Escaping from the boundary in Density Dependent Population Processes

Todd L. Parsons

Laboratoire de Probabilités et Modèles Aléatoires, UPMC Center for Interdisciplinary Research in Biology, Collège de France

Conference on Probability and Biological Evolution CIRM, Marseille June 16th, 2015

JOINT WORK WITH

Troy Day Queen's University

Sylvain Gandon CNRS Montpellier

Amaury Lambert Université Paris 06 & Collège de France

Christopher Quince University of Warwick

OUTLINE

INTRODUCTION

BRANCHING PROCESS APPROXIMATIONS

FORMALIZATION

APPLICATIONS

CONCLUSIONS

OUTLINE

INTRODUCTION

BRANCHING PROCESS APPROXIMATIONS

FORMALIZATION

APPLICATIONS

CONCLUSIONS

DENSITY DEPENDENT MODELS: VERHULST'S LOGISTIC EQUATION

One of the fundamental equations in ecology is Verhulst's logistic equation,

$$\dot{Y} = rY\left(1 - \frac{Y}{n}\right),\,$$

which describes a self-limiting population.

- ▶ *n* is the "carrying capacity" of the population: net growth rates are negative when X > n.
- Replacing *Y* by $X = \frac{Y}{n}$, we arrive at a "nondimensionalized" version, with only one parameter *r*,

$$\dot{X} = rX(1 - X).$$

 Sometimes, we are most interested in population fluctuations, in which case we would like a stochastic model that approximates Verhulst's equation in some well-defined way. DENSITY DEPENDENT MODELS: A STOCHASTIC LOGISTIC PROCESS

• A natural model is a continuous time Markov birth and death process, Y(t), with rates

$$q_{Y,Y+1} = \beta Y$$
 $q_{Y,Y-1} = \delta Y \left(1 + \gamma \frac{Y}{n} \right).$

► Nondimensionalizing as before, we might consider instead the process $X^{(n)} = \frac{Y}{n}$, with rates

$$q_{X,X+\frac{1}{n}}^{(n)} = n\beta X$$
 $q_{X,X-\frac{1}{n}}^{(n)} = n\delta X (1+\gamma X).$

► A quick calculation shows that

$$\mathbb{E}\left[\Delta X^{(n)}\right] = \mathbb{E}\left[\beta X^{(n)} - \delta X^{(n)} \left(1 + \gamma X^{(n)}\right)\right] \Delta t \quad \text{and} \quad \mathbb{E}\left[\left(\Delta X^{(n)}\right)^2\right] = O\left(\frac{1}{n}\right),$$

suggesting that as *n* becomes large, $X^{(n)}$ should in some sense approach a limit *X*, satisfying a generalized logistic equation,

$$\dot{X} = \beta X - \delta X \left(1 + \gamma X \right).$$

DENSITY DEPENDENT POPULATION PROCESSES (KURTZ, 1970)

- ► In fact, we can make this convergence precise for a broad class of models, including the logistic process and many more of biological interest.
- Let {λ₁⁽ⁿ⁾(x)}_{1∈ℤ^d} be a collection of non-negative functions defined on a subset *E* ⊆ ℝ^d₊. Set

$$E^{(n)} := E \cap \{ n^{-1} \mathbf{k} : \mathbf{k} \in \mathbb{Z}^d \},\$$

and assume that $\mathbf{x} \in E^{(n)}$ and $\lambda_{\mathbf{l}}^{(n)}(\mathbf{x}) > 0$ imply $\mathbf{x} + n^{-1}\mathbf{l} \in E^{(n)}$.

The *density dependent family* corresponding to the λ₁⁽ⁿ⁾(**x**) is a sequence {**X**⁽ⁿ⁾} of jump Markov processes such that **X**⁽ⁿ⁾ has state space E⁽ⁿ⁾ and intensities

$$q_{\mathbf{x},\mathbf{y}}^{(n)} = n\lambda_{n(\mathbf{y}-\mathbf{x})}^{(n)}(\mathbf{x}), \qquad \mathbf{x},\mathbf{y} \in E^{(n)}.$$

DENSITY DEPENDENT POPULATION PROCESSES (KURTZ, 1970)

- Intuitively, we have a population consisting of a finite number of discrete individuals.
- ► Each individual has a type, which is indexed by an integer in the set {1,...,d}; all individuals of a given type are identical.
- ► If $Y_i(t)$ is the number of individuals of type $i \in \{1, ..., d\}$ at time t, then $X_i^{(n)}(t)$ is the corresponding nondimensionalized process:

$$\mathbf{X}^{(n)}(t) = \left(X_1^{(n)}(t), \dots, X_d^{(n)}(t)\right) = \frac{1}{n} \left(Y_1(t), \dots, Y_d(t)\right).$$

► *e.g.*, Our logistic process corresponds to

$$\lambda_1^{(n)}(\mathbf{x}) = \beta x_1 \qquad \lambda_{-1}^{(n)}(\mathbf{x}) = \delta x_1(1 - \gamma x_1).$$

The "system size" n

- Much as in population genetics, we will be interested in obtaining limiting results as *n* tends to infinity.
- ► Unlike population genetics, *n* need not be a fixed population size, but rather an analogue of the carrying capacity in Verhulst's logistic equation.
- ► The number of individuals may vary stochastically, but, under the assumption of density dependence, after a transient phase, the total number of individuals will fluctuate about a value proportional to *n*.
- ► It can be interpreted differently in different models.
 - ► In a Gause-Lotka-Volterra model, it measures the size of the habitat, and thus the number of individuals it can sustain.
 - ► In an explicit resource model *e.g.*, of a chemostat, it might measure the volume of the reaction vessel.
 - In an epidemic models, it can be proportional to the number of uninfected hosts the habitat for the pathogens.

