.24), and (3.23).

4. Proofs of auxiliary lemmas. Throughout this section, C denotes a positive
constant that depends on |||m̃|||, |||m̃X |||, CV,X , X only, and whose value may change
from line to line.

Proof of Lemma 3.3. The right-hand inequality is a trivial consequence of the
left-hand one. To prove the latter, we first need an upper bound for the left-hand side
of (3.6). A subsequent, easily derived lower bound on the middle term will conclude
the proof. Define the function

H(x) =

∫ x

0

h(y)dy.(4.1)

We note that

Iε(Z̃
ε,x
1/ε, 0) − F (x, m̃0)

ε
=

1

ε

(
H(Z̃ε,x

1/ε) −H(x)
)

+ log p0(Z̃
ε,x
1/ε) +

m̃0h(x)

ε
.
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QUENCHED LARGE DEVIATIONS FOR FILTERING 1285

We first rewrite the Z̃ε,x
t equation as

Z̃ε,x
t = x +

∫ t

0

[−h(Z̃ε,x
s ) + g(s, Z̃ε,x

s )]ds +
√
εW̃t,

and next deduce from Itô’s formula that

H(Z̃ε,x
1/ε) −H(x)

=

∫ 1/ε

0

[
− h2(Z̃ε,x

s ) + (hg)(s, Z̃ε,x
s ) +

ε

2
h′(Z̃ε,x

s )

]
ds +

√
ε

∫ 1/ε

0

h(Z̃ε,x
s )dW̃s.

It now follows from (2.2) and the (uniform in m in compacts) linear growth of g1(z,m)
and g2(z,m) in z that for some C (depending on |||m̃||| and X only) and all ε ≤ 1,
δ > 0,

ρε1(x) ≤ exp

[
C

ε2
+

m̃0h(x)

ε

](
E

[
p0(Z̃

ε,x
1/ε)
] 1+δ

δ

) δ
1+δ

×
(

E exp

[
1 + δ√

ε

∫ 1/ε

0

h(Z̃ε,x
s )dW̃s −

1 + δ

ε

∫ 1/ε

0

h2(Z̃ε,x
s )ds +

C

ε

∫ 1/ε

0

|Z̃ε,x
s |ds

]) 1
1+δ

.

Now, provided δ < 1, we have 1 + δ > (1+δ)2

2 , and thus there exists a p > 1 and a
p′ > 0 such that

1 + δ =
p(1 + δ)2

2
+ p′.

Thus, with q = p/(p− 1),(
E exp

[
1 + δ√

ε

∫ 1/ε

0

h(Z̃ε,x
s )dW̃s −

(1 + δ)2p

2ε

∫ 1/ε

0

h2(Z̃ε,x
s )ds

− p′

ε

∫ 1/ε

0

h2(Z̃ε,x
s )ds +

C

ε

∫ 1/ε

0

|Z̃ε,x
s |ds

]) 1
1+δ

≤
(

E exp

[
p(1 + δ)√

ε

∫ 1/ε

0

h(Z̃ε,x
s )dW̃s −

(1 + δ)2p2

2ε

∫ 1/ε

0

h2(Z̃ε,x
s )ds

]) 1
p(1+δ)

×
(

E exp

[
−p′q

2ε

∫ 1/ε

0

h2(Z̃ε,x
s )ds +

Cq

ε

∫ 1/ε

0

|Z̃ε,x
s |ds

]) 1
q(1+δ)

=

(
E exp

[
−p′q

2ε

∫ 1/ε

0

h2(Z̃ε,x
s )ds +

Cq

ε

∫ 1/ε

0

|Z̃ε,x
s |ds

]) 1
q(1+δ)

.

Since h(z)2 ≥ h2
0z

2 (recall that h(0) = 0!), there exist C(δ) > 0, C1(δ) such that
p′qh(z)2/2 − Cq|z| ≥ C(δ)z2 − C1(δ), and hence, with C2(δ) = C + C1(δ)δ/p(1 + δ)
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1286 ÉTIENNE PARDOUX AND OFER ZEITOUNI

(all constants here being positive and depending on |||m̃|||, X only!),

ρε1(x) ≤ exp

[
C2(δ)

ε2
+

m̃0h(x)

ε

](
E

[
p0(Z̃

ε,x
1/ε)
] 1+δ

δ

) δ
1+δ

×
(

E exp

[
−C(δ)

ε

∫ 1/ε

0

|Z̃ε,x
s |2ds

]) δ
q(1+δ)

≤ exp

[
C3(δ)

ε2

](
E exp

[
−C(δ)

ε

∫ 1/ε

0

|Z̃ε,x
s |2ds

]) δ
q(1+δ)

.

