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A Poisson equation in �d for the elliptic operator corresponding to
an ergodic diffusion process is considered. Existence and uniqueness of its
solution in Sobolev classes of functions is established along with the bounds
for its growth. This result is used to study a diffusion approximation for
two-scaled diffusion processes using the method of corrector; the solution
of a Poisson equation serves as a corrector.

1. Introduction. The first topic of this paper is the investigation of the
Poisson equation in �d,

Lu = −f�(1)

where L is an elliptic differential operator of second order,

L =∑
aij�x�∂xi∂xj +

∑
bi�x�∂xi�

which may be regarded as the infinitesimal generator of a positive recurrent
diffusion process X solution of the stochastic differential equation

dXt = b�Xt�dt+ σ�Xt�dBt� X0 = x ∈ �d�

with a = σσ∗/2. We assume that f is “centered,” that is,
∫
f�x�µ�dx� = 0,

where µ is the invariant probability measure of our diffusion process. Let

u�x� =
∫ ∞

0
Exf�Xt�dt�

We will show that under some assumptions this function is well-defined,
locally bounded, continuous, belongs locally to the Sobolev class W2

p��d� and
satisfies equation (1) in the Sobolev sense. Moreover, under certain assump-
tions on b� σ and f, this solution is either bounded or slowly increasing. These
properties are important in limit theorems of diffusion approximation type,
which is our second subject.

What we mean here by diffusion approximation is the convergence of sin-
gularly perturbed ordinary differential equations with random inputs towards
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stochastic differential equations. Typically, one wants to study the asymptotic
behavior, as ε→ 0, of the solution Yε of

dYε
t

dt
= F�Xε

t �Y
ε
t � + ε−1G�Xε

t �Y
ε
t ��(2)

where Xε
t =Xt/ε2�X is an ergodic Markov process and for all y,∫

G�x�y�µ�dx� = 0�

with again µ the unique invariant measure of X.
The first results in that direction seem to be due to Stratonovich (1963,

1967) and Khasminski (1966). We refer the reader to Papanicolaou, Stroock
and Varadhan (1977) and Chapter 12 of Ethier and Kurtz (1986) for an ac-
count of the theory and more complete references. It turns out that the limit-
ing coefficients are expressed in terms of solutions of Poisson equations with
G�·� y� as the right-hand side. Consequently, bounds on the limiting coeffi-
cients depend on bounds on the solution of some Poisson equations. This is
not a problem when the driving noiseX takes values in a compact state space,
but is a difficulty for a noncompact state space. Exploiting our results on Pois-
son equations, we shall give conditions on the coefficients of the singularly
perturbed ordinary differential equation (2) (in fact a stochastic differential
equation in greater generality) driven by the diffusion processXε which takes
values in Euclidean space, under which we shall prove the diffusion approx-
imation result. Our assumptions are more explicit and weaker than other
results that we know of. In a subsequent publication, we intend to treat the
case where the process Yε feeds back into the stochastic differential equation
which defines the process Xε.

The paper is organized as follows. In Section 2 we state our basic assump-
tions on the coefficients of the diffusion process X, which imply in particu-
lar that it is positive recurrent and ergodic, recall and prove some results
on moment bounds and convergence to the invariant measure. Section 3 is
devoted to the results on Poisson equations and Section 4 to diffusion approx-
imation. Finally the Appendix contains a detailed proof of a version of the
Itô–Krylov formula which is used in Section 4.

2. Moment bounds and convergence to the invariant measure for
SDEs. Consider the stochastic Itô equation

dXt = b�Xt�dt+ σ�Xt�dBt� X0 = x ∈ �d�(3)

where Bt is a d1-dimensional Brownian motion, b is a locally bounded Borel
vector function of dimension d, σ is a d×d1 matrix-valued uniformly contin-
uous function, d1 ≥ d. We assume that σσ∗ is bounded and nondegenerate.
Let λ−, λ+ and � be the best constants such that for any x ∈ �d\�0�,
�Aσ� 0 < λ− ≤ �σσ∗�x�x/�x�� x/�x�� ≤ λ+� Trσσ∗�x�/d ≤ ��
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Notice that λ± are not exactly the constants of the upper and lower bounds
from the nondegeneracy condition and that we will use all these constants as
well as the nondegeneracy condition for σ .