EXAMPLE: A TWO STRAIN SIR MODEL WITH DEMOGRAPHY

Parameter	Description
$\kappa^{(n)}n$	birth/immigration rate for susceptibles
$\delta^{(n)}$	base mortality rate
$\beta_i^{(n)}$	contact rate for disease i
$\theta_i^{(n)}$	excess mortality for disease i
$\gamma_i^{(n)}$	recovery rate for disease i
$\alpha_i^{(n)}$	$\alpha_i^{(n)} = \theta_i^{(n)} + \gamma_i^{(n)}$

- Population is grouped into susceptibles, S(t), infectives, I_i(t), and removed individuals, R(t).
- ► Assume cross-immunity between strains, no coinfection.
- ► The "system-size" *n* is proportional to the *average* host population size. The actual number of individuals fluctuates stochastically.

DENSITY DEPENDENT POPULATION PROCESS FORMULATION

- ► Model is completely described by (S(t), I₁(t), I₂(t)) can ignore removed individuals.
- Get a continuous-time Markov process taking values in \mathbb{N}_0^3 with rates

$$\mathbb{P}\left\{S(t+\Delta t) = S(t)+1\right\} = \kappa^{(n)}n\Delta t + o(\Delta t)$$
$$\mathbb{P}\left\{S(t+\Delta t) = S(t)-1\right\} = \delta^{(n)}S(t)\Delta t + o(\Delta t)$$
$$\mathbb{P}\left\{(S(t+\Delta t), I_i(t+\Delta t)) = (S(t)-1, I_i(t)+1)\right\} = \frac{\beta_i^{(n)}SI_i(t)}{n}\Delta t + o(\Delta t)$$
$$\mathbb{P}\left\{I_i(t+\Delta t) = I_i(t)-1\right\} = (\delta^{(n)} + \alpha_i^{(n)})I_i\Delta t + o(\Delta t)$$

• $(X^{(n)}(t), Y_1^{(n)}(t), Y_2^{(n)}(t)) = \frac{1}{n}(S(t), I_1(t), I_2(t))$ is a density dependent family with rates

$$\begin{split} \lambda_{\mathbf{e}_{1}}^{(n)}(x,y_{1},y_{2}) &= \kappa^{(n)} \quad \lambda_{-\mathbf{e}_{1}}^{(n)}(x,y_{1},y_{2}) = \delta^{(n)}x\\ \lambda_{-\mathbf{e}_{1}+\mathbf{e}_{2}}^{(n)}(x,y_{1},y_{2}) &= \beta_{1}^{(n)}xy_{1} \quad \lambda_{-\mathbf{e}_{2}}^{(n)}(x,y_{1},y_{2}) = (\delta^{(n)} + \alpha_{1}^{(n)})y_{1}\\ \lambda_{-\mathbf{e}_{1}+\mathbf{e}_{3}}^{(n)}(x,y_{1},y_{2}) &= \beta_{2}^{(n)}xy_{2} \quad \lambda_{-\mathbf{e}_{3}}^{(n)}(x,y_{1},y_{2}) = (\delta^{(n)} + \alpha_{2}^{(n)})y_{2} \end{split}$$

INTRODUCTION

LAW OF LARGE NUMBERS (KURTZ, 1970)

- Let {λ_l⁽ⁿ⁾(x)}_{1∈Z^d} be as above and let {X⁽ⁿ⁾} be the corresponding density-dependent family.
- Assume that there exist functions $\{\lambda_l(\mathbf{x})\}_{l \in \mathbb{Z}^d}$ such that

$$\lim_{n \to \infty} \sum_{\mathbf{l} \in \mathbb{Z}^K} \left\| \mathbf{l} \right\| \sup_{\mathbf{x} \in \mathcal{K}} \left| \lambda_{\mathbf{l}}^{(n)}(\mathbf{x}) - \lambda_{\mathbf{l}}(\mathbf{x}) \right| = 0 \quad \text{and} \quad \sum_{\mathbf{l} \in \mathbb{Z}^d} \left\| \mathbf{l} \right\| \sup_{\mathbf{x} \in \mathcal{K}} \lambda_{\mathbf{l}}(\mathbf{x}) < \infty$$

for all compact sets $\mathcal{K} \subset E$.

