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Abstract. We study the Poisson equation Lu+f = 0 in IRd, where L is the infinitesi-
mal generator of a diffusion process. In this paper, we allow the second order part of the
generator L to be degenerate, provided a local condition of Doeblin type is satisfied, so
that, if we also assume a condition on the drift which implies recurrence, the diffusion
process is ergodic. The equation is understood in a weak sense. Our results are then
applied to diffusion approximation.

1. Introduction

This is the third of a series of papers devoted to the study of the Poisson equation in
IRd and diffusion approximation. In this paper we consider the degenerate case.

The study of diffusion approximation (i.e. obtaining the limit of Y ε in (19) below)
was initiated by Khasminskii [5], and developed by many authors, including Papani-
colaou, Stroock, Varadhan [9] and Kushner [8]. Such results, and the formulation of
the limiting stochastic differential equation, require the solution of a Poisson equation
Lu + f = 0, where L is the infinitesimal generator of a Markov process (at least in the
case where the disturbance is Markovian; in the non–Markov case a substitute of the
Poisson equation replaces it), whose right hand side f is the highly oscillating coefficient
of the approximating differential system. When the disturbance in the approximating
ODE is compact valued, the Poisson equation is formulated in a compact set, and the
corresponding theory is well known; the result can be proved under quite explicit condi-
tions on the coefficients (see Ethier, Kurtz [2], chapter 12, section 2). When however the
disturbance of the diffusion takes values in all of IRd, there was until recently no way of
deriving estimates for the solution of the Poisson equation in terms of explicit conditions
on the data, see chapter 12, section 3 in [2].

This was the starting point for our work. We focused on the case where the distur-
bance is an ergodic IRd–valued diffusion process, and the ergodicity follows from explicit
conditions on the coefficients. In the first paper [13], using mainly probabilistic argu-
ments (together with some estimates from the theory of partial differential equations),
we solved the Poisson equation in IRd for the generator of an elliptic and ergodic dif-
fusion, and obtained estimates (which we believe are rather sharp) of the solution. We
then used that result in order to establish a diffusion approximation result under very
explicit conditions on the coefficients. In the second paper [14], we considered the case
where the coefficients of the equation (18) below depend on the Y ε process. This forced
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us to study a Poisson equation where both the PDE operator and the right hand side
depend on a parameter, and establish regularity results of the solution in terms of that
parameter. We were forced for that purpose to use essentially results from the PDE
theory.

The aim of this third paper is to consider the situation of the first paper, where we
now relax the ellipticity assumption. While a condition on the behavior of the drift at
infinity (condition (Ab) below) implies the positive recurrence, irreducibility, which was
in our previous works a consequence of ellipticity, is now a consequence from a type of
“local Doeblin condition” (condition (D`) below). While those conditions are not explicit
conditions on the coefficients of the diffusion, there are implied both by the ellipticity
assumption, and by the “restricted Hörmander condition” (i.e. the assumptions that the
diffusion vector fields, together with their brackets of arbitrary order, span the whole
space at each point). We further give one example where none of these conditions hold,
while our condition (D`) is satisfied, together with the additional “regularity” condition
(AT ).

We then consider a weak formulation of the Poisson equation, which is solved by the
same probabilistic formula as in the elliptic case. We finally apply those results to the
diffusion approximation problem. We prove weak convergence in the sense of the S–
topology of Jakubowski [4]. The difficulty in proving convergence in a stronger sense
is related to the lack of smoothness of the solution of the Poisson equation. Let us
also mention that our diffusion approximation is “less general” than the one considered
in [13] (except that we relax the ellipticity condition, as explained above), in that the
approximating differential system does not contain a stochastic integral (in other words,
the coefficient H in [13] does not appear here).

Let us point out that precise regularity of the solution of the Poisson equation under
the Hörmander condition follows from Theorem 18 in Rothschild, Stein [16].

The paper is organized as follows. Section 2 contains our assumptions, as well as some
essential ergodicity results from Veretennikov [23]. Section 3 is devoted to the study
of one example of degenerate coefficients, which satisfy our assumptions. The Poisson
equation is studied in section 4, while the diffusion approximation result is derived in
section 5.

2. Moment bounds and convergence to the invariant measure

Consider the stochastic Itô equation

(1) dXt = b(Xt)dt+ σ(Xt)dBt, X0 = x ∈ IRd,

where {Bt, t ≥ 0} is a k-dimensional Brownian motion, b is a locally Lipschitz vector-
function of dimension d, σ is a d×k matrix-valued locally Lipschitz function. We assume
that σσ∗ is bounded and possibly degenerate, and that the unique solution of (1) satisfies

(AT ) ∀R > 0, sup
|x|≤R

IEx inf{t ≥ 0 : |Xt| ≥ R + 1} <∞.
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Though we consider the degenerate case, we will need the following notations: let λ−,
λ+ and Λ be the best constants such that for any x ∈ IRd \ {0},

0 ≤ λ− ≤ (σσ∗(x)x/|x|, x/|x|) ≤ λ+, T r σσ
∗(x)/d ≤ Λ.

Notice that λ± are not exactly the upper and lower ellipticity constants.
Let us introduce the following recurrence condition:

(Ab) lim
|x|→∞

(b(x), x) = −∞.

Note that this condition prevents the solution of the SDE (1) from exploding, so that the
process {Xt} is well defined for all t > 0. Let R > 0 and τ = τR = inf(t ≥ 0 : |Xt| ≤ R).

Finally, we assume the following “local Doeblin” type condition.
Let B ⊂ Rd and

τB
0 := inf{t ≥ 0 : Xt ∈ B},

and (in the following formula, tB > 0 depends only on B)

τB
`+1 := inf{t ≥ τB

` + tB : Xt ∈ B}.
Define the “process in B” in discrete time as XB

n := XτB
n

. Denote by PB(n, x, dx′) the

n-step transition probability of (XB
n ). We say that the local Doeblin condition holds

true for the process {Xt} if for any R′ > 0 there exists R > R′ such that the process
in B = BR := {x ∈ Rd : |x| ≤ R} satisfies the following: there exists an integer
n0 = n0(R) > 0 such that

(D`) inf
|x|,|x′|≤R

∫

B

min

{

PB(n0, x, dx
′′)

PB(n0, x′, dx′′)
, 1

}

PB(n0, x
′, dx′′) =: q(R, n0) > 0,

where P B(n0,x,dx′′)
P B(n0,x′,dx′′)

is defined as follows. Let

PB(n0, x, dx
′′) = ϕx,x′(x′′)PB(n0, x

′, dx′′) + νx,x′(dx′′),

be the decomposition of PB(n0, x, dx
′′) into its absolutely continuous part w.r.t.

