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DENSITY DEPENDENT MODELS: VERHULST’S LOGISTIC EQUATION

I One of the fundamental equations in ecology is Verhulst’s logistic
equation,

Ẏ = rY
(

1− Y
n

)
,

which describes a self-limiting population.
I n is the “carrying capacity” of the population: net growth rates are

negative when X > n.
I Replacing Y by X = Y

n , we arrive at a “nondimensionalized” version,
with only one parameter r,

Ẋ = rX(1− X).

I Sometimes, we are most interested in population fluctuations, in which
case we would like a stochastic model that approximates Verhulst’s
equation in some well-defined way.

5 / 38



INTRODUCTION BRANCHING PROCESS APPROXIMATIONS FORMALIZATION APPLICATIONS CONCLUSIONS

DENSITY DEPENDENT MODELS: A STOCHASTIC LOGISTIC PROCESS

I A natural model is a continuous time Markov birth and death process,
Y(t), with rates

qY,Y+1 = βY qY,Y−1 = δY
(

1 + γ
Y
n

)
.

I Nondimensionalizing as before, we might consider instead the process
X(n) = Y

n , with rates

q(n)

X,X+ 1
n

= nβX q(n)

X,X− 1
n

= nδX (1 + γX) .

I A quick calculation shows that

E
[
∆X(n)

]
= E

[
βX(n) − δX(n)

(
1 + γX(n)

)]
∆t and E

[(
∆X(n)

)2
]

= O
(

1
n

)
,

suggesting that as n becomes large, X(n) should in some sense approach
a limit X, satisfying a generalized logistic equation,

Ẋ = βX − δX (1 + γX) .
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DENSITY DEPENDENT POPULATION PROCESSES (KURTZ, 1970)

I In fact, we can make this convergence precise for a broad class of models,
including the logistic process and many more of biological interest.

I Let {λ(n)
l (x)}l∈Zd be a collection of non-negative functions defined on a

subset E ⊆ Rd
+. Set

E(n) := E ∩ {n−1k : k ∈ Zd},

and assume that x ∈ E(n) and λ(n)
l (x) > 0 imply x + n−1l ∈ E(n).

I The density dependent family corresponding to the λ(n)
l (x) is a sequence

{X(n)} of jump Markov processes such that X(n) has state space E(n) and
intensities

q(n)
x,y = nλ(n)

n(y−x)(x), x, y ∈ E(n).
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DENSITY DEPENDENT POPULATION PROCESSES (KURTZ, 1970)

I Intuitively, we have a population consisting of a finite number of
discrete individuals.

I Each individual has a type, which is indexed by an integer in the set
{1, . . . , d}; all individuals of a given type are identical.

I If Yi(t) is the number of individuals of type i ∈ {1, . . . , d} at time t, then
X(n)

i (t) is the corresponding nondimensionalized process:

X(n)(t) =
(

X(n)
1 (t), . . . ,X(n)

d (t)
)

=
1
n

(Y1(t), . . . ,Yd(t)) .

I e.g., Our logistic process corresponds to

λ
(n)
1 (x) = βx1 λ

(n)
−1(x) = δx1(1− γx1).
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THE “SYSTEM SIZE” n

I Much as in population genetics, we will be interested in obtaining
limiting results as n tends to infinity.

I Unlike population genetics, n need not be a fixed population size, but
rather an analogue of the carrying capacity in Verhulst’s logistic
equation.

I The number of individuals may vary stochastically, but, under the
assumption of density dependence, after a transient phase, the total
number of individuals will fluctuate about a value proportional to n.

I It can be interpreted differently in different models.
I In a Gause-Lotka-Volterra model, it measures the size of the habitat, and

thus the number of individuals it can sustain.
I In an explicit resource model e.g., of a chemostat, it might measure the

volume of the reaction vessel.
I In an epidemic models, it can be proportional to the number of uninfected

hosts - the habitat for the pathogens.
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EXAMPLE: A TWO STRAIN SIR MODEL WITH DEMOGRAPHY

I1

δ(n)+θ
(n)
1 +γ

(n)
1

��
λ(n)n // S

β
(n)
1
n I1

??