- ► Let $F(x) = \sum_{l \in \mathbb{Z}^d} l\lambda_l(x)$, and suppose F is locally Lipschitz.
- Suppose $\mathbf{X}^{(n)}(0) \rightarrow \mathbf{x}_0$ and let $\mathbf{X}(t, \mathbf{x}_0)$ satisfy

$$\dot{\mathbf{X}} = \mathbf{F}(\mathbf{X}).$$

with $\mathbf{X}(0, \mathbf{x}_0) = \mathbf{x}_0$

• Then, for any fixed T > 0,

$$\lim_{n\to\infty}\sup_{t\leq T} \left| \mathbf{X}^{(n)}(t) - \mathbf{X}(t,\mathbf{x}_0) \right| = 0 \quad \text{a.s}$$

LAW OF LARGE NUMBERS: EXAMPLES

 As we might hope, for the stochastic logistic model, the limiting deterministic process is

$$\dot{X} = \beta X - \delta X \left(1 + \gamma X \right).$$

► For the two strain SIR model with demography, if we assume that $\lambda^n = \lambda + O(\frac{1}{n}), \delta^n = \delta + O(\frac{1}{n}), etc.$ Then the law of large numbers limit $(X(t), Y_1(t), Y_2(t))$ satisfies the standard ODE for multi-strain SIR:

$$\begin{aligned} \dot{X}(t) &= \kappa - \left(\beta_1 Y_1(t) + \beta_2 Y_2(t) + \delta\right) X(t) \\ \dot{Y}_i(t) &= \left(\beta_i X(t) - \left(\delta + \alpha_i\right)\right) Y_i(t) \end{aligned}$$

CENTRAL LIMIT THEOREM (KURTZ, 1971)

► Assume in addition that

$$\lim_{n\to\infty}\sqrt{n}\sum_{\mathbf{l}\in\mathbb{Z}^{\mathcal{K}}}\|\mathbf{l}\|\sup_{\mathbf{x}\in\mathcal{K}}\left|\lambda_{\mathbf{l}}^{(n)}(\mathbf{x})-\lambda_{\mathbf{l}}(\mathbf{x})\right|=0\quad\text{and}\quad\sum_{\mathbf{l}\in\mathbb{Z}^{d}}\|\mathbf{l}\|^{2}\sup_{\mathbf{x}\in\mathcal{K}}\lambda_{\mathbf{l}}(\mathbf{x})<\infty.$$

- Let $\mathbf{V}^{(n)} = \sqrt{n}(\mathbf{X}^{(n)} \mathbf{X})$ and suppose that $V^{(n)}(0) \rightarrow V(0)$.
- Then, $\mathbf{V}^{(n)} \Rightarrow \mathbf{V}$ in $\mathbb{D}_{E}[0,\infty)$, where \mathbf{V} satisfies

$$\mathbf{V}(t) = \mathbf{V}(0) + \int_0^t \mathbf{DF}(\mathbf{X}(s, \mathbf{x}_0)) \mathbf{V}(s) \, ds + \sum_{\mathbf{l} \in \mathbb{Z}^d} \mathbf{l} \int_0^t \sqrt{\lambda_{\mathbf{l}}(\mathbf{X}(s), \mathbf{x}_0)} \, dB_{\mathbf{l}}(s)$$

and the B_1 are independent standard Brownian motions.

LARGE DEVIATIONS PRINCIPLE (WENTZELL, 1976)

► Let

$$\begin{split} H(\mathbf{x}, \boldsymbol{\alpha}) &= \sum_{\mathbf{l} \in \mathbb{Z}^d} (e^{\boldsymbol{\alpha} \cdot \mathbf{l}} - 1) \lambda_{\mathbf{l}}(\mathbf{x}), \\ L(\mathbf{x}, \boldsymbol{\beta}) &= \sup_{\boldsymbol{\alpha} \in E} \boldsymbol{\alpha} \cdot \boldsymbol{\beta} - H(\mathbf{x}, \boldsymbol{\alpha}), \end{split}$$

and, for $\varphi(t) \in C_E[0,T]$ satisfying $\varphi(0) = \mathbf{x}_0$, set

$$I_{\mathbf{x}_0,T}(\varphi) = \int_0^T L(\varphi(t), \dot{\varphi}(t)) \, dt$$

Provided

$$\sup_{\mathbf{x}\in\mathbb{R}^n}H(\mathbf{x},\boldsymbol{\alpha})<\infty,$$

and

$$\lim_{\eta \to 0} \sup_{\|\mathbf{x} - \mathbf{y}\| < \eta} \frac{L(\mathbf{y}, \boldsymbol{\beta}) - L(\mathbf{x}, \boldsymbol{\beta})}{1 + L(\mathbf{x}, \boldsymbol{\beta})} = 0$$

for all $\boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathbb{R}^d$, then $I_{\mathbf{x},T}(\varphi)$ is a good rate function for the family $\mathbf{X}^{(n)}$.

OUTLINE

INTRODUCTION

BRANCHING PROCESS APPROXIMATIONS

FORMALIZATION

APPLICATIONS

CONCLUSIONS

ESCAPING FROM THE BOUNDARY

- All of the previous explicitly or implicitly assumed that there exists ε > 0 such that X_i⁽ⁿ⁾(t) > ε *i.e.*, the absolute number of individuals is greater than εn.
- Once this is true, the process is essentially deterministic, with an exponentially small probability of moving macroscopically away from the trajectories of a deterministic process.
- However, in many problems of evolutionary interest, we are most concerned about the stochastic process starting from a single individual.
- ► The primary question then becomes whether that individual can produce sufficiently many offspring to pass into the deterministic regime *i.e.*, escape the boundary.
- As we've already seen several times since yesterday, we can approach this problem via branching processes. My question (which I won't answer completely today) is to ask how generally we can apply this approach.