Let us introduce the following family of recurrence conditions :

�Ab� �b�x�� x/�x�� ≤ −r�x�α� �x� ≥M0�

with M0 ≥ 0, α ≥ −1 and r > 0 such that in the case α = −1, r > �3λ+ −
λ− + �d�/2. Note that this condition prevents the solution of the SDE (3)
from exploding, so that the process �Xt� is well-defined for all t > 0. The
case α = 1 includes the case of the Ornstein-Uhlenbeck process. Assump-
tion �Ab� in the case α = 0 is usually called Has’minski’s assumption.
Define r0 = �r − ��d − λ−�/2�λ−1+ in the case α = −1, and r0 = ∞ if α >
−1. The value r0 plays an important role in the case α = −1; namely, this
constant must be greater than 3/2, which is implied by condition �Ab�. Let
R > 0 and τ = τR = inf �t ≥ 0� �Xt� ≤ R�. Let also κ�x� = �σ∗�x�x�/�x�,
h�t� = ∫ t

0 κ
2�Xs�ds, z�t� = h−1�t�, X̃t =Xz�t�. Then

dX̃t = κ−2�X̃t�b�X̃t�dt+ κ−1�X̃t�σ�X̃t�dB̃t�

with a new d1-dimensional Brownian motion B̃; compare Ikeda and Watanabe
(1981), page 102.

Proposition 1. Under the assumptions �Aσ� and �Ab�, for any 0 < m <
2r0 − 1, t ≥ 0,

Ex�X̃t�m ≤ C�1+ �x�m��(4)

Eµ�Xt�m = C <∞�(5)

and for any 2k+ 2 < m < 2r0 − 1, k > 0,

var�µxt − µ� ≤ C�1+ �x�m��1+ t�−�k+1��(6)

where “ var” denotes the total variation norm of a signed measure over the Borel
sigma-field, µxt is the law ofXt whenX0 = x, µ is the unique invariant measure

of X and Eµ means the expectation w.r.t. µ. Moreover, X̃ also possesses an

invariant measure µ̃ which satisfies the equation µ̃�dx� = c−1 κ2�x�µ�dx�
with c = ∫

κ2�x�µ�dx�. If α ≥ 0 then assertions (4)–(6) may be strengthened to
the following exponential inequalities: there exist constants C > 0, ν > 0 and
λ > 0 such that for any t ≥ 0,

Ex exp�ν�Xt�� ≤ C exp�ν�x���(7)

Eµ exp�ν�Xt�� <∞(8)

and

var�µxt − µ� ≤ C exp�ν�x�� exp�−λt��(9)
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This statement has been proved in case α = −1 in Veretennikov (1997),
where continuity of σ only is used instead of uniform continuity which is
assumed in this paper and is required for easier references to the PDE litera-
ture. The case α > −1 follows from the statement for α = −1. The case α ≥ 0
[i.e., assertions (7)–(9)] may be found in Veretennikov (1987). The relationship
between the invariant measures for X and X̃ is well known.

Remark. In the case d1 = d, σ ≡ I (the unit d×dmatrix) the lower bound
for r0 is 3/2. It is only for r0 ≥ 3/2 that the bounds for the convergence rate
to the stationary regime are known, while in the case r0 ≤ 1/2 the process X
may not possess an invariant probability distribution. The above proposition
states that in general 3/2 is an upper bound for the critical value of r0.

Proposition 2. Let the assumptions �Aσ� and �Ab� be satisfied. Then for
any 0 < p < r0

2 + 1
4 ,

Ex

(
sup
0≤t′≤t

�Xt′ �p
)
= ◦�√t� as t→∞�

Ex

(
sup
0≤t′≤t

�X̃t′ �p
)
= ◦�√t� as t→∞�

Proof. The two assertions are clearly equivalent. Also we shall later use
the second inequality; we prove now the first one. Let 1 ≤ p < r0

2 + 1
4 . From

Itô’s formula, we deduce

d�Xt�2p = 2p�Xt�2p−2
∑
i�k

Xk
t σk�i�Xt�dBi

t+2p�Xt�2p−2�Xt�b�Xt��dt

+p�Xt�2p−2
[∑
i�k

σ2
k�i�Xt�+2�p−1�∑

i

(∑
k

�Xt�−1Xk
t σk�i�Xt�

)2]
dt�

From the Burkholder–Davis–Gundy inequality, there exists C such that

Ex

(
sup
0≤t′≤t

�Xt′ �2p
)
≤ C�x�2p +C

(
Ex

∫ t

0
�Xs�4p−2 ds

)1/2

+CEx

∫ t

0
�Xs�2p−2 ds�

Since 2p−2 < 4p−2 < 2r0−1, we can use estimate (4) (for the time–changed
process). Namely, for any q < 2r0 − 1,