β
(n)
2
n I2

��

δ(n) // R

I2

δ(n)+θ
(n)
2 +γ

(n)
2

??

Parameter Description

κ(n)n birth/immigration rate for susceptibles
δ(n) base mortality rate

β
(n)
i contact rate for disease i

θ
(n)
i excess mortality for disease i

γ
(n)
i recovery rate for disease i

α
(n)
i α

(n)
i = θ

(n)
i + γ

(n)
i

I Population is grouped into susceptibles, S(t), infectives, Ii(t), and removed
individuals, R(t).

I Assume cross-immunity between strains, no coinfection.
I The “system-size” n is proportional to the average host population size.

The actual number of individuals fluctuates stochastically.
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DENSITY DEPENDENT POPULATION PROCESS FORMULATION

I Model is completely described by (S(t), I1(t), I2(t)) – can ignore removed
individuals.

I Get a continuous-time Markov process taking values in N3
0 with rates

P {S(t + ∆t) = S(t) + 1} = κ
(n)n∆t + o(∆t)

P {S(t + ∆t) = S(t)− 1} = δ
(n)S(t)∆t + o(∆t)

P {(S(t + ∆t), Ii(t + ∆t)) = (S(t)− 1, Ii(t) + 1)} =
β

(n)
i SIi(t)

n
∆t + o(∆t)

P {Ii(t + ∆t) = Ii(t)− 1} = (δ
(n)

+ α
(n)
i )Ii∆t + o(∆t)

I (X(n)(t),Y(n)
1 (t),Y(n)

2 (t)) = 1
n (S(t), I1(t), I2(t)) is a density dependent

family with rates

λ
(n)
e1

(x, y1, y2) = κ
(n)

λ
(n)
−e1

(x, y1, y2) = δ
(n)x

λ
(n)
−e1+e2

(x, y1, y2) = β
(n)
1 xy1 λ

(n)
−e2

(x, y1, y2) = (δ
(n)

+ α
(n)
1 )y1

λ
(n)
−e1+e3

(x, y1, y2) = β
(n)
2 xy2 λ

(n)
−e3

(x, y1, y2) = (δ
(n)

+ α
(n)
2 )y2.
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LAW OF LARGE NUMBERS (KURTZ, 1970)

I Let {λ(n)
l (x)}l∈Zd be as above and let {X(n)} be the corresponding

density-dependent family.
I Assume that there exist functions {λl(x)}l∈Zd such that

lim
n→∞

∑
l∈ZK

‖l‖ sup
x∈K

∣∣∣λ(n)
l (x)− λl(x)

∣∣∣ = 0 and
∑
l∈Zd

‖l‖ sup
x∈K

λl(x) <∞

for all compact sets K ⊂ E.
I Let F(x) =

∑
l∈Zd lλl(x), and suppose F is locally Lipschitz.

I Suppose X(n)(0)→ x0 and let X(t, x0) satisfy

Ẋ = F(X).

with X(0, x0) = x0

I Then, for any fixed T > 0,

lim
n→∞

sup
t≤T

∣∣∣X(n)(t)− X(t, x0)
∣∣∣ = 0 a.s.
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LAW OF LARGE NUMBERS: EXAMPLES

I As we might hope, for the stochastic logistic model, the limiting
deterministic process is

Ẋ = βX − δX (1 + γX) .

I For the two strain SIR model with demography, if we assume that
λn = λ+ O

( 1
n

)
, δn = δ + O

( 1
n

)
, etc. Then the law of large numbers limit

(X(t),Y1(t),Y2(t)) satisfies the standard ODE for multi-strain SIR:

Ẋ(t) = κ− (β1Y1(t) + β2Y2(t) + δ) X(t)
Ẏi(t) = (βiX(t)− (δ + αi)) Yi(t)
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CENTRAL LIMIT THEOREM (KURTZ, 1971)

I Assume in addition that

lim
n→∞

√
n
∑
l∈ZK

‖l‖ sup
x∈K

∣∣∣λ(n)
l (x)− λl(x)

∣∣∣ = 0 and
∑
l∈Zd

‖l‖2 sup
x∈K

λl(x) <∞.