PB(n0, x
′, dx′′), and the part νx,x′(dx′′) which is singular w.r.t. PB(n0, x

′, dx′′). Then

PB(n0, x, dx
′′)

PB(n0, x′, dx′′)
:= ϕx,x′(x′′).

The assumption (D`) requires, in particular, that the mass of the singular part is not
close to one, and moreover, it imposes a certain quantitative estimate on the total vari-
ation norm for the difference of two measures uniformly on the compact B. We assume
throughout the paper that the process {Xt} satisfies this assumption.We shall give in
the next section one example with a non elliptic diffusion coefficient, for which condi-
tions (AT ) and (D`) hold. The proof that that example satisfies our conditions will use
stronger conditions, which are easier to verify.

We note that the two assumptions (Ab) + (D`) imply the existence and uniqueness
of an invariant probability measure. For this and the proof of the next proposition, see
Veretennikov [23]. Note that in [23] the “process in B” is defined in a slightly different
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manner, since it is extracted from the sequence {Xn, n ∈ IN} rather than from {Xt, t ≥ 0}
as defined here. However the adaptation of those proofs is rather obvious.

Proposition 1. Under the assumptions (AT ), (Ab) and (D`), for all m′ > m + 2 > 2,
there exists C such that for all x ∈ IRd, t > 0,

(2) IEx|Xt|m ≤ C(1 + |x|m′

).

Moreover

(3) IEµ|Xt|m <∞, ∀m > 0,

and for any k > 0, 2k + 2 < m,

(4) var(µx
t − µ) ≤ C(1 + |x|m)(1 + t)−(k+1),

where “var” denotes the total variation norm of a signed measure over the Borel σ–field,
µx

t is the law of Xt when X0 = x, µ is the unique invariant measure of X and IEµ means
the expectation w.r.t. µ.

Proposition 2. Let the assumptions (AT ), (Ab) and (D`) be satisfied. Then for any
p > 0,

IEx

(

sup0≤t′≤t |Xt′ |p
)

= ◦(
√
t), as t→ ∞.

The proof of Proposition 2 is similar to that in [13], hence, we drop it. The following
Corollary will be used in section 4 below, for the proof of tightness.

Corollary 1. Under the same assumptions, for any T > 0, p > 0,

εIEx

(

sup
0≤t≤T

|Xt/ε2 |p
)

→ 0, as ε → 0.

3. Sufficient conditions and one example

In this section, we first state two conditions, which we prove to be respectively stronger
than (AT ), and stronger than (D`). Then we give one example with a degenerate diffusion
coefficient, which satisfies those stronger conditions.

Proposition 3. A sufficient condition for condition (AT ) to hold is that for each R > 0,
there exists f ∈ C(IRd, [0, 1]) with supp(f) ⊂ {x; |x| ≥ R + 1} and t0 such that

inf
|x|≤R

IExf(Xt0) > 0.

Proof It follows from our condition that there exists c > 0 such that for all x ∈ IRd,
|x| ≤ R,

IPx(|Xt0| ≥ R + 1) ≥ c.

Let

SR+1 = inf{t; |Xt| ≥ R + 1}.
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It follows from the Markov property of {Xt, t ≥ 0} and the previous estimate that for
all x ∈ IRd,

IPx(SR+1 > nt0) ≤ (1 − c)n.

The result follows. �

We now formulate what we call the condition (Ds`) (“strong local Doeblin condition”).
For each R > 0, there exists AR ⊂ BR, tR > 0, c(R) ≥ 1 such that for all x ∈ BR, the

transition probability of our diffusion process {Xt, t ≥ 0} satisfies

(Ds`)







p(tR, x; dy) = q(tR, x, y)µ(dy) + ν(tR, x; dy)

1

c(R)
≤ q(t, x, y) ≤ c(R), y ∈ AR,

where µ is a probability measure on IRd such that µ(AR) > 0.
Note that the upper bound here is not actually necessary for our aims; however, it

holds along the lower bound in all cases known to the authors.

Proposition 4. The strong local Doeblin condition (Ds`) implies the local Doeblin con-
dition (D`).

Proof We choose an arbitrary R > 0, and denote B = BR. We decompose the
transition probability of the process in B (defined with tB = tR) as follows. For x ∈ B,

PB(1, x, dx′) = IPx(XtR ∈ dx′, XtR ∈ B) + ν ′(x, dx′).

It follows from (Ds`) that

IPx(XtR ∈ dx′, XtR ∈ B) ≥ 1

c(R)
1AR

(x′)µ(dx′).

Hence (D`) holds with n0 = 1 and q(R, 1) = µ(AR)
c(R)

. �

Example 1. Let b and σ0 satisfy the above conditions (AT ) and (Ab), b ∈ C1(IRd, IRd),
σ0 ∈ C2(IRd, IRd×d), and σ0 be uniformly non-degenerate. Let α : IRd → [0, 1] be a C1

mapping, such that the set {α = 0} is the union of countably many disjoint connected
closed subsets of IRd, such that each bounded subset of IRd intersects at most finitely
many of those, and the set {α > 0} is connected. We now assume that for some δ > 0
such that {α > δ} is connected and for each R′ > 0 there exists R > R′ such that the set
{|x| = R} does not intersect the set {α ≤ δ}, and moreover that for any R > 0, there
exists M such that the solution of

dx

dt
(t) = b(x(t))

exits in time less than M from {α ≤ δ}, whenever x(0) ∈ {α < δ} ∩ BR. Let σ(x) =
α(x)σ0(x). Then the pair (b, σ) satisfies the assumptions (AT ) and (D`).