DENSITY DEPENDENT BIRTH-DEATH PROCESSES

► For escape from the boundary to be an interesting question, we need an absorbing boundary. For simplicity, assume that {x : x₁ = 0} is the boundary of interest, and that

$$\lambda_{\mathbf{l}}^{(n)}(\mathbf{x}) = \begin{cases} \beta_{1,l}^{(n)}(\mathbf{x})x_1 & \text{if } \mathbf{l} = l\mathbf{e}_1\\ \delta_1^{(n)}(\mathbf{x})x_1 & \text{if } \mathbf{l} = -\mathbf{e}_1\\ 0 & \text{for all other } \mathbf{l} \text{ with } l_1 \neq 0 \end{cases}$$

• Thus,
$$F_1(\mathbf{x}) = f_1(\mathbf{x})x_1$$
 for

$$f_1(\mathbf{x}) = \sum_{l=1}^{\infty} l\beta_{1,l}(\mathbf{x}) - \delta_1^{(n)}(\mathbf{x})$$

and $\{\mathbf{x} : x_1 = 0\}$ is invariant for the law of large numbers dynamical system.

► I will further assume that there exists a compact set 𝔅 that contains a neighbourhood of the origin and is invariant under the flows of F(x).

"BRANCHING PROCESS APPROXIMATION"

- Let x₀ ∈ {x : x₁ = 0} and let X(t, x₀) be the corresponding law of large numbers trajectory.
- By our previous assumption, $\mathbf{X}(t, \mathbf{x}_0) \in {\mathbf{x} : x_1 = 0}$ for all t > 0.
- Let Z(t) be the time-inhomogeneous branching process with rates

 $\beta_{i,l}(\mathbf{X}(t,\mathbf{x}_0))$ and $\delta_i(\mathbf{X}(t,\mathbf{x}_0))$,

i.e., Z(t) is obtained by replacing the full stochastic process $\mathbf{X}^{(n)}(t)$ by it's deterministic approximation in the definition of $X_1^{(n)}(t)$.

- ► Morally, *Z*(*t*) is the "branching process approximation", but to justify that, we need to do some more work.
- ► First, let's look at some properties of *Z*(*t*)

The Branching Process Z(t)

- Let $\bar{\beta}(\mathbf{x}) = \sum_{l=1}^{\infty} l\beta_{1,l}(\mathbf{x})$ and $\hat{\beta}(\mathbf{x}) = \sum_{l=1}^{\infty} l^2 \beta_{1,l}(\mathbf{x})$
- ► Z(t) has mean $m(t) = \mathbb{E}[X_i(t)] = e^{\int_0^t \bar{\beta}_1(\mathbf{X}(u,\mathbf{x}_0)) \delta_1(\mathbf{X}(u,\mathbf{x}_0)) \, du}$ and variance $\operatorname{Var}(Z(t)) = \int_0^t e^{2\int_s^t \bar{\beta}(\mathbf{X}(u,\mathbf{x}_0)) - \delta(\mathbf{X}(u,\mathbf{x}_0)) \, du} \left(\hat{\beta}(\mathbf{X}(s,\mathbf{x}_0)) + \delta(\mathbf{X}(s,\mathbf{x}_0))\right) \, ds.$
- $\hat{\beta}(\mathbf{x}) \geq \bar{\beta}(\mathbf{x})$, with equality if and only if $\beta_{1,l}(\mathbf{x}) \equiv 0$ for l > 1.
- Let $q(\mathbf{x}_0, t) = \mathbb{P}\{X_1(t) = 0\}$

$$\begin{split} \frac{\int_{0}^{t} e^{-\int_{0}^{s} \bar{\beta}_{1}(\mathbf{X}(u,\mathbf{x}_{0})) - \delta_{1}(\mathbf{X}(u,\mathbf{x}_{0})) du} \delta_{1}(\mathbf{X}(s,\mathbf{x}_{0})) ds}{1 + \int_{0}^{t} e^{-\int_{0}^{s} \bar{\beta}_{1}(\mathbf{X}(u,\mathbf{x}_{0})) - \delta_{1}(\mathbf{X}(u,\mathbf{x}_{0})) du} \delta_{1}(\mathbf{X}(s,\mathbf{x}_{0})) ds} &\leq q(\mathbf{x}_{0},t) \\ &\leq \frac{\int_{0}^{t} e^{-\int_{0}^{s} \bar{\beta}_{1}(\mathbf{X}(u,\mathbf{x}_{0})) - \delta_{1}(\mathbf{X}(u,\mathbf{x}_{0})) du} \left(\delta_{1}(\mathbf{X}(s,\mathbf{x}_{0})) + \frac{\bar{\beta}_{1}(\mathbf{X}(s,\mathbf{x}_{0})) - \hat{\beta}(\mathbf{X}(s,\mathbf{x}_{0}))}{1 + \int_{0}^{t} e^{-\int_{0}^{s} \bar{\beta}_{1}(\mathbf{X}(u,\mathbf{x}_{0})) - \delta_{1}(\mathbf{X}(u,\mathbf{x}_{0})) du} \left(\delta_{1}(\mathbf{X}(s,\mathbf{x}_{0})) + \frac{\bar{\beta}_{1}(\mathbf{X}(s,\mathbf{x}_{0})) - \hat{\beta}(\mathbf{X}(s,\mathbf{x}_{0}))}{2}\right) ds}{1 + \int_{0}^{t} e^{-\int_{0}^{s} \bar{\beta}_{1}(\mathbf{X}(u,\mathbf{x}_{0})) - \delta_{1}(\mathbf{X}(u,\mathbf{x}_{0})) du} \left(\delta_{1}(\mathbf{X}(s,\mathbf{x}_{0})) + \frac{\bar{\beta}_{1}(\mathbf{X}(s,\mathbf{x}_{0})) - \hat{\beta}(\mathbf{X}(s,\mathbf{x}_{0}))}{2}\right) ds}, \end{split}$$