I Let V(n) =
√

n(X(n) − X) and suppose that V(n)(0)→ V(0).
I Then, V(n) ⇒ V in DE[0,∞), where V satisfies

V(t) = V(0) +

∫ t

0
DF(X(s, x0))V(s) ds +

∑
l∈Zd

l
∫ t

0

√
λl(X(s), x0) dBl(s)

and the Bl are independent standard Brownian motions.
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LARGE DEVIATIONS PRINCIPLE (WENTZELL, 1976)
I Let

H(x,α) =
∑
l∈Zd

(eα·l − 1)λl(x),

L(x,β) = sup
α∈E

α · β −H(x,α),

and, for ϕ(t) ∈ CE[0,T] satisfying ϕ(0) = x0, set

Ix0,T(ϕ) =

∫ T

0
L(ϕ(t), ϕ̇(t)) dt

I Provided
sup
x∈Rn

H(x,α) <∞,

and

lim
η→0

sup
‖x−y‖<η

L(y,β)− L(x,β)

1 + L(x,β)
= 0

for all α,β ∈ Rd, then Ix,T(ϕ) is a good rate function for the family X(n) .
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ESCAPING FROM THE BOUNDARY

I All of the previous explicitly or implicitly assumed that there exists
ε > 0 such that X(n)

i (t) > ε i.e., the absolute number of individuals is
greater than εn.

I Once this is true, the process is essentially deterministic, with an
exponentially small probability of moving macroscopically away from
the trajectories of a deterministic process.

I However, in many problems of evolutionary interest, we are most
concerned about the stochastic process starting from a single individual.

I The primary question then becomes whether that individual can
produce sufficiently many offspring to pass into the deterministic
regime i.e., escape the boundary.

I As we’ve already seen several times since yesterday, we can approach
this problem via branching processes. My question (which I won’t
answer completely today) is to ask how generally we can apply this
approach.
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DENSITY DEPENDENT BIRTH-DEATH PROCESSES

I For escape from the boundary to be an interesting question, we need an
absorbing boundary. For simplicity, assume that {x : x1 = 0} is the
boundary of interest, and that

λ
(n)
l (x) =


β

(n)
1,l (x)x1 if l = le1

δ
(n)
1 (x)x1 if l = −e1

0 for all other l with l1 6= 0

I Thus, F1(x) = f1(x)x1 for

f1(x) =
∞∑
l=1

lβ1,l(x)− δ(n)
1 (x)

and {x : x1 = 0} is invariant for the law of large numbers dynamical
system.

I I will further assume that there exists a compact set K that contains a
neighbourhood of the origin and is invariant under the flows of F(x).
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“BRANCHING PROCESS APPROXIMATION”

I Let x0 ∈ {x : x1 = 0} and let X(t, x0) be the corresponding law of large
numbers trajectory.

I By our previous assumption, X(t, x0) ∈ {x : x1 = 0} for all t > 0.
I Let Z(t) be the time-inhomogeneous branching process with rates

βi,l(X(t, x0)) and δi(X(t, x0)),

i.e., Z(t) is obtained by replacing the full stochastic process X(n)(t) by it’s
deterministic approximation in the definition of X(n)

1 (t).
I Morally, Z(t) is the “branching process approximation”, but to justify

that, we need to do some more work.
I First, let’s look at some properties of Z(t)
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THE BRANCHING PROCESS Z(t)
I Let β̄(x) =

∑∞
l=1 lβ1,l(x) and β̂(x) =

∑∞
l=1 l2β1,l(x)

I Z(t) has mean m(t) = E[Xi(t)] = e
∫ t

0 β̄1(X(u,x0))−δ1(X(u,x0)) du and variance
Var(Z(t)) =

∫ t
0 e2

∫ t
s β̄(X(u,x0))−δ(X(u,x0)) du

(
β̂(X(s, x0)) + δ(X(s, x0))

)
ds.