We first prove the

Lemma 1. The condition of Proposition 3 is satisfied in the Example 1
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Proof We consider the stochastic equation for the process {Xt, t ≥ 0}, written in
Stratonovich form (the reason for that is that we shall soon use Stroock and Varadhan’s
support theorem), i.e.

dXt = b̃(Xt)dt+ σ(Xt) ◦ dBt,

where

b̃i(x) = bi(x) −
1

2

(

∑

j,k

∂σij

∂xk
σkj

)

(x).

We will use below the notation (∇σ)σ0 for the vector 2α−1(b− b̃). We now consider the
controlled ODE







dy

dt
(t) = b̃(y(t)) + σ(y(t))u(t),

y(0) = X0,

where we choose the feedback control u(t) = Φ(y(t)), with

Φ(x) =

{

1
2
σ−1

0 (∇σ)σ0(x), if α(x) > 0,

0, if α(x) = 0.

It is easy to check that {y(t), t ≥ 0} coincides with the solution of the ODE

dx

dt
(t) = b(x(t)), x(0) = X(0).

Let
τ = τ(x(0)) = inf{t > 0; α(x(t)) ≥ δ}.

Choose ρ = (2‖∇α‖∞,R)−1δ, g ∈ C(IRd; [0, 1]) with supp(g) ⊂ {x, |x| ≤ ρ} and g ≡ 1 on
a neighborhood of 0. We have used the notation

‖∇α‖∞,R = sup
|x|≤R

‖∇α(x)‖.

The above considerations and Stroock and Varadhan’s support theorem (cf. [17]) imply
that

IEx(0)g(Xτ − x(τ)) > 0.

Moreover, that last quantity depends continuously on x(0), hence it is bounded away
from zero for x(0) ∈ {α ≤ δ}∩BR. Hence our construction yields that with a probability
which is bounded away from zero, α(Xτ ) ≥ δ/2, where τ ≤ M is a deterministic time
which depends only on x(0). τ = 0 whenever α(x(0)) ≥ δ.

Let f ∈ C(IRd, [0, 1]) satisfy supp(f) ⊂ {x; |x| ≥ R + 1} and f(x) = 1, whenever
|x| ≥ R + 2. Using again Stroock and Varadhan’s support theorem, we have that

inf
x∈BR

inf
x′∈BR∩{α≥δ/2}

IEx′f(X2M−τ(x)) > 0.

Proposition 3 with t0 = 2M and the above f now follows from the Markov property. �

Lemma 2. The pair (b, σ) from Example 1 satisfies the condition (Ds`).
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Proof It follows from the proof of Lemma 1 that there exists ξ > 0 and a mapping
τ ∈ C(BR, [0,M ]) such that for all x ∈ BR,

IPx(α(Xτ(x)) ≥ δ/2) ≥ ξ.

Next, we choose a closed ball A ⊂ intBR ∩ {α > 0}. Using again Stroock and
Varadhan’s support theorem, we deduce that there exists N > M such that

inf
x∈BR

inf
x′∈BR∩{α≥δ/2}

IPx′(XN−τ(x) ∈ A) > 0.

Combining the above two statements with the help of the Markov property, we obtain
that

(5) inf
x∈BR

IPx(XN ∈ A) > 0.

Next we choose another closed ball A′ such that A ⊂ intA′ ⊂ A′ ⊂ BR ∩ {α > 0}.
For any function ϕ ∈ C(A′, IR+), with supp(ϕ) ⊂ A, we consider the solution

{u(t, x), 0 ≤ t ≤ 1, x ∈ A′} of the backward linear parabolic PDE (here a(x) = σσ∗(x))










∂u

∂t
(t, x) +

1

2

∑

ij

aij(x)
∂2u

∂xi∂xj
(t, x) +

∑

i

bi(x)
∂u

∂xi
(t, x) = 0, 0 < t < 1, x ∈ A′,

u(1, x) = ϕ(x), u(t, x) = 0, x ∈ ∂A′.

We have that for all x ∈ A′, u(0, x) = IExϕ(Y1), where the process {Yt, 0 ≤ t ≤ 1} is the
solution of the SDE (1), which is killed when it reaches the boundary of the set A′. It
follows from the parabolic Harnack inequality, see e. g. Krylov [7] page 131 that there
exists N > 0 such that

sup
x,x′∈A

u(0, x)

u(0, x′)
≤ N,

i. e.

sup
x,x′∈A

Exϕ(Y1)

Ex′ϕ(Y1)
≤ N,

for all ϕ ∈ C(A′, IR+), with supp(ϕ) ⊂ A. We choose one particular point x0 ∈ A, and
define µ(dy) = IPx0(Y1 ∈ dy). It follows from the above that for each x ∈ A, IPx(Y1 ∈ dy)
is absolutely continuous with respect to µ, and moreover the Radon–Nikodym derivative
q(x, y) satisfies

(6) N−1 ≤ q(x, y) ≤ N,

for all x, y ∈ A.
Condition (Ds`) now follows from (5), (6) and the Markov property.

Remark 1. It is rather clear that one can verify our assumptions in many other situa-
tions, where det(a(x)) may vanish in a similar fashion as α(x) does in Example 1. All
what is to be verified is a condition like (5), both for a set of the same type as A, and
for Bc

R+1.
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Remark 2. In the strictly elliptic case the same arguments based on Harnack’s inequality
establishes the condition (Ds`), provided a = σσ∗/2 is continuous, and b locally bounded.
The same is true, with µ = Lebesgue measure, whenever the coefficients are smooth, and
the Lie algebra of vectors fields generated by the columns of the matrix σ has full rank
at any point of IRd.

4. The Poisson equation in IRd

We consider the Poisson equation in IRd

(7) Lu(x) = −f(x),

where

L =
∑

aij(x)∂xi
∂xj

+
∑

bi(x)∂xi
,

with

a(x) = σσ∗(x)/2,

and f ∈ C(IRd) satisfies

|f(x)| ≤ C(1 + |x|)β, for some β ∈ IR,

so that due to Proposition 1, f is integrable with respect to the invariant measure µ,
and

(Af)

∫

f(x)µ(dx) = 0.

In the non-degenerate case, the solution of equation (7) has the representation

(8) u(x) =

∞
∫

0

IExf(Xs)ds.