Ex

∫ t

0
�Xs�q ds ≤ CEx

∫ Ct

0
�X̃s�q ds

≤ C′t�1+ �x�q��
Hence, we get

Ex

(
sup
t′≤t

�Xt′ �2p
)
≤ C�x�2p +C�t+ t1/2��1+ �x�2p−1��
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and moreover, as t ≥ 1,

Ex

(
sup
t′≤t

�Xt′ �p
)
≤ C�x�p +C�1+ �x�p−1/2�√t�

Hence for any p′ < p, t ≥ 1,

Ex

(
sup
t′≤t

�Xt′ �p
′
)
≤ C�x�p′ +C�1+ �x�p−1/2�tp′/2p�

The result follows. ✷

One deduces the following corollary.

Corollary 1. Under the same assumptions, for any T > 0, 0 < p < r0
2 + 1

4 ,

εEx

(
sup
0≤t≤T

�Xt/ε2 �p
)
→ 0 as ε→ 0�

3. The Poisson equation in �d. We consider the Poisson equation in �d,

Lu�x� = −f�x��(10)

where

L =∑
aij�x�∂xi∂xj +

∑
bi�x�∂xi�

with

a�x� = σσ∗�x�/2�
The problem under consideration is to describe the class of functions f such
that (10) has a solution either bounded or slowly increasing at infinity. Results
of this type were previously obtained for the compact space case [cf. Revuz
(1984)]. For the case α = 0 under some additional assumptions (for the dual
process), see Bouc and Pardoux (1984). For results concerning some functional
properties of the operator L, see Ethier and Kurtz (1986).

Now we are going to show that even rather weak recurrence assumptions
with α = −1 for the process X, plus certain assumptions on f, imply the
existence of a bounded or slowly increasing solution u of (10).

It is well-known [cf. Dynkin (1965)] that the solution of (10) in a bounded
domain D with a smooth boundary and a zero boundary condition (Dirichlet
problem) has the representation

u�x� = Ex

∫ γ

0
f�Xs�ds� γ = inf �t > 0 �Xt /∈ D��

Similarly, one expects that the solution of (10) in �d has the stochastic repre-
sentation

u�x� =
∫ ∞

0
Exf�Xs�ds�(11)
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provided that this solution exists and does not increase too rapidly at infinity.
Conversely, if the function u�x� given by (11) is continuous then it possesses a
certain additional smoothness, belongs to some Sobolev class and is a solution
of (10). In other words, the main problem is to show that the function u in (11)
is continuous and does not increase too fast at infinity.

Concerning the function f, we will assume that

�f�x�� ≤ C�1+ �x�β� for some β < 2r0 − 3�

so that due to Proposition 1, f is integrable with respect to the invariant
measure µ. We assume moreover that

�Af�
∫
f�x�µ�dx� = 0�

otherwise one cannot hope to get a finite value in (11) for a positive recurrent
process X. Define

ũ�x� =
∫ ∞

0
�Exf�Xt��dt�

Theorem 1. Let the assumptions �Aσ�, �Ab� be satisfied. We assume that
there exists 0 ≤ β < 2r0−3 such that �f�x�� ≤ C1+C2�x�β with C1� C2 ≥ 1 and
that �Af� holds true. Then (11) defines a continuous function u which belongs
to the Sobolev class W2

p� loc for any p > 1, is a solution of (10) and satisfies the

following properties. For any m > β + 2, there exists Cm which depends only
on m�β� r0, the ellipticity constants, the modulus of continuity of the matrix
function �aij�·��, the value supi� x �bi�x�� and on the constants C in (4) and (5),
such that

�u�x�� ≤ ũ�x� ≤ Cm�C1 +C2 +C2�x�m�� x ∈ �d�(12)

so that in particular u is µ–integrable. Moreover, again for any m > β+ 2,

sup
x
�1+ �x�m�−1

∣∣∣∣u�x� − ∫ N

0
Exf�Xt�dt

∣∣∣∣→ 0� as N→∞�(13)