(4.2)

It thus remains to estimate the last factor in the above right-hand side. Define τ =
inf{t > 0 : |Z̃ε,x

s | < x/2} and fix η > 0. We claim that for some η > 0 small enough,
it holds that for some Cη > 0, x0 and all |x| ≥ x0,

P(τ < η) ≤ exp

[
−Cηx

2

ε

]
.(4.3)

Assume (4.3), which will be proved below, and note that on the event {τ ≥ η} we
have that infs∈(0,η] |Z̃ε,x

s | > x/2. We deduce from (4.2)

ρε1(x) ≤ exp

[
C3(δ)

ε2

]
×
(

exp

[
−Cηx

2

ε

]
+ exp

[
− C(δ)x2ηδ

4q(1 + δ)ε

])
,(4.4)

from which one easily concludes the bound

ρε1(x) ≤ exp

[
C4(δ)

ε2
− Cx2

ε

]
(4.5)

for some constants C4(δ) and C depending on δ, |||m̃|||, X only.
On the other hand, define the event

AC =

{
sup

t∈(0,1/ε)

√
ε|W̃t| ≤ C

}
.

Then there exists a constant C3 > 0 depending on C such that P(AC) ≥ C3. Note
that on the event AC , because h′(·) > 0 and h, b are Lipschitz, Gronwall’s inequality
implies that sup|x|≤1,s≤1/ε |Z̃ε,x

s | ≤ C ′ for some constant C ′ depending on C, m̃,X
only. Thus, on the event AC ,∣∣∣∣∣Iε(Z̃ε,x

1/ε, 0) +

∫ 1/ε

0

g1(Z̃
ε,x
s , m̃s)ds +

1

ε

∫ 1/ε

0

g2(Z̃
ε,x
s , m̃s)ds

∣∣∣∣∣ ≤ C4

ε2
,

where C4 depends only on m̃,X and the constants in Assumptions (A-1)–(A-4). Hence
(cf. (2.2)), there exists a constant C2 (again, depending on the same quantities only)
such that, uniformly in |x| < 1,

ρε1(x) ≥ exp

[
−C2

ε2

]
.(4.6)

Equations (4.6) and (4.5) complete the proof of the lemma, once we prove (4.3).
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QUENCHED LARGE DEVIATIONS FOR FILTERING 1287

Toward this end, assume without loss of generality that x> 0, and set ĥ =
2 supy>0 h

′(y). Using the Itô formula, one has

Z̃ε,x
t eĥt

= x +

∫ t

0

(
ĥZ̃ε,x

s − h(Z̃ε,x
s ) + m̃sh

′(Z̃ε,x
s ) − εb(Z̃ε,x

s )
)
eĥsds +

√
ε

∫ t

0

eĥsdW̃s.
(4.7)

Hence, denoting C3 = |||m̃||| supx h
′(x), it follows that the event {τ < η} is contained

in the event{
sup

t∈(0,η)

∣∣∣∣√ε

∫ t

0

eĥsdW̃s

∣∣∣∣ ≥ x− C3
eĥη − 1

ĥ
− xeĥη

2

}
⊂
{

sup
t∈(0,η)

∣∣∣∣√ε

∫ t

0

eĥsdW̃s

∣∣∣∣≥ x

4

}
=:B

if one chooses η small enough and x large enough. We have that

P(B) ≤ 4 exp

(
−Cx2

ε

)
for some constant C, which completes the proof of (4.3).

Proof of Lemma 3.4. We prove only (3.7), the proof of (3.8) being similar. All we
need to show is that for all ε ≤ ε0, |x| ≤ M1/

√
ε, and some M2,

E

[
Lε

(
x,

1

ε

)
1{‖Z̃ε,x‖>M2/ε}

]
≤ E

[
Lε

(
x,

1

ε

)
1{‖Z̃ε,x‖≤M2/ε}

]
.(4.8)

We first bound the left-hand side of (4.8) for ε ≤ 1. Recall the function H introduced
in (4.1), and apply Itô’s formula to develop H(Z̃ε,x

t ) between t = 0 and t = 1/ε,
obtaining

logLε

(
x,

1

ε

)
− H(x)

ε
= − 1

2ε

∫ 1/ε

0

|h(Z̃ε,x
t ) − h(m̃t)|2dt−

1

2ε

∫ 1/ε

0

|h(Z̃ε,x
t )|2dt

+
1√
ε

∫ 1/ε

0

h(Z̃ε,x
t )dW̃t +

∫ 1/ε

0

g3,ε(Z̃
ε,x
t , m̃t)dt + log p0(Z̃

ε,x
1/ε),

where

g3,ε(z,m) = g1(z,m) − b(z)h(z) +
1

2
h′(z) +

1

2ε
m2(h′(z))2.