In the degenerate case it is useful to extend the notion of equation (or solution; we prefer
the former) : we say that u solves the integral Poisson equation if for any t > 0,
x ∈ IRd, u(Xt) is IPx–integrable and

(9) u(x) = IExu(Xt) +

∫ t

0

IExf(Xs) ds.

This notion is similar to probabilistic or martingale solution of a parabolic equation
in Stroock, Varadhan [18], also for the degenerate case; in this respect it is worth to
remind that a classical solution to degenerate parabolic equation was first constructed
by Gikhman [3]. It is also easy to show that a continuous function solution of the integral
Poisson equation is a viscosity solution of the Poisson equation, in the sense of Crandall,
Ishii, Lions [1].
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Notice that (9) may be reformulated in the following form: for all x ∈ IRd,

(10) u(Xt) − u(x) +

∫ t

0

f(Xs) ds is a martingale under IPx.

Indeed, (10) implies (9) by taking expectation. Vice versa, if we substitute zero by t′,
and x by Xt′ in (9) (t′ < t), then by virtue of the Markov property we get

u(Xt′) = IEXt′
u(Xt) + IEXt′

∫ t

t′
f(Xs) ds,

or

IE

[

−u(Xt′) + u(Xt) +

∫ t

t′
f(Xs) ds |Ft′

]

= 0.

Hence, it follows that

IE

[

−u(x) + u(Xt) +

∫ t

0

f(Xs) ds |Ft′

]

= u(Xt′) − u(x) +

∫ t′

0

f(Xs) ds,

which means exactly the desired martingale property.
Define

ũ(x) =

∫ ∞

0

|IExf(Xt)|dt.

Theorem 1. Let the assumptions (AT ), (Ab) and (D`) be satisfied. We assume that
there exists 0 ≤ β such that |f(x)| ≤ C(1 + |x|β) with C ≥ 1 and that (Af ) holds true.
Then formula (8) defines a continuous function u, which is a solution of the equation (9)
and satisfies the following properties. For any m > β+4, there exists Cm which depends
only on m, β, the value supi,x |bi(x)| and on the constants C in (2), such that

(11) |u(x)| ≤ ũ(x) ≤ Cm(1 + |x|m), x ∈ IRd,

so that in particular u is µ–integrable. Moreover, again for any m > β + 4,

(12) sup
x

(1 + |x|m)−1

∣

∣

∣

∣

u(x) −
∫ N

0

IExf(Xt)dt

∣

∣

∣

∣

→ 0, as N → ∞.

In addition, u is centered in the sense that

(13)

∫

u(x)µ(dx) = 0.

The solution is unique in the class of solutions of (9) which satisfy properties (11)
and (13).

Theorem 2. Let the assumptions of Theorem 1 be in force.
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• If there exists C such that

(14) |f(x)| ≤ C(1 + |x|)β−2

for some β < 0, then u is bounded. Moreover

(15) sup
x

|u(x)| ≤ C sup
x

[|f(x)|(1 + |x|)−β+2],

where the constant C depends only on the constants C, m, k from (2) – (4) in
Proposition 1.

• If there exists C, β > 0 with

(16) |f(x)| ≤ C(1 + |x|)β−2,

then there exists C ′ such that

|u(x)| ≤ C ′(1 + |x|)β.

Moreover,

(17) sup
x

|u(x)|
1 + |x|β ≤ C ′′ sup

x

|f(x)|
1 + |x|β−2

,

where the constant C ′′ only depends on the constants C, m, k from (2) – (4) in
Proposition 1.

The assertion of Theorem 1 is used in Theorem 2, which means that the last theorem gives
an additional information under additional assumptions. Theorem 2 gives in particular
a criterion for u to be bounded.

Proof of theorem 1 The calculations are similar to those in [14], however there are
not identical. Therefore we present the proof for the reader’s convenience.
A. u is well defined and satisfies (11)

This follows from Veretennikov [22], see Proposition 1. Indeed,

ũ(x) =

∫ ∞

0

|IExf(Xt)|dt =

∫ ∞

0

∣

∣

∣

∣

∫

f(y)µx
t (dy)

∣

∣

∣

∣

dt

=

∫ ∞

0

|
∫

f(y)[µx
t (dy) − µ(dy)]|dt.

Without loss of generality, we assume that β + 2 < m. Due to the inequalities in
Proposition 1, one can choose p > 1, q > 1 with p−1 + q−1 = 1, such that pβ ≤ m and
q < k + 1.

Indeed, if β = 0 then it is evident. Consider the case β > 0. Let p = m/β. Then
q−1 = 1 − β/m, and (k + 1)/q > 1 is equivalent to (k + 1)(1 − β/m) > 1. Since
k + 1 is an arbitrary number less than m/2 then the last inequality can be satisfied if
(m/2)(1− β/m) > 1 which is equivalent to m > β + 2 and this is our assumption. Now,
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using Hölder’s inequality, and denoting all new constants which do not depend on C1

and C2 by C0 (they may be different on each line), one has

∫∞

0
|
∫

f(y)[µx
t (dy) − µ(dy)]|dt

≤
∫∞

0
(
∫

|f(y)|p[µx
t (dy) + µ(dy)])1/p(

∫

|µx
t − µ|(dy))1/qdt

≤ C
∫∞

0
(
∫

(1 + |y|m)[µx
t (dy) + µ(dy)])1/p(var(µx

t − µ))1/qdt

≤ C
∫∞

0
(1 + IEx|Xt|m + IEµ|Xt|m)1/p((1 + |x|m)(1 + t)−(k+1))1/qdt

≤ C(1 + |x|m)1/q
∫∞

0
(IEx|Xt|m + 1)1/p(1 + t)−(k+1)/qdt

≤ C(1 + |x|m)1/q
∫∞

0
(IEx|Xt|m)1/p(1 + t)−(k+1)/qdt+ C(1 + |x|m)1/q

≤ C(1 + |x|m′

).

Thus, u is locally bounded and, moreover, (11) holds true with any m′ > β + 4. The
assertion (12) follows from the same calculations with

∫∞

N
instead of

∫∞

0
.