I β̂(x) ≥ β̄(x), with equality if and only if β1,l(x) ≡ 0 for l > 1.
I Let q(x0, t) = P{X1(t) = 0}

∫ t
0 e−

∫ s
0 β̄1(X(u,x0))−δ1(X(u,x0)) du

δ1(X(s, x0)) ds

1 +
∫ t

0 e−
∫ s

0 β̄1(X(u,x0))−δ1(X(u,x0)) du
δ1(X(s, x0)) ds

≤ q(x0, t)

≤

∫ t
0 e−

∫ s
0 β̄1(X(u,x0))−δ1(X(u,x0)) du

(
δ1(X(s, x0)) +

β̄1(X(s,x0))−β̂(X(s,x0))

2

)
ds,

1 +
∫ t

0 e−
∫ s

0 β̄1(X(u,x0))−δ1(X(u,x0)) du
(
δ1(X(s, x0)) +

β̄1(X(s,x0))−β̂(X(s,x0))

2

)
ds
,

I Thus, ∫ t

0
e−
∫ s

0 β̄1(X(u,x0))−δ1(X(u,x0)) duδ1(X(s, x0)) ds <∞

I The convergence of the integrals on the left and right, say I− and I+ give
necessary and sufficient conditions, respectively, for the process to have
a non-zero probability of persisting indefinitely, but unfortunately,
neither is necessary and sufficient.
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SUPERCRITICAL PROCESSES

I Assume I−, I+ <∞.
I Then, W(t) = Z(t)

m(t) is a martingale with E [W(t)] = 1 and

W := lim
t→∞

W(t)

exists pointwise almost surely.
I Provided

E
[
W(t)2

∣∣∣Z(s) = 1
]

= 1 +

∫ t

s
e−2

∫ τ
0 β̄(u)−δ(u) du

(
β̂(τ) + δ(τ)

)
dτ,

is bounded for all s, t, W(t)→ W in L2(P) as well abd E [W] = 1.
I If we assume that

inf
s≥0

∫ ∞
s

e−
∫ τ

s
∑∞

n=1 βn(u)+δ(u) duδ(τ) dτ > p > 0

i.e., the probability of an individual dying without offspring is bounded
below, then

q(∞, x0) := lim
t→∞

q(t, x0) = P {W = 0} .
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LYAPUNOV EXPONENTS AND MALTHUSIAN PARAMETERS

I Let χ1(x0) = limt→∞
1
t

∫ t
0 f1(X(u, x0)) du.

I χ1(x0) is also a boundary Lyapunov exponent for the dynamical system.
I If x0 is in the basin of a stable attractor x?, then χ1(x0) = f1(x?).
I If ω(x0) is a stable limit cycle of period T, say γ(t), then
χ1(x0) = 1

T

∫ T
0 fd(γ(u)) du.

I By Birkhoff’s ergodic theorem, χ1(x0) =
∫

fd(x)µ(dx) for µ-almost all x,
for some ergodic measure µ.

I If χ1(x0) > 0, then I+ <∞ and the probability of reaching εN is > 0.
I If χ1(x0) < 0, then I− =∞ and the probability of reaching εN is 0.
I If I+ <∞, then χ1(x0) ≥ 0.
I If I− =∞, then χ1(x0) ≤ 0.
I Cases when χ1(x0) = 0 are more subtle; partial results available.
I Thus, χ1(x0) is analogous to the Mathusian parameter for a

homogeneous branching process.
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MALTHUSIAN PARAMETERS AND HITTING TIMES

I If the limit converges sufficiently fast (e.g., in the cases of a stable fixed
point or stable limit cycle, convergence is exponentially fast)

φ = lim
t→∞

e−χ1(x0)tm(t)

exists and is finite.
I If in addition, χ1(x0) > 0, then

lim
t→∞

e−χ1(x0)tZ(t) = W a.s.

and in L2.
I In particular, if M > 0 and τM = inf{t : Z(t) ≥ M}, then

τM −
1

χ1(x0)
ln M→ − 1

χ1(x0)
(ln W + lnφ).

so that E1[τM]
ln M → 1

χ1(x0)
.