Note that log p0(·) is bounded above, and

|g3,ε(z, m̃t)| ≤ C

(
1

ε
+ |z|

)
.

Now since, for any p > 1,

E

[
exp

(
−p2

2ε

∫ 1/ε

0

|h(Z̃ε,x
t )|2dt +

p√
ε

∫ 1/ε

0

h(Z̃ε,x
t )dW̃t

)]
= 1,D
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1288 ÉTIENNE PARDOUX AND OFER ZEITOUNI

it follows from Hölder’s inequality that for any q > p > 1 satisfying 1/p + 1/q = 1,

e−H(x)/ε
E

[
Lε

(
x,

1

ε

)
1{‖Z̃ε,x‖>M2/ε}

]
≤
(

E

[
1{‖Z̃ε,x‖>M2/ε} exp

(
C

∫ 1/ε

0

(
1

ε
+ |Z̃ε,x

t |2
)
dt

)
(4.9)

× exp

(
− q

2ε

∫ 1/ε

0

|h(Z̃ε,x
t ) − h(m̃t)|2dt +

p

2ε

∫ 1/ε

0

|h(Z̃ε,x
t )|2dt

)])1/q

,

where C > 0. However, note that, due to h′ ≥ h0, there exists a constant C depending
on |||m̃||| such that

sup
z∈R,|m|≤|||m̃|||

|z|2 − q

2
|h(z) − h(m)|2 +

p

2
|h(z)|2 ≤ C.

Substituting this into (4.9), one deduces that

e−H(x)/ε
E

[
Lε

(
x,

1

ε

)
1{‖Z̃ε,x‖>M2/ε}

]
≤
(

E

[
1{‖Z̃ε,x‖>M2/ε} exp

(
C

ε2

)])1/q

.

(4.10)

(Recall that the value of C may change from line to line!)
We prove below that, provided M2 is large enough, there exists a c > 0 such that

E

[
1{‖Z̃ε,x‖>M2/ε}

]
≤ exp

(
− c

ε3

)
.(4.11)

Combined with (4.10), this implies that, uniformly in |x| ≤ M1/
√
ε,

E

[
Lε

(
x,

1

ε

)
1{‖Z̃ε,x‖>M2/ε}

]
≤ exp

(
− c

ε3

)
.(4.12)

To see (4.11), let H = sup |h′|, define θ0 = 0, and let

τi = inf

{
t > θi−1 : |Z̃ε,x

t | > M2

2ε

}
, θi = inf

{
t > τi : |Z̃ε,x

t | < M2

4ε

}
.

Setting f(z,m) = −h(z) + mh′(z) − εb(z), we have that, for |z| ∈ [M2/4ε,M2/ε],
t ≤ 1/ε, and ε small enough, it holds that h0M2/8ε ≤ |f(z, m̃t)| ≤ 2HM2/ε and
signf(z, m̃t) = −sign(z). Then, choosing η = (16H)−1 for each i, it holds that

P

(
θi − τi < η, sup

t∈[τi,θi]

|Z̃ε,x
t | < M2

ε

)
≤ P

(√
ε sup

0≤t≤η
|Wt| ≥

M2

4ε
− 2HηM2

ε

)
≤ P

(√
ε sup

0≤t≤η
|Wt| ≥

M2

8ε

)
(4.13)

≤ exp

(
−cM2

2

ε3η

)
.

Similarly

P

(
θi − τi ≥ η, |Z̃ε,x

τi+η| ≥
M2

2ε

)
≤ P

(√
εWη ≥ h0M2η

8ε

)
≤ exp

(
−cM2

2 η

ε3

)(4.14)
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QUENCHED LARGE DEVIATIONS FOR FILTERING 1289

and

P

(
sup

t∈[τi,(τi+η)∧θi]

|Z̃ε,x
t | > M2

ε

)
≤ P

(√
ε sup

0≤t≤η
|Wt| ≥

M2

2ε

)
≤ exp

(
−cM2

2

ε3η

)
.

(4.15)

Hence, using (4.13), (4.14), and (4.15),

E

[
1{‖Z̃ε,x‖>M2/ε}

]
≤ 1

εη

(
exp

(
−cM2

2

ε3η

)
+ exp

(
−cM2

2

ε3

)
+ exp

(
−cM2

2 η

ε3η

))
,

completing the proof of (4.11).
We now turn to the lower bound of the right-hand side of (4.8). Let, with M ′

1 =
M1 + 1,

ε0 = 1 ∧
(
M2

M ′
1

)2

.