B. u satisfies (13)
Notice that if some function g is integrable w.r.t. the invariant measure µ then for any
s > 0

∫

IEx[g(Xs)]µ(dx) =

∫

g(x)µ(dx).

Due to (11), the function ũ is µ-integrable. So, by virtue of Fubini’s theorem,
∫ ∫ ∞

0

IExf(Xs)ds µ(dx) =

∫ ∞

0

∫

IExf(Xs)µ(dx)ds.

But clearly
∫

IExf(Xs)µ(dx) =

∫

f(x)µ(dx) = 0.

C. u is continuous. It follows from the locally uniform convergence (12).

D. u solves the integral Poisson equation (9): Let t > 0 be a non–random value. First
note that

u(x) =

∫ t

0

IExf(Xs)ds+

∫ ∞

t

IExf(Xs)ds,
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where both integrals are well-defined. On the other hand, from the Markov property of
X·

∫ ∞

t

IExf(Xs)ds =

∫ ∞

0

IExIEXt
f(Xs)ds

= lim
N→∞

∫ N

0

IExIEXt
f(Xs)ds

= lim
N→∞

IEx

∫ N

0

IEXt
f(Xs)ds

≡ lim
N→∞

IExu
N(Xt)

= IExu(Xt),

where uN(x) :=
∫ N

0
IExf(Xt)dt. Hence,

u(x) − IExu(Xt) =

∫ t

0

IExf(Xs) ds.

This is exactly the equation (9).

E. uniqueness
For the difference of two solutions, v = u− u′, we have due to (9), v(x) = IExv(Xt). So

v(x) = IExv(Xt) →
∫

IRd
v(x)µ(dx) = 0, t→ ∞.

Hence, v(x) ≡ 0. QED

Proof of theorem 2 is identical to that in [14]; in particular, the strong Markov
property of the process Xt makes possible the use of the formula

u(x) = IExu(XτR) + IEx

∫ τR

0

f(Xt)dt,

which leads to boundedness condition for the function u in the first assertion. We refer
to the calculations in [14].

5. Diffusion approximation.

Let {Xt, t ≥ 0} denote the solution of the SDE

dXt = b(Xt)dt+ σ(Xt)dBt, X0 = x,

and define Xε
t := Xt/ε2 , t ≥ 0. Note that for some Brownian motion {Bε

t } depending on
ε, Xε

t solves the SDE

(18) dXε
t = ε−2b(Xε

t )dt+ ε−1σ(Xε
t )dB

ε
t , X

ε
0 = x.
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In this section, we are going to apply theorem 1 to the singularly perturbed ODE

(19)
dY ε

t

dt
= F (Xε

t , Y
ε
t ) + ε−1G(Xε

t , Y
ε
t ), 0 ≤ t ≤ T, Y ε

0 = y.

Here ε is a small parameter. The process X is the same as that of the previous sections,
and we will again assume the same conditions (Ab), (AT ) and (D`). F and G are Borel
vector-functions. The dimension of X is again d, the dimension of Y is `. We denote
again by L the generator of the process X. The problem we are interested in is the weak
convergence of the slow component Y ε as ε → 0. Concerning equation (19), we require
the Lipschitz condition with respect to the variable y, with a constant which may depend
on x :

(AL) |F (x, y) − F (x, y′)| + |G(x, y) −G(x, y′)| ≤ C(x)|y − y′|,
where x → C(x) is locally bounded. We now assume that for all x ∈ IRd, G(x, ·) ∈
C1(IR`; IR`), that ∂yG ∈ C(IRd+`; IR`2) and the functions F,G satisfy the following poly-
nomial growth conditions:

(AP ) |F (x, y)| ≤ K(1 + |y|)(1 + |x|q1);

|G(x, y)| ≤ K(1 + |y|)(1 + |x|q2);

‖∇yG(x, y)‖ ≤ K(1 + |x|q3);

We assume moreover that for all y ∈ IR` and j = 1, 2, . . . , `,

(AG)

∫

Gj(x, y)µ(dx) = 0,

where µ(dx) again denotes the (unique) invariant measure of X. It then follows from
Theorem 1 that the Poisson equations

LḠj(x, y) = −Gj(x, y), j = 1, . . . , `,

which we in fact interpret as integral Poisson equations, see (9), have unique centered
solutions

Ḡj(x, y) =

∫ ∞

0

ExGj(X
1
t , y)dt.

Moreover, for some K and q′2, q
′
3, the following holds :

|Ḡ(x, y)| ≤ K(1 + |y|)(1 + |x|q′2);
(20)

‖∇yḠ(x, y)‖ ≤ K(1 + |x|q′3);
The values of q′2 and q′3 can be deduced from those of q2 and q3 by using Theorem 1 or
Theorem 2, and the fact that ∇yḠ = ∇yG.

In the next theorem, we make use of the S topology of Jakubowski on the space
ID([0, T ]; IR`) of “càdlàg” IR`–valued functions defined on [0, T ]. We refer to Jakubowski
[4] for a definition of that topology and the presentation of its properties.
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Theorem 3. Let the assumptions (Ab), (D`), (AT ), and (AL), (AP ), (AG) be satisfied.
Then for any T > 0, the family of processes {Y ε

t , 0 ≤ t ≤ T}0<ε≤1 is uniformly S–tight
in ID([0, T ]; IR`). If Y is an accumulation point of the family {Y ε, ε → 0}, then it is a.
s. continuous, and it is a solution of the martingale problem associated to the operator

L =
1

2
āij(y)∂yi

∂yj
+ b̄i(y)∂yi

,

where

b̄(y) = F̄ (y) +
∑

i

∫

Gi(x, y)∂yi
Ḡ(x, y)µ(dx),

with

F̄ (y) =

∫

F (x, y)µ(dx),

and

ā(y) =

∫

[G(x, y)Ḡ∗(x, y) + Ḡ(x, y)G∗(x, y)]µ(dx).

If moreover the martingale problem associated to L is well–posed (it is easy to state
sufficient conditions for that), then Y ε ⇒ Y in the sense of the S–topology, and Y is the
unique (in law) diffusion process with generator L.

Notice that all integrals in the definition of L are well-defined, as follows from Proposi-
tion 1.