I One can also show that if χ1(x0) < 0 and τ0 = inf{t : Z(t) = 0}, then
EM[τ0]

ln M → 1
|χ1(x0)| .
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TRAPPING BRANCHING PROCESSES
Fix X(0) = x0 ∈ {x : x1 = 0} ∩K and fix ε > 0 sufficiently small that

Kx0,ε(t) = {x ∈ Rd
+ : ‖x− X(t)‖ < ε} and Kx0,ε = ∪t≥0Kx0,ε(t)

are contained in K.
Under the assumptions of the law of large numbers, there exists nε such that∑

l

l sup
x∈K

∣∣∣β(n)
1,l (x)− β1,l(x)

∣∣∣+
∣∣∣δ(n)

1 (x)− δ1(x)
∣∣∣ < ε

for n ≥ nε. Set

εl(K) =

supx∈K

∣∣∣β(nε)
1,l (x)− β1,l(x)

∣∣∣ if l > 1

supx∈K

∣∣∣δ(n)
1 (x)− δ1(x)

∣∣∣ if l = −1

and let

β
+ε
1,l (t) = sup

x∈Kx0,ε(t)
β1,l(x) + εl(K), β

−ε
1,l (t) = inf

x∈Kx0,ε(t)
β1,l(x)− εl(K),

δ
+ε
1 (t) = sup

x∈Kx0,ε(t)
δ1(x) + ε−1(K), and δ

−ε
1 (t) = inf

x∈Kx0,ε(t)
δ1(x)− ε−1(K).

Under the assumptions of the central limit theorem, we can take ε = εn

provided lim infn→∞
√

nεn > 0.
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COUPLING

I Let τi,ε,n = inf{t : X(n)
i (t) ≥ εn}.

I If the remaining Lyapunov exponents are negative, under suitable
conditions (Lyapunov-Perron regularity), with high probability, one can
construct coupled branching processes Z(t) (as previously), Z−ε(t) with
rates

β−εi,l (t) and δ+ε
i (t)

and Z+ε(t) with rates

β+ε
1,l (t) and δ−ε1 (t),

such that
Z−ε(t) ≤ Z(t) ≤ Z+ε(t)

and
Z−ε(t) ≤ X(n)

i (t) ≤ Z+ε(t)

for all t < τ1,ε,n and n sufficiently large.
I The coupling holds provided τi,ε,n > τ1,ε,n for all i > 1; the Lyapunov

conditions ensure this happens with high probability.
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TWO-STAGE COUPLING
In practice, one needs to consider two “layers” of coupling. For the first layer,
we can choose sequences εn and tn ∝ ln n so that

I εn → 0 and
√

nεn →∞.
I If X(n)

1 (tn) > 0, then
√

n� X(n)
1 (tn)� εnn, and

I Z±εn (tn)

E[Z±εn,(tn)]
→ W, and thus X(n)

1 (tn)

E
[

X(n)
1 (tn)

] → W

Once X(n)
1 (tn)�

√
n, nonlinear terms can prevent us from “squeezing” the

couplings together.
I Fix ε > 0 and let Z±εj be i.i.d. copies of Z±ε started from one individual:

X(n)
1 (tn)∑
j=1

Z−εj (t) ≤ X(n)
1 (t + tn) ≤

X(n)
1 (tn)∑
j=1

Z+ε
j (t).

I Let qε,± be extinction probabilities for Z±ε. Then,

q
X(n)

1 (tn)

ε,+ ≤ P (τ1,ε,n = +∞) ≤ q
X(n)

1 (tn)

ε,− ,

so, if X(n)
1 (tn) > 0, P (τ1,ε,n = +∞)→ 1 as n→∞.
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CONSEQUENCES

I limn→∞ P
{

X(n)
1 (t) = 0

}
= q(x0, t) = P{Z(t) = 0} and

limn→∞ P
{

X(n)
i (t) > εn

}
= 1− q(x0,+∞).