For ε ≤ ε0, {
‖Z̃ε,x‖ ≤ M ′

1√
ε

}
⊂
{
‖Z̃ε,x‖ ≤ M2

ε

}
,

so that for some c′ > 0

E

[
Lε

(
x,

1

ε

)
1{‖Z̃ε,x‖≤M2/ε}

]
≥ E

[
Lε

(
x,

1

ε

)
1{‖Z̃ε,x‖≤M ′

1/
√
ε}

]
≥ exp

(
− c′

ε5/2

)
P

(
‖Z̃ε,x‖ ≤ M ′

1√
ε

)
.

(4.16)

Finally (4.8) follows from (4.12), (4.16), and the estimate

P

(
‖Z̃ε,x‖ ≤ M ′

1√
ε

)
≥ P

(√
ε‖W̃‖ ≤ C

)
≥ c′′ > 0.

Proof of Lemma 3.5. Note first that because of (A-4), there exists a constant
κ = κ(|||m̃|||) such that for all z �∈ [−κ, κ], all ε < 1/κ, all |m| ≤ |||m̃|||, and all z′,

∆(z, z′,m) = −h(z) + h(z′) + m[h′(z) − h′(z′)] − ε[b(z) − b(z′)]

satisfies sign(∆(z, z′,m)) = sign(z′ − z), while |∆(z, z′,m)| ≥ h0|z − z′|/2.
Assume, without loss of generality, that x < y. Fix, for δ given, a smooth, even,

nonnegative function c(z) such that c(|z|) is nonincreasing, c(z) =
√
δ for |z| ≤ κ, and

c(z) = 0 for |z| > 2κ, with ||c′|| ≤ 10
√
δ. Define next the diffusions

dξ1
s = [−h(ξ1

s ) + m̃sh
′(ξ1

s ) − εb(ξ1
s ) + c(ξ1

s )1{τ>s}]ds +
√
εdBs, ξ1

0 = x,

dξ2
s = [−h(ξ2

s ) + m̃sh
′(ξ2

s ) − εb(ξ2
s )]dt +

√
εdBs, ξ2

0 = y,

where B is a Brownian motion independent of the process m̃, and τ = min{t : ξ1
t =

ξ2
t } ∧ 1/ε. Note that ξ2 coincides in distribution with Z̃ε,y, whereas the law of ξ1
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1290 ÉTIENNE PARDOUX AND OFER ZEITOUNI

is absolutely continuous with respect to the law of Z̃ε,x with the Radon–Nikodym
derivative given by

(4.17)

Λ = exp

(
1

ε

∫ τ

0

c(ξ1
s )dξ

1
s − 1

2ε

∫ τ

0

c2(ξ1
s )ds−

1

ε

∫ τ

0

c(ξ1
s )g(s, ξ

1
s )ds

)
= exp

(
1

ε
[c̄(ξ1

τ ) − c̄(ξ1
0)] − 1

2ε

∫ τ

0

c2(ξ1
s )ds−

1

ε

∫ τ

0

c(ξ1
s )g(s, ξ

1
s )ds−

1

2

∫ τ

0

c′(ξ1
s )ds

)
,

where g(s, z) = −h(z) + m̃sh
′(z) − εb(z) and c̄(z) =

∫ z

0
c(y)dy.

Next, note that with ζs = ξ1
s − ξ2

s , and using that x < y, it holds that ζs ≤ 0 for
all s, while by definition, |ζ0| ≤ δ. Hence, by the definition of c(·) and of κ, it holds
that for all δ < δ1(κ, |||m|||),

dζs
ds

≥ −h0ζs
2

+
c(ξ1

s )1s<τ

2
,

from which one concludes that ζs ≥ −δe−hs/2. In particular, this implies that for all
such δ,

∫ τ

0

c(ξ1
s )1{τ>s}ds =

∫ τ

0

c(ξ1
s )ds ≤ Cδ

for some constant C = C(κ, |||m̃|||). Since c(z) = 0 for |z| > 2κ, and since |g(s, z)| is
bounded uniformly in s ≤ 1/ε and |z| ≤ 2κ (by a bound that depends only on |||m̃|||),
the last inequality implies that

∣∣∣∣∫ τ

0

c(ξ1
s )g(s, ξ

1
s )ds

∣∣∣∣ ≤ Cδ,

again for some constant C depending on κ, |||m̃||| only. Finally, note that

∫ τ

0

c2(ξ1
s )ds ≤

√
δ

∫ τ

0

c(ξ1
s )ds ≤ Cδ3/2,

and that |c̄(z)| ≤ 2κ
√
δ. Substituting back into (4.17) and recalling that κ = κ(|||m̃|||),

one concludes the existence of a constant C2 = C2(|||m̃|||) such that for all δ < δ1,

e−C2

√
δ/ε ≤ Λ ≤ eC2

√
δ/ε.(4.18)