In addition, u is centered in the sense that∫
u�x�µ�dx� = 0�(14)

The solution is unique in the class of u which belong to W2
p� loc for any p > 1

and satisfy properties �12� and �14�.
Finally, for any m > β+ 2, there exists Cm as above such that

�∇u�x�� ≤ Cm�C1 +C2 +C2�x�m�� x ∈ �d�(15)

Theorem 2. Let the assumptions of Theorem 1 be in force:

(i) If there exists C such that

�f�x�� ≤ C�1+ �x��β+α−1(16)
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for some β < 0, then u is bounded. Moreover,

sup
x
�u�x�� ≤ Csup

x
��f�x���1+ �x��−β−α+1��(17)

where the constant C depends only on the constants C�m�k from (4)–(6) in
Proposition 1, and

�∇u�x�� ≤ C
(
1+ �x��β+α−1�+)�(18)

(ii) If there exists C such that for some β > 0,

�f�x�� ≤ C�1+ �x��β+α−1(19)

and also, whenever α = −1 and β > 4, the constant r in �Ab� satisfies 2r >
�d+ �β− 2�λ+, then there exists C′ such that

�u�x�� ≤ C′�1+ �x��β�
Moreover,

sup
x

�u�x��
1+ �x�β ≤ C′′sup

x

�f�x��
1+ �x�β+α−1 �(20)

where the constant C′′ only depends on the constants C�m�k from (4)–(6) in
Proposition 1. Finally there exists C such that

�∇u�x�� ≤ C
(
1+ �x��β+α−1�+ + �x�β)�(21)

Theorem 1 and Theorem 2 are not comparable. The assertion of Theorem
1 is used in Theorem 2 which means that the latter theorem gives additional
information under additional assumptions. Theorem 2 gives a criterion for u
and ∇u to be bounded.

Proof of Theorem 1. (a) u is well defined and satisfies �12�. This fol-
lows from Veretennikov (1997); see Proposition 1. Indeed,

ũ�x� =
∫ ∞

0
�Exf�Xt��dt =

∫ ∞

0

∣∣∣ ∫ f�y�µxt �dy�∣∣∣dt
=
∫ ∞

0

∣∣∣ ∫ f�y��µxt �dy� − µ�dy��
∣∣∣dt�

Without loss of generality, we assume that β + 2 < m < 2r0 − 1. Due to the
inequalities in Proposition 1, one can choose p > 1, q > 1 with p−1 + q−1 = 1,
such that pβ ≤m and �k+ 1�/q > 1.
Indeed, if β = 0, then it is evident. Consider the case β > 0. Let p = m/β.

Then q−1 = 1−β/m, and �k+ 1�/q > 1 is equivalent to �k+ 1��1−β/m� > 1.
Since k+1 is an arbitrary number less than m/2 then the last inequality can
be satisfied if �m/2��1− β/m� > 1 which is equivalent to m > β+ 2 and this
is our assumption.
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Now, using Hölder’s inequality, and denoting all new constants which do not
depend on C1 and C2 by C0 (they may be different on each line), one has∫ ∞

0

∣∣∣ ∫ f�y��µxt �dy� − µ�dy��
∣∣∣dt

≤
∫ ∞

0

( ∫
�f�y��p�µxt �dy� + µ�dy��

)1/p( ∫
�µxt − µ��dy�

)1/q
dt

≤ C0

∫ ∞

0

( ∫
�C1 +C2�y�m��µxt �dy� + µ�dy��

)1/p
� var�µxt − µ��1/q dt

≤ C0

∫ ∞

0
�2C1 +C2Ex�Xt�m +C2Eµ�Xt�m�1/p

×��1+ �x�m��1+ t�−�k+1��1/q dt

≤ C0�1+ �x�m�1/q
∫ ∞

0
�C2Ex�Xt�m + 2C1 +C0C2�1/p�1+ t�−�k+1�/q dt

≤ C0�1+ �x�m�1/q
∫ ∞

0
�C2Ex�X̃t�m�1/p�1+ t�−�k+1�/q dt

+C0�1+ �x�m�1/q�2C1 +C0C2�1/p

≤ C0�1+ �x�m�1/q
∫ ∞

0
�C2�1+ �x�m��1/p�1+ t�−�k+1�/q dt

+C0�1+ �x�m�1/q�C1 +C2�1/p

≤ C0�1+ �x�m�1/q��C1 +C2�1/p + �C2�1+ �x�m��1/p�
≤ C0��1+ �x�m�C1/p

2 + �1+ �x�m�1/q�C1 +C2�1/p�
≤ C0�C1 +C2 + �1+C

1/p
2 ��1+ �x�m��

≤ C0�C1 +C2 +C2�1+ �x�m���

Thus, u is locally bounded and, moreover, (12) holds true with any m > β+ 2.
The assertion (13) follows from the same calculations with

∫∞
N instead of

∫∞
0 .