► Thus,

$$\int_0^t e^{-\int_0^s \bar{\beta}_1(\mathbf{X}(u,\mathbf{x}_0)) - \delta_1(\mathbf{X}(u,\mathbf{x}_0)) \, du} \delta_1(\mathbf{X}(s,\mathbf{x}_0)) \, ds < \infty$$

► The convergence of the integrals on the left and right, say *I*_− and *I*₊ give necessary and sufficient conditions, respectively, for the process to have a non-zero probability of persisting indefinitely, but unfortunately, neither is necessary and sufficient.

SUPERCRITICAL PROCESSES

- Assume $I_-, I_+ < \infty$.
- ► Then, $W(t) = \frac{Z(t)}{m(t)}$ is a martingale with $\mathbb{E}[W(t)] = 1$ and

$$W:=\lim_{t\to\infty}W(t)$$

exists pointwise almost surely.

Provided

$$\mathbb{E}\left[W(t)^2 \Big| Z(s) = 1\right] = 1 + \int_s^t e^{-2\int_0^\tau \bar{\beta}(u) - \delta(u) \, du} \left(\hat{\beta}(\tau) + \delta(\tau)\right) \, d\tau,$$

is bounded for all $s, t, W(t) \to W$ in $L^2(\mathbb{P})$ as well abd $\mathbb{E}[W] = 1$.

► If we assume that

$$\inf_{s\geq 0}\int_s^\infty e^{-\int_s^\tau \sum_{n=1}^\infty \beta_n(u)+\delta(u)\,du}\delta(\tau)\,d\tau>p>0$$

i.e., the probability of an individual dying without offspring is bounded below, then

$$q(\infty, \mathbf{x}_0) := \lim_{t \to \infty} q(t, \mathbf{x}_0) = \mathbb{P} \{ W = 0 \}.$$

LYAPUNOV EXPONENTS AND MALTHUSIAN PARAMETERS

- Let $\chi_1(\mathbf{x}_0) = \lim_{t \to \infty} \frac{1}{t} \int_0^t f_1(\mathbf{X}(u, \mathbf{x}_0)) du$.
- $\chi_1(\mathbf{x}_0)$ is also a boundary Lyapunov exponent for the dynamical system.
- If \mathbf{x}_0 is in the basin of a stable attractor \mathbf{x}^* , then $\chi_1(\mathbf{x}_0) = f_1(\mathbf{x}^*)$.
- ► If $\omega(\mathbf{x}_0)$ is a stable limit cycle of period *T*, say $\gamma(t)$, then $\chi_1(\mathbf{x}_0) = \frac{1}{T} \int_0^T f_d(\gamma(u)) du$.
- ▶ By Birkhoff's ergodic theorem, $\chi_1(\mathbf{x}_0) = \int f_d(\mathbf{x})\mu(d\mathbf{x})$ for μ -almost all \mathbf{x} , for some ergodic measure μ .
- If $\chi_1(\mathbf{x}_0) > 0$, then $I_+ < \infty$ and the probability of reaching εN is > 0.
- If $\chi_1(\mathbf{x}_0) < 0$, then $I_- = \infty$ and the probability of reaching εN is 0.
- If $I_+ < \infty$, then $\chi_1(\mathbf{x}_0) \ge 0$.
- If $I_- = \infty$, then $\chi_1(\mathbf{x}_0) \leq 0$.
- Cases when $\chi_1(\mathbf{x}_0) = 0$ are more subtle; partial results available.
- Thus, χ₁(x₀) is analogous to the Mathusian parameter for a homogeneous branching process.

INTRODUCTION

MALTHUSIAN PARAMETERS AND HITTING TIMES

► If the limit converges sufficiently fast (*e.g.*, in the cases of a stable fixed point or stable limit cycle, convergence is exponentially fast)

$$\phi = \lim_{t \to \infty} e^{-\chi_1(\mathbf{x}_0)t} m(t)$$

exists and is finite.

• If in addition, $\chi_1(\mathbf{x}_0) > 0$, then

$$\lim_{t\to\infty} e^{-\chi_1(\mathbf{x}_0)t} Z(t) = W \quad \text{a.s.}$$

and in L^2 .