I Thus, the values escape probabilities are independent of ε (though, to be
clear the proof requires a suitable choice of ε.

I The law of large numbers also tells us that

X(n)
1 (t + tn)

X(n)
1 (tn)

→ e
∫ t

0 f1(X(u,x0) du,

i.e., that the trajectories are essentially deterministic and follow the
deterministic trajectories once the population has reached εnn
individuals. One can use expressions for τ1,ε,n to obtain more detailed
estimates when the trajectory approaches a fixed point x?.

I One can also proceed similarly with estimates of the extinction time to
obtain the time for a selective sweep, e.g., for an invader 1 replacing a
resident 2, and a sweep from a saddle x0 to a fixed point x?, one has

E1[τ1,ε,n]

ln n
→ 1

χ1(x0)
+

1
χ2(x?)

.
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TWO STRAIN SIR MODEL

Consider a single individual infected with strain 2 entering a population
where strain 1 is endemic. Then, as n→∞, the probability strain 2 dies out is

q =

∫∞
0 e−

∫ s
0 β2X(u)−(δ+α2)) du(δ + α2)) ds

1 +
∫∞

0 e−
∫ s

0 β2X(u)−(δ+α2)) du(δ + α2)) ds
,

where X(t) and Y1(t) satisfy

Ẋ(t) = λ− (β1Y1(t) + δ) X(t)
Ẏ1(t) = (β1X(t)− (δ + α1)) Y1(t)

with X(0) = x and Y1(0) = y1. The probability strain 2 fixes is asymptotic to
1− q.
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SIR NEAR EQUILIBRIUM

I The ith basic reproduction number is R0,i = βi
δ+αi

I As t→∞, (X(t),Y1(t)) tend to equilibrium
(

1
R0,1

, 1
β1

(
λ

R0,1
− δ
))

.

Parameter values: λ = δ = 1
60 , R0,1 = 3, α1 = 1

3 .

I If we assume that strain 2 arrives at t = 0 and strain 1 is at this endemic
equilibrium, X(t) = 1

R0,1
for all t, the probability that strain 2 eventually

fixes is

1− q =

{
1− R0,1

R0,2
if R0,2 > R0,1,

0 otherwise.

I Conforms with the idea that the R0’s tell the whole story.
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FIXATION PROBABILITY: PERTURBATION
I We’ve assumed that strain 2 arises after strain 1 is at equilibrium, but we

don’t need to do this.
I Consider a perturbation and linearize (X(t),Y1(t)) about equilibrium:

X(t) =
1

R0,1
+ ξ(t) Y1(t) =

λ

δ + α1
−

δ

β1
+ η(t),

ξ(0) = ξ0, η(0) = η0.

I Can approximate the fixation probability; get correction of the form

−R0,1(δ + α2)η0

λR0,1 − δ

(
1− R0,1

R0,2

)
+ O

((
1− R0,1

R0,2

)2
)

I Recalling that R0,1 >
δ
λ

, we see that this is an decreasing function of α2 if
η0 > 0 and increasing if η0 < 0, where we recall that η0 is the
perturbation in the density of individuals infected with the wild-type
strain 1.

I Increasing virulence increases the fixation probability when the number
of the wild-type is below equilibrium levels, and decreases it when the
wild-type is above the equilibrium level.

I Note that the virulence of each of the two strains appears, independent
of R0,i.
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ADAPTIVE DYNAMICS FOR THE TWO STRAIN SIR MODEL

We can consider the long term evolution of the virulence in the framework of
adaptive dynamics: we assume that

I With rate νn � 1
n ln n , an infected host transmits a novel mutant strain;

this scaling ensures that with high probability, fixation occurs before a
second novel mutation can arise.