Proof : Step 1 : Preliminary computation

Let f ∈ C3
p (IR`) (the set of functions of class C3 which, together with their partial

derivatives of order 1, 2 and 3, have at most polynomial growth of some order) and define

f ε(x, y) = f(y) + εu(x, y),

where εu(x, y) is a corrector to f , defined as follows. u is the solution of the Poisson
equation

Lu(x, y) = − < ∇yf(y), G(x, y) >,

or in other words

(21) u(x, y) =< ∇yf(y), Ḡ(x, y) >,

where Ḡ : IRd × IR` → IR` solves

LḠ(x, y) = −G(x, y)

in the integral form (9). Note that
∫

∂yG(x, y)µ(dx) = 0, y ∈ IR`,

and
∂yḠ(x, y) = ∂yG(x, y).



ON THE POISSON EQUATION AND DIFFUSION APPROXIMATION 3 15

For each δ > 0, we associate a mesh 0 = t0 < t1 < · · · < tn < · · · , such that ti− ti−1 ≤ δ,
i ≥ 0, and ti → ∞, as i→ ∞. For each t > 0, let N(t) denote that smallest integer such
that t ≤ tN(t). It follows from our definition of the Poisson equation solved by Ḡ(x, y)
that for all ε > 0, δ > 0, the following is a local martingale

Mε,δ
t =

∑

i≤N(t)−1

[

εu(Xε
ti+1∧t, Y

ε
ti
) − εu(Xε

ti
, Y ε

ti
)

+
1

ε

∫ ti+1∧t

ti

< ∇f(Y ε
ti
), G(Xε

s , Y
ε
ti
) > ds

]

Moreover

∑

i≤N(t)−1

[

u(Xε
ti+1∧t, Y

ε
ti
) − u(Xε

ti
, Y ε

ti
)
]

= u(Xε
t , Y

ε
tN(t)−1

) − u(Xε
0 , Y

ε
0 )

−
∑

i≤N(t)−2

[

u(Xε
ti+1

, Y ε
ti+1

) − u(Xε
ti+1

, Y ε
ti
)
]

,

and for i ≤ N(t) − 2,

εu(Xε
ti+1

, Y ε
ti+1

) − εu(Xε
ti+1

, Y ε
ti
) = ε

∫ ti+1

ti

< ∇yu(X
ε
ti+1

, Y ε
s ), F (Xε

s , Y
ε
s ) > ds

+

∫ ti+1

ti

< ∇yu(X
ε
ti+1

, Y ε
s ), G(Xε

s , Y
ε
s ) > ds.

Finally

Mε,δ
t = εu(Xε

t , Y
ε
tN(t)−1

) − εu(Xε
0 , Y

ε
0 )

−ε
∑

i≤N(t)−2

∫ ti+1

ti

< ∇yu(X
ε
ti+1

, Y ε
s ), F (Xε

s , Y
ε
s ) > ds

−
∑

i≤N(t)−2

∫ ti+1

ti

< ∇yu(X
ε
ti+1

, Y ε
s ), G(Xε

s , Y
ε
s ) > ds

+
1

ε

∑

i≤N(t)−1

∫ ti+1∧t

ti

< ∇yf(Y ε
ti
), G(Xε

s , Y
ε
ti
) > ds.
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We now let δ → 0 in the last identity, from which we deduce that the following is a local
martingale

Mε
t = εu(Xε

t , Y
ε
t ) − εu(Xε

0 , Y
ε
0 )

−ε
∫ t

0

< ∇yu(X
ε
s , Y

ε
s ), F (Xε

s , Y
ε
s ) > ds

−
∫ t

0

< ∇yu(X
ε
s , Y

ε
s ), G(Xε

s , Y
ε
s ) > ds

+
1

ε

∫ t

0

< ∇yf(Y ε
s ), G(Xε

s , Y
ε
s ) > ds.

Moreover we have that

f(Y ε
t ) = f(Y ε

0 ) +

∫ t

0

< ∇f(Y ε
s ), F (Xε

s , Y
ε
s ) +

1

ε
G(Xε

s , Y
ε
s ) > ds,

hence

f(Y ε
t ) = f(Y ε

0 ) +

∫ t

0

< ∇f(Y ε
s ), F (Xε

s , Y
ε
s ) + ∇yḠ(Xε

s , Y
ε
s )G(Xε

s , Y
ε
s ) > ds

+

∫ t

0

< ∂2f(Y ε
s )Ḡ(Xε

s , Y
ε
s ), G(Xε

s , Y
ε
s ) > ds

+Mε,f
t(22)

+ε < ∇yf(Y ε
0 ), Ḡ(Xε

0 , Y
ε
0 ) > −ε < ∇yf(Y ε

t ), Ḡ(Xε
t , Y

ε
t ) >

+ε

∫ t

0

[

< ∇f(Y ε
s ),∇yḠ(Xε

s , Y
ε
s )F (Xε

s , Y
ε
s ) >

+ < ∂2f(Y ε
s )Ḡ(Xε

s , Y
ε
s ), F (Xε

s , Y
ε
s ) >

]

ds,

where {Mε,f
t , t ≥ 0} is a continuous local martingale which is localized by the sequence

of stopping times

Sε
n := inf{t; |Y ε

t | > n}, n = 1, 2, . . . .

Step 2 : S–tightness

We shall make use of the S–topology on ID([0, T ]; IR`), introduced by A. Jakubowski.
The following result is a consequence of the results in Jakubowski [4], and Meyer, Zheng
[10] :

Proposition 5. The collection {Y ε
t , 0 ≤ t ≤ T}{0<ε≤1} is uniformly S–tight if it satisfies

the two conditions :
(i) For all δ > 0, there exists M > 0 s.t.

P ( sup
0≤t≤T

|Y ε
t | > M) ≤ δ, 0 < ε ≤ 1.
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(ii) Y ε
t − Y ε

0 = Eε
t + V ε

t +Mε
t , with

(23) Eε
t → 0 in probability, uniformly for t ∈ [0, T ],

and for each n ∈ IN,

(24) sup
0<ε≤1

IE
(

‖V ε‖T∧Sε
n
+ < Mε >T∧Sε

n

)

<∞,

where ‖V ε‖t denotes the total variation of V ε between 0 and t, and < Mε > the quadratic
variation of the continuous local martingale Mε.