• In particular, if M > 0 and $\tau_M = \inf\{t : Z(t) \ge M\}$, then

$$\tau_M - \frac{1}{\chi_1(\mathbf{x}_0)} \ln M \to -\frac{1}{\chi_1(\mathbf{x}_0)} (\ln W + \ln \phi).$$

so that $\frac{\mathbb{E}_1[\tau_M]}{\ln M} \to \frac{1}{\chi_1(\mathbf{x}_0)}$.

• One can also show that if $\chi_1(\mathbf{x}_0) < 0$ and $\tau_0 = \inf\{t : Z(t) = 0\}$, then $\frac{\mathbb{E}_M[\tau_0]}{\ln M} \rightarrow \frac{1}{|\chi_1(\mathbf{x}_0)|}$.

OUTLINE

INTRODUCTION

BRANCHING PROCESS APPROXIMATIONS

FORMALIZATION

APPLICATIONS

CONCLUSIONS

TRAPPING BRANCHING PROCESSES

Fix $\mathbf{X}(0) = \mathbf{x}_0 \in {\mathbf{x} : x_1 = 0} \cap \mathcal{K}$ and fix $\varepsilon > 0$ sufficiently small that

$$\mathfrak{K}_{\mathbf{x}_0,\varepsilon}(t) = \overline{\{\mathbf{x} \in \mathbb{R}^d_+ : \|\mathbf{x} - \mathbf{X}(t)\| < \varepsilon\}} \quad \text{and} \quad \mathfrak{K}_{\mathbf{x}_0,\varepsilon} = \cup_{t \ge 0} \mathfrak{K}_{\mathbf{x}_0,\varepsilon}(t)$$

are contained in \mathcal{K} .

Under the assumptions of the law of large numbers, there exists n_{ε} such that

$$\sum_{l} l \sup_{\mathbf{x} \in \mathcal{K}} \left| \beta_{1,l}^{(n)}(\mathbf{x}) - \beta_{1,l}(\mathbf{x}) \right| + \left| \delta_{1}^{(n)}(\mathbf{x}) - \delta_{1}(\mathbf{x}) \right| < \varepsilon$$

for $n \ge n_{\varepsilon}$. Set

$$\epsilon_{l}(\mathcal{K}) = \begin{cases} \sup_{\mathbf{x} \in \mathcal{K}} \left| \begin{array}{c} \beta_{1,l}^{(n_{\mathcal{E}})}(\mathbf{x}) - \beta_{1,l}(\mathbf{x}) \right| & \text{if } l > 1 \\ \sup_{\mathbf{x} \in \mathcal{K}} \left| \begin{array}{c} \delta_{1}^{(n)}(\mathbf{x}) - \delta_{1}(\mathbf{x}) \right| & \text{if } l = -1 \end{cases} \end{cases}$$

and let

$$\begin{split} \beta_{1,l}^{+\varepsilon}(t) &= \sup_{\mathbf{x} \in \mathcal{K}_{\mathbf{X}_0,\varepsilon}(t)} \beta_{1,l}(\mathbf{x}) + \epsilon_l(\mathcal{K}), \quad \beta_{1,l}^{-\varepsilon}(t) = \inf_{\mathbf{x} \in \mathcal{K}_{\mathbf{X}_0,\varepsilon}(t)} \beta_{1,l}(\mathbf{x}) - \epsilon_l(\mathcal{K}), \\ \delta_1^{+\varepsilon}(t) &= \sup_{\mathbf{x} \in \mathcal{K}_{\mathbf{X}_0,\varepsilon}(t)} \delta_1(\mathbf{x}) + \epsilon_{-1}(\mathcal{K}), \quad \text{and} \quad \delta_1^{-\varepsilon}(t) = \inf_{\mathbf{x} \in \mathcal{K}_{\mathbf{X}_0,\varepsilon}(t)} \delta_1(\mathbf{x}) - \epsilon_{-1}(\mathcal{K}). \end{split}$$

Under the assumptions of the central limit theorem, we can take $\varepsilon = \varepsilon_n$ provided $\liminf_{n\to\infty} \sqrt{n}\varepsilon_n > 0$.

COUPLING

- Let $\tau_{i,\varepsilon,n} = \inf\{t : X_i^{(n)}(t) \ge \varepsilon n\}.$
- ► If the remaining Lyapunov exponents are negative, under suitable conditions (Lyapunov-Perron regularity), with high probability, one can construct coupled branching processes Z(t) (as previously), Z^{-ε}(t) with rates

 $\beta_{i,l}^{-\varepsilon}(t)$ and $\delta_i^{+\varepsilon}(t)$

and $Z^{+\varepsilon}(t)$ with rates

 $\beta_{1,l}^{+\varepsilon}(t)$ and $\delta_1^{-\varepsilon}(t)$,

such that

$$Z^{-\varepsilon}(t) \le Z(t) \le Z^{+\varepsilon}(t)$$

and

$$Z^{-\varepsilon}(t) \le X_i^{(n)}(t) \le Z^{+\varepsilon}(t)$$

for all $t < \tau_{1,\varepsilon,n}$ and *n* sufficiently large.

► The coupling holds provided \(\tau_{i,\varepsilon,n} > \tau_{1,\varepsilon,n}\) for all \(i > 1\); the Lyapunov conditions ensure this happens with high probability.