Therefore, with EB denoting expectation with respect to B·, and using the bound
on Λ in the second inequality, and the Lipschitz property of g1, g2 together with
the exponential decay of ζs in the third, and omitting the dependence on θ1/ε−tm̃
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QUENCHED LARGE DEVIATIONS FOR FILTERING 1291

everywhere, it holds, for all t > 1/2ε, that

(4.19)

ELε(x, t) ≤ 2ELε(x, t)1{||Z̃ε,x||<M2/ε}

= 2EB

(
1{||ξ1||<M2/ε}Λ

−1 exp

(
Iε(ξ

1
t , 0) +

∫ t

0

(
g1(ξ

1
s , m̃s) +

1

ε
g2(ξ

1
s , m̃s)

)
ds

))
≤ 2EB

(
1{||ξ2||<(M2+1)/ε} exp

(
C2

√
δ

ε
+ Iε(ξ

2
t + ζt, 0)

+

∫ t

0

(
g1(ξ

2
s + ζs, m̃s) +

1

ε
g2(ξ

2
s + ζs, m̃s)

)
ds

))
≤ 2EB

(
exp

(
C3

√
δ

ε
+ Iε(ξ

2
t , 0) +

∫ t

0

(
g1(ξ

2
s , m̃s) +

1

ε
g2(ξ

2
s , m̃s)

)
ds

))

= 2E

(
exp

(
C3

√
δ

ε
+ Iε(Z̃

ε,y
t , 0) +

∫ t

0

(
g1(Z̃

ε,y
s , m̃s) +

1

ε
g2(Z̃

ε,y
s , m̃s)

)
ds

))

= 2 exp

(
C3

√
δ

ε

)
ELε(y, t)

≤ 4 exp

(
C3

√
δ

ε

)
E

(
1{||Z̃ε,y||<M2/ε}Lε(y, t)

)
,

yielding (3.9) for x < y and δ < δ1, with g(δ) = C3

√
δ. Further, the same computation

gives

4E

(
Lε(x, t)1{||Z̃ε,x||<M2/ε}

)
≥ exp

(
−C3

√
δ

ε

)
E

(
Lε(y, t)1{||Z̃ε,y||<M2/ε}

)
,

yielding, by exchanging the roles of x and y, (3.9) for x > y and δ < δ1 with the
same g(δ). Finally, for δ > δ1, iterate this procedure to obtain (3.9) with g(δ) =
C3

√
δ ∧ δ1�δ/δ1�. Substituting y = X1 into the latter version of (3.9) then gives

(3.10).
Proof of Lemma 3.6. Throughout the proof, we fix once and for all the sequence

Tε. All constants Ci used in the proof may depend on the choice of the sequence but
not explicitly on ε.

We begin with the proof of (3.11). Using Girsanov’s theorem, one finds that with
Z̄ε,x
t = x +

√
εW̃t,

E

[
L̄ε(x, T )1{|Z̃ε,x

T
−z|<δ}1{||Z̃ε,x||T≤M3/ε}

]
= E

[
1{|Z̄ε,x

T
−z|<δ}1{||Z̄ε,x||T≤M3/ε}

· exp

(
1

ε

∫ T

0

[
−h(Z̄ε,x

s ) + m̃sh
′(Z̄ε,x

s ) − εb(Z̄ε,x
s )
]
dZ̄ε,x

s

− 1

ε

∫ T

0

(
[h(Z̄ε,x

s ) − h(m̃s)]
2

2
+

b2(Z̄ε,x
s )ε2

2
+ εb(Z̄ε,x

s )h(Z̄ε,x
s )

− εh′(Z̄ε,x
s )b(Z̄ε,x

s )m̃s − εg1(Z̄
ε,x
s , m̃s)

)
ds

)]
.(4.20)
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1292 ÉTIENNE PARDOUX AND OFER ZEITOUNI

We consider the different terms in (4.20) separately. Note first that one may, exactly
as in the course of the proof of Lemma 3.5, move from starting point x to starting
point X1 in the right-hand side of (4.20), with the effect of picking up a term bounded
by exp(C|x|/ε) and widening the allowed region where Z̄ε,x

T need to be; namely, for
all Tε ≥ T > 1, the right-hand side of (4.20) is bounded by

exp

(
C1 + C2|x|

ε

)
E

[
1{|Z̄ε,X1

T
−z|<δ+|x|+|X1|}1{||Z̄ε,X1 ||T≤|x|+(M3+1)/ε}

· exp

(
1

ε

∫ T

0

[
−h(Z̄ε,X1

t ) + m̃sh
′(Z̄ε,X1

s ) − εb(Z̄ε,X1
s )

]
dZ̄ε,X1

s

)]
.(4.21)