I Mutations have small effects, and are unbiased in direction, so that a
strain of virulence α gives rise to a new strain of virulence α′ according
to a kernel K(α, α′) with mean 0, variance εσ2(α), and higher moments
of order o(ε), and

I The transmissibility of the strain depends on the virulence according to
some fixed function β(α).

I Here, the reproductive number is a function of the virulence:

R0(α) =
β(α)

δ + α
.

33 / 38



INTRODUCTION BRANCHING PROCESS APPROXIMATIONS FORMALIZATION APPLICATIONS CONCLUSIONS

CANONICAL DIFFUSION (CHAMPAGNAT & LAMBERT, 2007)

I Rescaling time by ενn and passing to the limit ε→ 0, for large values of
n, the population is w.h.p. monomorphic i.e., all strains have the same
variance – on this timescale, the fixation time is vanishingly small.

I The value of the virulence as a function of time, A(t) obeys a diffusion
process: we can use Laplace’s method to obtain a simple expression for
this distribution:

I Let Ie(α) = n
(

1− δ+α
β(α)

)
.

I Letting α? be the value of α that maximises R0, the stationary
distribution is approximately(

β(α?)

β(α)

)2 1√
2π

2Ie(α?)
|β′′(α?)|
β(α?)

e−Ieq(α
?)
|β′′(α?)|
β(α?)

(α−α?)2
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β(α) = (δ + α)(βmax − w(α− α?)2)

Here I am assuming the following transmission function:  ߚሾα_ሿ: ൌ ሺ݀  ሻሺβmaxߙ െ wሺߙ െ αoptሻଶሻ. 

I plot below equilibrium distributions for various values of w which is a parameter that controls the 
intensity of selection around the optimum αopt. Other parameter values: n=500, d=3, βmax ൌ 10, 
αopt ൌ 3. 

In Black the expected distribution. 

In Red the expected distribution when one considers only the strong selection term (no effect due to 
the difference in variance between the strains). 

In Green Todd’s approx. The approx is doing a very good job for a broad range of scenarios but when 
w is vanishingly small it does not work that well. 

 

 

 

W=10‐1  

W=10‐2  

0 2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

0.6

P
ro
ba
bi
lit
y
di
st
rib
ut
io
n

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

Parasite virulence

Here I am assuming the following transmission function:  ߚሾα_ሿ: ൌ ሺ݀  ሻሺβmaxߙ െ wሺߙ െ αoptሻଶሻ. 

I plot below equilibrium distributions for various values of w which is a parameter that controls the 
intensity of selection around the optimum αopt. Other parameter values: n=500, d=3, βmax ൌ 10, 
αopt ൌ 3. 

In Black the expected distribution. 

In Red the expected distribution when one considers only the strong selection term (no effect due to 
the difference in variance between the strains). 

In Green Todd’s approx. The approx is doing a very good job for a broad range of scenarios but when 
w is vanishingly small it does not work that well. 

 

 

 

W=10‐1  

W=10‐2  

0 2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

0.6

P
ro
ba
bi
lit
y
di
st
rib
ut
io
n

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

Parasite virulence

W=10‐3  

W=10‐4  

W=10‐5  

0 2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

0.6

P
ro
ba
bi
lit
y
di
st
rib
ut
io
n

0 1 2 3 4 5 6
0

0.5

1

Parasite virulence

Parameters: n = 500, βmax = 10, δ = 3, α? = 3
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CONCLUSIONS

I Looking at escape from the boundary is a natural problem in
evolutionary models.

I The class of density dependent population processes admit a natural
branching process approximation in the boundary: the resident species
are approximated by their law of large numbers deterministic limit, the
invaders are modelled by a branching process with time dependent
rates.

I The boundary Lyapunov exponent plays the role of the Mathusian
parameter for the branching process - leads to potential links with work
on permanence in dynamical systems.

I The branching process allows us to obtain simple asymptotic
expressions for fixation probabilities, times, etc. in models of biological
interest.

I Further extensions(?): multiple invading types (multi-type branching
processes), mutations (branching processes with immigration)
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THANK YOU!
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