TWO-STAGE COUPLING

In practice, one needs to consider two "layers" of coupling. For the first layer, we can choose sequences ε_n and $t_n \propto \ln n$ so that

•
$$\varepsilon_n \to 0$$
 and $\sqrt{n}\varepsilon_n \to \infty$.

• If
$$X_1^{(n)}(t_n) > 0$$
, then $\sqrt{n} \ll X_1^{(n)}(t_n) \ll \varepsilon_n n$, and

•
$$\frac{Z^{\pm \varepsilon_n}(t_n)}{\mathbb{E}[Z^{\pm \varepsilon_n},(t_n)]} \to W$$
, and thus $\frac{X_1^{(n)}(t_n)}{\mathbb{E}[X_1^{(n)}(t_n)]} \to W$

Once $X_1^{(n)}(t_n) \gg \sqrt{n}$, nonlinear terms can prevent us from "squeezing" the couplings together.

Fix ε > 0 and let Z^{±ε}_i be i.i.d. copies of Z^{±ε} started from one individual:

$$\sum_{j=1}^{X_1^{(n)}(t_n)} Z_j^{-\varepsilon}(t) \le X_1^{(n)}(t+t_n) \le \sum_{j=1}^{X_1^{(n)}(t_n)} Z_j^{+\varepsilon}(t).$$

• Let $q_{\varepsilon,\pm}$ be extinction probabilities for $Z^{\pm\varepsilon}$. Then,

$$q_{\varepsilon,+}^{X_1^{(n)}(t_n)} \leq \mathbb{P}\left(\tau_{1,\varepsilon,n} = +\infty\right) \leq q_{\varepsilon,-}^{X_1^{(n)}(t_n)},$$

so, if $X_1^{(n)}(t_n) > 0$, $\mathbb{P}(\tau_{1,\varepsilon,n} = +\infty) \to 1$ as $n \to \infty$.

CONSEQUENCES

- $\lim_{n\to\infty} \mathbb{P}\left\{X_1^{(n)}(t)=0\right\} = q(\mathbf{x}_0,t) = \mathbb{P}\{Z(t)=0\}$ and $\lim_{n\to\infty} \mathbb{P}\left\{X_i^{(n)}(t) > \varepsilon n\right\} = 1 - q(\mathbf{x}_0,+\infty).$
- Thus, the values escape probabilities are independent of ε (though, to be clear the proof requires a suitable choice of ε.
- The law of large numbers also tells us that

$$\frac{X_1^{(n)}(t+t_n)}{X_1^{(n)}(t_n)} \to e^{\int_0^t f_1(\mathbf{X}(u,\mathbf{x}_0)\,du},$$

i.e., that the trajectories are essentially deterministic and follow the deterministic trajectories once the population has reached $\varepsilon_n n$ individuals. One can use expressions for $\tau_{1,\varepsilon,n}$ to obtain more detailed estimates when the trajectory approaches a fixed point \mathbf{x}^* .

► One can also proceed similarly with estimates of the extinction time to obtain the time for a selective sweep, *e.g.*, for an invader 1 replacing a resident 2, and a sweep from a saddle x₀ to a fixed point x^{*}, one has

$$\frac{\mathbb{E}_1[\tau_{1,\varepsilon,n}]}{\ln n} \to \frac{1}{\chi_1(\mathbf{x}_0)} + \frac{1}{\chi_2(\mathbf{x}^\star)}.$$

OUTLINE

INTRODUCTION

BRANCHING PROCESS APPROXIMATIONS

FORMALIZATION

APPLICATIONS

CONCLUSIONS

TWO STRAIN SIR MODEL

Consider a single individual infected with strain 2 entering a population where strain 1 is endemic. Then, as $n \to \infty$, the probability strain 2 dies out is

$$q = \frac{\int_0^\infty e^{-\int_0^s \beta_2 X(u) - (\delta + \alpha_2) du} (\delta + \alpha_2) ds}{1 + \int_0^\infty e^{-\int_0^s \beta_2 X(u) - (\delta + \alpha_2) du} (\delta + \alpha_2) ds},$$

where X(t) and $Y_1(t)$ satisfy

$$\dot{X}(t) = \lambda - (\beta_1 Y_1(t) + \delta) X(t) \dot{Y}_1(t) = (\beta_1 X(t) - (\delta + \alpha_1)) Y_1(t)$$

with X(0) = x and $Y_1(0) = y_1$. The probability strain 2 fixes is asymptotic to 1 - q.

SIR NEAR EQUILIBRIUM

- The *i*th *basic reproduction number* is $\Re_{0,i} = \frac{\beta_i}{\delta + \alpha_i}$
- As $t \to \infty$, $(X(t), Y_1(t))$ tend to equilibrium $\left(\frac{1}{\Re_{0,1}}, \frac{1}{\beta_1}\left(\frac{\lambda}{\Re_{0,1}} \delta\right)\right)$.

Parameter values: $\lambda = \delta = \frac{1}{60}$, $\Re_{0,1} = 3$, $\alpha_1 = \frac{1}{3}$.