(b) u satisfies �14�. Notice that if some function g is integrable w.r.t. the
invariant measure µ then for any s > 0,∫

Ex�g�Xs��µ�dx� =
∫
g�x�µ�dx��

Due to �12�, the function ũ is µ-integrable. So, by virtue of Fubini’s theorem,∫ ∫ ∞

0
Exf�Xs�dsµ�dx� =

∫ ∞

0

∫
Exf�Xs�µ�dx�ds�

But clearly, ∫
Exf�Xs�µ�dx� =

∫
f�x�µ�dx� = 0�
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(c) u is continuous. For each fixed t > 0, �zt�s� x� �= Ex

∫ t
s f�Xr�dr� 0 ≤

s ≤ t� x ∈ �d� is a generalized solution of the parabolic equation

∂z

∂s
�s� x� +Lz�s� x� = −f�x�� 0 ≤ s ≤ t� x ∈ �d�

z�t� x� = 0� x ∈ �d�

Here z is locally uniform continuous. This is deduced from the W
1�2
p� loc-

regularity of the solution for all p > 1 [see Ladyzenskaja, Solonnikov and
Ural’ceva (1968), Chapter 4, Veretennikov (1982)]. Moreover zt�0� x� converges
to u�x� as t→∞, locally uniformly in x, due to (13).
(d) u belongs to Sobolev classes (locally). Consider any ballD and the Dirich-

let problem

Lû�x� = −f�x�� x ∈ D� û�∂D = u�

This equation has a unique solution û ∈W2
p� loc�D� ∩C� !D� for any p > 1; see

Gilbarg and Trudinger (1983), Corollary 9.18. We can then apply Itô–Krylov’s
formula to û�Xt� on the random interval �0� γ�, where γ �= inf �s ≥ 0�Xs "∈ D�
[see Krylov (1980), Theorem 2.10.1]. One deduces that

û�x� = Exu�Xγ� +Ex

∫ γ

0
f�Xs�ds�

On the other hand, the function u satisfies the same representation inside D
because of the strong Markov property of Xt. Indeed, let x ∈ D. One has

u�x� =
∫ ∞

0
Exf�Xs�I�s ≤ γ�ds+

∫ ∞

0
Exf�Xs�I�s > γ�ds�

where both integrals are well-defined. Indeed since f is bounded on !D and
supx Exγ <∞,

Ex

∫ ∞

0
�f�Xs��I�s ≤ γ�ds <∞�

Moreover, ∫ ∞

0
Exf�Xs�I�s > γ�ds =

∫ ∞

0
ExEXγ

f�Xs�ds

= lim
N→∞

∫ N

0
ExEXγ

f�Xs�ds

= lim
N→∞

Ex

∫ N

0
EXγ

f�Xs�ds

≡ lim
N→∞

Exu
N�Xγ�

= Exu�Xγ��

where uN�x� �= ∫N
0 Exf�Xt�dt. Hence, we get the desired representation,

u�x� = û�x�� x ∈ D.
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(e) u satisfies �15�. We shall write Bx�R for the ball in �d centered at
x with radius R. Using successively the Sobolev embedding theorem [see
Ladyzenskaja, Solonnikov and Ural’ceva (1968), Theorem 2.2.1], the a pri-
ori estimate (9.40) from Gilbarg and Trudinger (1983), the assumption on f
and the inequality (12), for any p > d, we obtain that for some C, C′, Cm > 0
and all x ∈ �d,

�∇u�x�� ≤ C#u#W2
p�Bx�1� ≤ C′�#u#Lp�Bx�2� + #Lu#Lp�Bx�2��

≤ Cm�C1 +C2 +C2�x�m +C1 +C2�x�β��
(f) Uniqueness. For the difference of two solutions, v = u − u′, we have

Lv = 0. So, due to Itô–Krylov’s formula for functions in W2
p� loc� ∀ p > d,

v�x� = Exv�Xt� → Eµ�v�Xt�� = 0� t→∞�

Hence, v�x� ≡ 0. ✷

Proof of Theorem 2. We shall prove the boundedness of u and its mod-
erate growth. (17) and (20) follow from our proof. Inequalities (18) and (21)
follow from the argument in part (e) of the proof of Theorem 1.