We first prove that the sequence (Y ε
· ) satisfies (i). For that sake, we will use (22), with

the function f(y) = log(1+ |y|2). Remind that the function u depends on f . Notice that
for this choice of f one has

(1 + |y|)|∂yf(y)|+ (1 + |y|)2‖∂2
yf(y)‖ + (1 + |y|)3‖∂3

yf(y)‖ ≤ C,

and then in particular (see (20))

|u(x, y)| ≤ K(1 + |x|q′3).

Consequently the absolute values of the integrands in the right hand side of (22) do not

exceed C(1 + |Xε
s |q) with some q < ∞. So {Mf,ε

t } is in fact a martingale, and there
exists two constants C and q such that for 0 < ε ≤ 1,

IE

[

sup
0≤t≤T

log(1 + |Y ε
t |2)

]

≤ C sup
0≤t≤T

IE(1 + |Xε
t |q) <∞.

This implies that the condition (i) in proposition 5 is satisfied.
It remains to prove that (ii) is satisfied. For that sake, we choose f(y) = y in (22),

yielding :

(25) Y ε
t = Y ε

0 + Eε
t + V ε

t +Mε
t ,

where

Eε
t = εḠ(Xε

0 , Y
ε
0 ) − εḠ(Xε

t , Y
ε
t ),

V ε
t =

∫ t

0

(I + ε∇yḠ(Xε
s , Y

ε
s ))F (Xε

s , Y
ε
s )ds+

∫ t

0

∇yḠ(Xε
s , Y

ε
s )G(Xε

s , Y
ε
s )ds,

and {Mε
t , t ≥ 0} is a continuous local martingale.

Now (23) follows from Corollary 1, (20) and (i), and the first half of (24) follows from
(AP ) and (20), and we finally compute < Mε >.
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¿From (22) with f(y) = |y|2,

|Y ε
t |2 = |Y ε

0 |2 + 2

∫ t

0

< Y ε
s , F (Xε

s , Y
ε
s ) + ∇yḠ(Xε

s , Y
ε
s )G(Xε

s , Y
ε
s ) > ds

+2

∫ t

0

< Ḡ(Xε
s , Y

ε
s ), G(Xε

s , Y
ε
s ) > ds

+Mε,2
t

+2ε < Y ε
0 Ḡ(Xε

0 , Y
ε
0 ) > −2ε < Y ε

t Ḡ(Xε
t , Y

ε
t ) >

+2ε

∫ t

0

[

< Y ε
s ,∇yḠ(Xε

s , Y
ε
s )G(Xε

s , Y
ε
s ) > + < Ḡ(Xε

s , Y
ε
s ), G(Xε

s , Y
ε
s ) >

]

ds,

where {Mε,2
t , t ≥ 0} is a continuous local martingale.

Now from Itô’s formula for continuous semimartingales and (25), we deduce that :

|Y ε
t + εḠ(Xε

t , Y
ε
t )|2 = |Y ε

0 + εḠ(Xε
0 , Y

ε
0 )|2

+2

∫ t

0

< Y ε
s , F (Xε

s , Y
ε
s ) + ∇yḠ(Xε

s , Y
ε
s )G(Xε

s , Y
ε
s ) > ds

+2ε

∫ t

0

< Y ε
s ,∇yḠ(Xε

s , Y
ε
s )F (Xε

s , Y
ε
s ) > ds

+2ε

∫ t

0

< Ḡ(Xε
s , Y

ε
s ), (I + ε∇yḠ(Xε

s , Y
ε
s ))F (Xε

s , Y
ε
s )

+∇yḠ(Xε
s , Y

ε
s )G(Xε

s , Y
ε
s ) > ds

+2

∫ t

0

Ỹ ε
s dM

ε
s + < Mε >t,

where Ỹ ε
s = Y ε

s + εḠ(Xε
s , Y

ε
s ). Comparing the last two identities, we deduce that

< Mε >t = 2

∫ t

0

< Ḡ(Xε
s , Y

ε
s ), G(Xε

s , Y
ε
s ) > ds

+ε2|Ḡ(Xε
t , Y

ε
t )|2 − ε2|Ḡ(Xε

0 , Y
ε
0 )|2

+ε

∫ t

0

ψε(X
ε
s , Y

ε
s )ds

+Mε,2
t − 2

∫ t

0

Ỹ ε
s dM

ε
s ,

where

|ψε(x, y)| ≤ C(1 + ε)(1 + |y|2)(1 + |x|3q).

The second half of (24) now follows from (20) and the assumptions on the growth of G.

Step 3 : Identification of the limit
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Let 0 ≤ s < t ≤ T , and Φs be a bounded and S–continuous functional de-
fined on ID([0, T ]; IR`), which is measurable with respect to the σ–algebra σ(x(r), x ∈
ID([0, T ]; IR`) 0 ≤ r ≤ s). Let f ∈ C∞

c (IR`) be a smooth function with compact support.
It follows from (22) that for all a > 0, such that s+ a < t and t+ a < T ,

IE
(

[f(Y ε
t−a) − f(Y ε

s+a)]Φs(Y )
)

=

IE

(

Φs(Y )

∫ t−a

s+a

< ∇f(Y ε
r ), F (Xε

r , Y
ε
r ) + ∇yḠ(Xε

r , Y
ε
r )G(Xε

r , Y
ε
r ) > dr

)

+IE

(

Φs(Y )

∫ t−a

s+a

< ∂2f(Y ε
r )Ḡ(Xε

r , Y
ε
r ), G(Xε

r , Y
ε
r ) > dr

)

+εIE
(

Φs(Y )[< ∇yf(Y ε
s+a), Ḡ(Xε

s+a, Y
ε
s+a) > − < ∇yf(Y ε

t−a), Ḡ(Xε
t−a, Y

ε
t−a) >]

)

+εIE

(

Φs(Y )

∫ t−a

s+a

< ∇f(Y ε
r ),∇yḠ(Xε

r , Y
ε
r )G(Xε

r , Y
ε
r ) > dr

)

+εIE

(

Φs(Y )