• If we assume that strain 2 arrives at t = 0 and strain 1 is at this endemic equilibrium, $X(t) = \frac{1}{\Re_{0,1}}$ for all t, the probability that strain 2 eventually fixes is

$$1-q = \begin{cases} 1 - \frac{\mathfrak{R}_{0,1}}{\mathfrak{R}_{0,2}} & \text{if } \mathfrak{R}_{0,2} > \mathfrak{R}_{0,1}, \\ 0 & \text{otherwise.} \end{cases}$$

► Conforms with the idea that the *R*⁰'s tell the whole story.

FIXATION PROBABILITY: PERTURBATION

- We've assumed that strain 2 arises after strain 1 is at equilibrium, but we don't need to do this.
- ► Consider a perturbation and linearize (*X*(*t*), *Y*₁(*t*)) about equilibrium:

$$\begin{split} \mathbf{X}(t) &= \frac{1}{\mathfrak{R}_{0,1}} + \boldsymbol{\xi}(t) \qquad \mathbf{Y}_1(t) = \frac{\lambda}{\delta + \alpha_1} - \frac{\delta}{\beta_1} + \boldsymbol{\eta}(t), \\ & \boldsymbol{\xi}(0) = \boldsymbol{\xi}_0, \quad \boldsymbol{\eta}(0) = \boldsymbol{\eta}_0. \end{split}$$

► Can approximate the fixation probability; get correction of the form

$$-\frac{\mathfrak{R}_{0,1}(\delta+\alpha_2)\eta_0}{\lambda\mathfrak{R}_{0,1}-\delta}\left(1-\frac{\mathfrak{R}_{0,1}}{\mathfrak{R}_{0,2}}\right)+\mathcal{O}\bigg(\left(1-\frac{\mathfrak{R}_{0,1}}{\mathfrak{R}_{0,2}}\right)^2\bigg)$$

- ► Recalling that ℜ_{0,1} > ^δ/_λ, we see that this is an decreasing function of α₂ if η₀ > 0 and increasing if η₀ < 0, where we recall that η₀ is the perturbation in the density of individuals infected with the wild-type strain 1.
- Increasing virulence increases the fixation probability when the number of the wild-type is below equilibrium levels, and decreases it when the wild-type is above the equilibrium level.
- ► Note that the virulence of each of the two strains appears, independent of ℜ_{0,i}.

ADAPTIVE DYNAMICS FOR THE TWO STRAIN SIR MODEL

We can consider the long term evolution of the virulence in the framework of *adaptive dynamics*: we assume that

- With rate *v_n* ≪ ¹/_{*n* |*n_n*, an infected host transmits a novel mutant strain; this scaling ensures that with high probability, fixation occurs before a second novel mutation can arise.}
- Mutations have small effects, and are unbiased in direction, so that a strain of virulence α gives rise to a new strain of virulence α' according to a kernel K(α, α') with mean 0, variance εσ²(α), and higher moments of order o(ε), and
- The transmissibility of the strain depends on the virulence according to some fixed function β(α).
- Here, the reproductive number is a function of the virulence:

$$\mathfrak{R}_0(\alpha) = \frac{\beta(\alpha)}{\delta + \alpha}.$$

CANONICAL DIFFUSION (CHAMPAGNAT & LAMBERT, 2007)

- ► Rescaling time by εν_n and passing to the limit ε → 0, for large values of n, the population is w.h.p. monomorphic *i.e.*, all strains have the same variance on this timescale, the fixation time is vanishingly small.
- ► The value of the virulence as a function of time, *A*(*t*) obeys a diffusion process: we can use Laplace's method to obtain a simple expression for this distribution:

• Let
$$I_e(\alpha) = n \left(1 - \frac{\delta + \alpha}{\beta(\alpha)}\right)$$
.

Letting α* be the value of α that maximises ℜ₀, the stationary distribution is approximately

$$\left(\frac{\beta(\alpha^{\star})}{\beta(\alpha)}\right)^{2} \frac{1}{\sqrt{\frac{2\pi}{2l_{e}(\alpha^{\star})\frac{\beta^{\prime\prime}(\alpha^{\star})}{\beta(\alpha^{\star})}}}} e^{-l_{eq}(\alpha^{\star})\frac{\left|\beta^{\prime\prime}(\alpha^{\star})\right|}{\beta(\alpha^{\star})}(\alpha-\alpha^{\star})^{2}}$$

$$\beta(\alpha) = (\delta + \alpha)(\beta_{max} - w(\alpha - \alpha^*)^2)$$

Parameters: n = 500, $\beta_{max} = 10$, $\delta = 3$, $\alpha^{\star} = 3$

OUTLINE

INTRODUCTION

BRANCHING PROCESS APPROXIMATIONS

FORMALIZATION

APPLICATIONS

CONCLUSIONS

CONCLUSIONS

- Looking at escape from the boundary is a natural problem in evolutionary models.
- ► The class of density dependent population processes admit a natural branching process approximation in the boundary: the resident species are approximated by their law of large numbers deterministic limit, the invaders are modelled by a branching process with time dependent rates.
- The boundary Lyapunov exponent plays the role of the Mathusian parameter for the branching process - leads to potential links with work on permanence in dynamical systems.
- ► The branching process allows us to obtain simple asymptotic expressions for fixation probabilities, times, *etc.* in models of biological interest.
- ► Further extensions(?): multiple invading types (multi-type branching processes), mutations (branching processes with immigration)

THANK YOU!