An integration by parts gives that

−
∫ T

0

h(Z̄ε,X1

t )dZ̄ε,X1

t = −J̄ (Z̄ε,X1

T , X1) − h(X1)(Z̄
ε,X1

T −X1) +
ε

2

∫ T

0

h′(Z̄ε,X1

t )dt,

and hence, on the event {|Z̄ε,X1

T − z| < δ + |x| + |X1|}, it holds that

−
∫ T

0

h(Z̄ε,X1

t )dZ̄ε,X1

t ≤ −C(|z| − |x| − |X1| − δ)2+ + C.(4.22)

Similarly, with B(z) =
∫ z

X1
b(x)dx,∫ T

0

b(Z̄ε,X1
s )dZ̄ε,X1

s = B(Z̄ε,X1

T ) − ε

2

∫ T

0

b′(Z̄ε,X1
s )ds ≤ C(|z|2 + |x|2 + 1).(4.23)

Finally, rewrite∫ T

0

m̃sh
′(Z̄ε,X1

s )dZ̄ε,X1
s = X1

∫ T

0

h′(Z̄ε,X1
s )dZ̄ε,X1

s +

∫ T

0

(m̃s −X1)h
′(Z̄ε,X1

s )dZ̄ε,X1
s .

The first stochastic integral in the above expression is handled exactly as in (4.23), and
substituting into (4.21) one concludes that the right-hand side of (4.20) is bounded
by

exp

(
C + C(|x| + |z|) − C(|z| − |x|)2+

ε

)
E

[
exp

(
1

ε

∫ T

0

(m̃s −X1)h
′(Z̄ε,X1

s )dZ̄ε,X1
s

)]

≤ exp

(
C + C(|x| + |z|) − C(|z| − |x|)2+

ε
+

1

2ε

∫ Tε

0

C|m̃s −X1|2ds
)

≤ exp

(
C + C(|x| + |z|) − C(|z| − |x|)2+

ε

)
,

where in the last inequality we have used the last part of Lemma 2.1. This completes
the proof of (3.11).

The proof of (3.12) proceeds along similar lines. The starting point is the change
of measure leading to (4.20). Define the function

Ψt =

⎧⎪⎨⎪⎩
x + 2(X1 − x)t, t ≤ 1

2 ,

X1, T − 1
2 > t ≥ 1

2 ,

z + 2(z −X1)(t− T ), T ≥ t ≥ T − 1
2 .
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QUENCHED LARGE DEVIATIONS FOR FILTERING 1293

Let D denote the event

D :=

{
sup
t≤T

|Z̄ε,x
t − Ψt| <

√
ε

}
.

We will prove below that, for |x − X1| ≤ 1 and T < Tε, there exists a constant C
independent of T and ε such that

P(D) ≥ e−C/ε.(4.24)

We can clearly bound the right-hand side of (4.20) from below by

E

[
1{|Z̄ε,x

T
−z|<δ}1{||Z̄ε,x||T≤M3/ε}1D

· exp

(
1

ε

∫ T

0

[
−h(Z̄ε,x

t ) + m̃sh
′(Z̄ε,x

s ) − εb(Z̄ε,x
s )
]
dZ̄ε,x

s

− 1

ε

∫ T

0

(
[h(Z̄ε,x

t ) − h(m̃t)]
2

2
+

b2(Z̄ε,x
t )ε2

2
+ εb(Z̄ε,x

s )h(Z̄ε,x
s )

− εh′(Z̄ε,x
s )b(Z̄ε,x

s )m̃s − εg1(Z̄
ε,x
s , m̃s)

)
ds

)]
.

We now assume that (4.24) and |z −X1| ≤ 1 hold. Then using the same integration
by parts as in the proof of the upper bound, one concludes that the right-hand side
of (4.20) is bounded from below by

E

[
1D exp

(
−C

ε
+

1

ε

∫ T

0

(m̃s −X1)h
′(Z̄ε,x

s )dZ̄ε,x
s

)]
.(4.25)

However, since

Var

(∫ T

0

(m̃s −X1)h
′(Z̄ε,x

s )dZ̄ε,x
s

)
≤ Cε,

one gets, using Chebyshev’s inequality, that

P

[∫ T

0

(m̃s −X1)h
′(Z̄ε,x

s )dZ̄ε,x
s < −c

]
≤ exp

(
−C2c

2

ε

)
.