∫ t−a

s+a

< ∂2f(Y ε
r )Ḡ(Xε

r , Y
ε
r ), G(Xε

r , Y
ε
r ) > dr

)

We choose δ > 0 small enough, such that s + δ < t and t + δ < T , and deduce from
the last identity that

IE

(

Φs(Y )

∫ δ

0

[f(Y ε
t+a) − f(Y ε

s+a)]da

)

=

IE

(

Φs(Y )

∫ δ

0

da

∫ t+a

s+a

< ∇f(Y ε
r ), F (Xε

r , Y
ε
r ) + ∇yḠ(Xε

r , Y
ε
r )G(Xε

r , Y
ε
r ) > dr

)

+ IE

(

Φs(Y )

∫ δ

0

da

∫ t+a

s+a

< ∂2f(Y ε
r )Ḡ(Xε

r , Y
ε
r ), G(Xε

r , Y
ε
r ) > dr

)

+ εIE

(

Φs(Y )

∫ δ

0

da[< ∇yf(Y ε
s+a), Ḡ(Xε

s+a, Y
ε
s+a) > − < ∇yf(Y ε

t+a), Ḡ(Xε
t+a, Y

ε
t+a) >]

)

+ εIE

(

Φs(Y )

∫ δ

0

da

∫ t+a

s+a

< ∇f(Y ε
r ),∇yḠ(Xε

r , Y
ε
r )G(Xε

r , Y
ε
r ) > dr

)

+ εIE

(

Φs(Y )

∫ δ

0

da

∫ t+a

s+a

< ∂2f(Y ε
r )Ḡ(Xε

r , Y
ε
r ), G(Xε

r , Y
ε
r ) > dr

)

(26)

It follows from lemma 5 in [11] that for any 0 ≤ s < t ≤ T ,
∫ t

s

< ∇f(Y ε
r ), F (Xε

r , Y
ε
r ) + ∇yḠ(Xε

r , Y
ε
r )G(Xε

r , Y
ε
r ) − b̄(Y ε

r ) > dr → 0

and
∫ t

s

Tr∂2f(Y ε
r )[Ḡ(Xε

r , Y
ε
r ) ⊗G(Xε

r , Y
ε
r ) − 1

2
ā(Y ε

r )]dr → 0
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in probability, as ε→ 0.
We can then take the limit in (26) as ε→ 0, divide by δ > 0, and let δ → 0 since the

process Y is right continuous, yielding that for all f ∈ C∞
c (IR`), all 0 ≤ s < t ≤ T , and

all Φs bounded and S–continuous functional defined on ID([0, T ]; IR`),
(27)

IE ([f(Yt) − f(Ys)]Φs(Y )) = IE

(

Φs(Y )

∫ t

s

[< ∇f(Yr), b̄(Yr) > +
1

2
Tr∂2f(Yr)ā(Yr)]dr

)

,

or in other words that

Mf
t := f(Yt) − f(Ys) −

∫ t

s

[< ∇f(Yr), b̄(Yr) > +
1

2
Tr∂2f(Yr)ā(Yr)]dr

is a martingale.
It remains to show that t → Yt is a.s. continuous from [0, T ] into IR`, which is done

in the next

Proposition 6. Let {Yt, 0 ≤ t ≤ T} be a `–dimensional semimartingale such that for
all 1 ≤ i ≤ `, all f ∈ C∞

c (IR),

M i,f
t := f(Y i

t ) − f(Y i
0 ) −

∫ t

0

[f ′(Y i
s )b̄i(Ys) +

1

2
f ′′(Y i

s )āii(Ys)]ds

is a martingale. Then {Yt, 0 ≤ t ≤ T} is continuous.

Proof : We note that the assumption implies that ∀f ∈ C∞(IR), M i,f
t is a local

martingale. Hence in particular, for each 1 ≤ i ≤ `,

M i
t = Y i

t − Y i
0 −

∫ t

0

b̄(Y i
s )ds

is a local martingale, where Y i
t denotes the i–th component of Yt, and it follows from

Itô’s formula for (possibly discontinuous) semimartingales (see e. g. Protter [15] page
72) that ∀f ∈ C∞(IR),

f(Y i
t ) = f(Y i

0 ) +

∫ t

0

f ′(Y i
s )b̄i(Ys)ds+

∫ t

0

f ′(Y i
s−)dM i

s +
1

2

∫ t

0

f ′′(Y i
s−)d[M i]s

+
∑

0<s≤t

(

f(Y i
s ) − f(Y i

s−) − f ′(Y i
s−)∆Y i

s − 1

2
f ′′(Y i

s−)(∆Y i
s )2

)

,

where {[M i]t, t ≥ 0} denotes the quadratic variation process of the martingale M i. In
the particular case f(y) = (yi)2, this identity reads

(Y i
t )2 = (Y i

0 )2 + 2

∫ t

0

Y i
s b̄i(Ys)ds+ 2

∫ t

0

Y i
s−dM

i
s + [M i]t.
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Writing the assumption in the case f(y) = (yi)2, we obtain that

M i,2
t := (Y i

t )2 − (Y i
0 )2 −

∫ t

0

[2Y i
s b̄i(Ys) + āii(Ys)]ds

is a local martingale. Comparing the last two identities, we deduce that [M i]t −
∫ t

0
āii(Ys)ds is a local martingale. Next, comparing the two different ways of writing

(Y i
t )3 and using the identity

(Y i
s )3 = (Y i

s−
)3 + 3(Y i

s−
)2∆Y i

s + 3Y i
s−

(∆Y i
s )2 + (∆Y i

s )3,

we deduce that
∑

0<s≤t(∆Y
i
s )3 is a local martingale, from which we deduce, by comparing

the two different ways of writing (Y i
t )4 and using the identity

(Y i
s )4 = (Y i

s−
)4 + 4(Y i

s−
)3∆Y i

s + 6(Y i
s−

)2(∆Y i
s )2 + 4Y i

s−
(∆Y i

s )3 + (∆Y i
s )4,

that
∑

0<s≤t(∆Y
i
s )4 is a local martingale, which is impossible, unless it is identically zero.

Since this result holds for any 1 ≤ i ≤ `, the Proposition is established.
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