Hence,

P

[∫ T

0

(m̃s −X1)h
′(Z̄ε,x

s )dZ̄ε,x
s < −c|D

]
≤

exp
(
−C2c

2

ε

)
P(D)

≤ 1

2

if c is chosen large, where in the last inequality we used (4.24). In particular, it follows
that

E

[
exp

(
1

ε

∫ T

0

(m̃s −X1)h
′(Z̄ε,x

s )dZ̄ε,x
s

) ∣∣∣∣∣D
]
≥ exp

(
−C

ε

)
for some C > 0. Substituting back into (4.25), the required lower bound follows.
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1294 ÉTIENNE PARDOUX AND OFER ZEITOUNI

It thus remains only to prove (4.24). This, however, is immediate from a martin-
gale argument: first, perform the change of measure making St := Z̄ε,x

t − Ψt into a
Brownian motion of variance ε. Then, for 1 ≤ T ≤ Tε,

P(D) = E

(
1{supt≤T |St|≤

√
ε} exp

(
−1

ε

∫ T

0

Ψ̇tdSt −
1

2ε

∫ T

0

Ψ̇t
2
dt

))
.

Integrating the stochastic integral by parts and using that Ψ̇(t) = 0 for t ∈ (1/2, T −
1/2), (4.24) follows, which completes the proof of the lemma.

Proof of (3.26). We let η > 0 as before. Note first that, by (4.5) and (4.6), there
is a constant M depending on |||m̃||| only such that

lim sup
ε→0

ε log

∫
[−M/

√
ε,M/

√
ε]c

qε1(x)dx = −∞.(4.26)

We may and will in what follows assume that M = M1, where M1 is defined in
Lemma 3.3, and we use M3 and M2 as in Lemma 3.4.

Next, set ε4 such that ε4 log 2 < η/8 and ε log(2M3/εδ) ≤ η/8 for ε < ε4. Re-
peating the arguments in (3.21), without using the compact set K1, one has for ε < ε4

and |x| ≤ M1/
√
ε,

ε log ρε1(x) ≤ −F (x, m̃0) + ε log J̃ε(x) +
η

4
as in (3.21)

≤ −F (x, m̃0) + ε log sup
|z|≤M3/ε

Ĵε,T (x, z) +
η

2
by (3.13) and (3.15)

≤ −F (x, m̃0) +
η

2
+ C2 − C3(|z| − |x|)2+ + C5(|x| + |z|)

+ ε log E

[
Lε

(
X1,

1

ε
− T, θT m̃

)
1{||Z̃ε,X1 ||1/ε−T≤M2/ε}

]
.(4.27)

A similar argument shows that for |x−X1| < 1 and some constant C6 depending only
on X, |||m̃|||,

ε log ρε1(x) ≥ −F (X1, X1) − C6

+ ε log E

[
Lε

(
X1,

1

ε
− T, θT m̃

)
1{||Z̃ε,X1 ||1/ε−T≤M2/ε}

]
.(4.28)

Fixing now an L, and using as in (3.18) the uniform quadratic growth of F (x,m) as
|x| → ∞ and |m| < |||m̃|||, one finds a compact set KL such that

sup
|m|<|||m̃|||

sup
x∈(KL)c,z∈R

C2

ε
−

C3(|z| − |x|)2+
ε

+
C5(|x| + |z|)

ε
− F (x,m)

≤ −F (X1, X1) −
C6 + L

ε
,(4.29)

and hence, from (4.27) and (4.28), for x ∈ (KL)c ∩ [−M1/
√
ε,M1/

√
ε],

ε log ρε1(x) ≤ inf
|y−X1|≤1

ε log ρε1(y) − L.(4.30)
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QUENCHED LARGE DEVIATIONS FOR FILTERING 1295

Hence,

(4.31)

lim sup
ε→0

ε log

∫
(KL)c

qε1(x)dx = lim sup
ε→0

ε log

∫
(KL)c∩[−M1/

√
ε,M1/

√
ε]

qε1(x)dx by (4.26)

≤ lim sup
ε→0

[
ε log

∫
(KL)c∩[−M1/

√
ε,M1/

√
ε]

ρε1(x)dx− ε log

∫
[X1−1,X1+1]

ρε1(x)dx

]

≤ lim sup
ε→0

[
ε log

(
2M1√

ε

)
+ inf

|y−X1|≤1
ε log ρε1(y) − L− inf

|y−X1|≤1
ε log ρε1(y)ε log 2

]
by (4.30)

≤ −L .

This completes the proof.

Appendix. Derivation of (2.1). We first recall Picard’s theorem [7, Proposi-
tion 4.2]: under the assumptions of the current paper and with the same notation, a
version of the conditional unnormalized density is given by

q̃(1, x) = exp

{
1

2ε2

∫ 1

0

h2(m̄s)ds−
1

ε
F (x, m̃0)

}
Ẽ
′ [exp ρy,x1 ] ,(A.1)

where

ρx,y1 = log p0(X̄
x
1 ) +

1

ε
F (X̄x

1 , 0) − 1

ε

∫ 1

0

h(m̄s)dX̄
x
s − 1

ε

∫ 1

0

h(X̄x
s )b(m̄s)ds

+
1

ε

∫ 1

0

m̄sh
′(X̄x

s )dX̄x
s +

1

2ε

∫ 1

0

m̄sh
′′(X̄x

s )ds

+
1

ε

∫ 1

0

[
b(X̄x

s )(h(X̄x
s ) − h(m̄s)) −

1

2
h′(X̄x

s ) − εb′(X̄x
s )

]
ds,

dX̄x
s = −1

ε
(h(X̄x

s ) − h(m̄s))ds− b(X̄x
s )ds + dWs, X̄x

0 = x,

W· is a Brownian motion, and Ẽ
′ denotes expectation with respect to this Brownian

motion. Performing a time change t 
→ εt and setting W̃t = 1√
ε
Wεt, we have that W̃t

is again a standard Brownian motion and, with X̄ε,x
t = X̄x

εt,

ρx,y1 = log p0(X̄
ε,x
1/ε) +

1

ε
F (X̄ε,x

1/ε, 0) − 1

ε

∫ 1/ε

0

h(m̃s)dX̄
ε,x
s −

∫ 1/ε

0

h(X̄ε,x
s )b(m̃s)ds

+
1

ε

∫ 1/ε

0

m̃sh
′(X̄ε,x

s )dX̄ε,x
s +

1

2

∫ 1/ε

0

m̃sh
′′(X̄ε,x

s )ds

+

∫ 1/ε

0

[
b(X̄ε,x

s )(h(X̄ε,x
s ) − h(m̃s)) −

1

2
h′(X̄ε,x

s ) − εb′(X̄ε,x
s )

]
ds,

dX̄ε,x
s = −(h(X̄ε,x

s ) − h(m̃s))ds− εb(X̄ε,x
s )ds +

√
εdW̃s , X̄ε,x

0 = x,

and

q̃(1, x) = exp

{
1

2ε

∫ 1/ε

0

h2(m̃s))ds−
1

ε
F (x, m̃0)

}
Ẽ [exp ρy,x1 ] ,(A.2)

where the expectation now is with respect to the Brownian motion W̃t.
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1296 ÉTIENNE PARDOUX AND OFER ZEITOUNI

Observe next that, by Girsanov’s theorem, the law of the process X̄ε,x
t is abso-

lutely continuous with respect to that of the process Z̃ε,x
t , with the Radon–Nikodym

derivative given by

eΛ = exp

[
1

ε

∫ 1/ε

0

[h(m̃s) − m̃sh
′(Z̃ε,x

s )]dZ̃ε,x
s

− 1

2ε

∫ 1/ε

0

[h(Z̃ε,x
s ) − h(m̃s) + εb(Z̃ε,x

s )]2ds

+
1

2ε

∫ 1/ε

0

[h(Z̃ε,x
s ) − m̃sh

′(Z̃ε,x
s ) + εb(Z̃ε,x

s )]2ds

]
.

(A.3)

Hence, with E denoting expectations with respect to the Brownian motion W̃t ap-
pearing in the definition of Z̃ε,x

t , (A.2) transforms to

q̃(1, x) = exp

{
1

2ε

∫ 1/ε

0

h2(m̃s))ds−
1

ε
F (x, m̃0)

}
E exp[Λ1(x)],

where

Λ1(x) = Λ + log p0(Z̃
ε,x
1/ε) +

1

ε
F (Z̃ε,x

1/ε, 0) − 1

ε

∫ 1/ε

0

h(m̃s)dZ̃
ε,x
s −

∫ 1/ε

0

h(Z̃ε,x)b(m̃s)ds

+
1

ε

∫ 1/ε

0

m̃sh
′(Z̃ε,x

s )dZ̃ε,x
s +

1

2

∫ 1/ε

0

m̃sh
′′(Z̃ε,x

s )ds

+

∫ 1/ε

0

[
b(Z̃ε,x

s )(h(Z̃ε,x
s ) − h(m̃s)) −

1

2
h′(Z̃ε,x

s ) − εb′(Z̃ε,x
s )

]
ds

= log p0(Z̃
ε,x
1/ε) +

1

ε
F (Z̃ε,x

1/ε, 0) +

∫ 1/ε

0

g1(Z̃
1/ε
s , m̃s)ds +

1

ε

∫ 1/ε

0

g2(Z̃
1/ε
s , m̃s)ds.

Since
∫ 1/ε

0
h2(m̃s)ds does not depend on x, taking

ρε1(x) = q̃(1, x) exp

{
− 1

2ε

∫ 1/ε

0

h2(m̃s))ds

}

gives a version of the unnormalized conditional density that coincides with
(2.2).
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