(a) u is bounded. We will use the representation

u�x� = Exu�XτR� +Ex

∫ τR

0
f�Xt�dt

which follows from the strong Markov property of the process. In view of (12),
the first term in the above right-hand side is bounded. We now prove that the
second term is bounded. We assume that for some β < 0, R > 0 there exists
C > 0 such that

�f�x�� ≤ C�x�β+α−1� �x� ≥ R�

Consider �Xx
t � 0 ≤ t ≤ τR�, for �x� > R, where R ≥M0 [see assumption �Ab�],

Ex�Xt�τR �β = �x�β + βEx

∫ t�τR

0
�Xs�β−2

×
(
�Xs� b�Xs�� +

β− 2
2

�a�Xs�Xs�Xs�
�Xs�2

+ Tr a�Xs�
2

)
ds

≥ βEx

∫ t�τR

0
�Xs�β−2�−r�Xs�α+1 + �d/2�ds�

In the case α > −1, the last expression is

≥ �β�r′Ex

∫ t�τR

0
�Xs�β+α−1 ds�

provided 0 < r′ < r, R is large enough s.t. �r−r′�Rα+1 ≥ �d/2. Then one gets,
as t→∞, from monotone and bounded convergence

Ex

∫ τR

0
�Xs�β+α−1 ds ≤ cEx�XτR �β = cRβ� ✷
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In the case α = −1, we have

Ex�Xt�τR �β ≥ �β�
(
r− �d+ �β− 2�λ−

2

)
Ex

∫ t�τR

0
�Xs�β−2 ds

and in the limit as t→∞,

Ex

∫ τR

0
�Xs�β−2 ds ≤ CRβ

provided r > ��d+�β−2�λ−�/2, which is implied by our standing assumption
r0 > 3/2. ✷

Remark 1. In the case α = 1, we have obtained the following result: if
there exists β < 0 s.t. �f�x�� ≤ C�1 + �x��β� �x� > R then u is bounded.
This result is optimal in the sense that f bounded does not imply u bounded.
Indeed, in the case dXt = −Xt dt+

√
2dBt� f�x� = sign�x�, one has �u�x�� ≥

c log
√
1+ x2.

(b) u grows moderately. Let ρ = �d/2+�β−2�λ+I�β > 2�/2+�β−2�λ−I×
�β < 2�/2. We start with the same computation, but this time with β > 0,

Ex�Xt�τR �β = �x�β+βEx

∫ t�τR

0
�Xs�β−2

×
(
�Xs�b�Xs��+

β−2
2

�a�Xs�Xs�Xs�
�Xs�2

+Tra�Xs�/2
)
ds�

Hence,

0≤�x�β+βEx

∫ t�τR

0
�Xs�β−2�−r�Xs�α+1+ρ�ds

or

Ex

∫ t�τR

0
�Xs�β−2�r�Xs�α+1−ρ�ds≤β−1�x�β�

Note that unless d=1, clearly ρ>0, since �≥λ±, β>0.

In the case α > −1, choose R large enough such that R1+α ≥ 2ρ+/r, so that
the above inequality yields

r

2
Ex

∫ τR

0
�Xs�β−1+α ds ≤ β−1�x�β�

With the case α = −1, we conclude, since r > ρ, which is the case due to
the additional assumption if β > 4, and follows from the standing assumption
r0 > 3/2 if β ≤ 4.



1072 E. PARDOUX AND A. Y. VERETENNIKOV

4. Diffusion approximation. Now we are going to apply Theorem 1 to
the singularly perturbed SDE,

dXε
t = ε−2b�Xε

t �dt+ ε−1σ�Xε
t �dBε

t � Xε
0 = x�

dYε
t =F�Xε

t �Y
ε
t �dt+ ε−1G�Xε

t �Y
ε
t �dt

+H�Xε
t �Y

ε
t �dBε

t � Yε
0 = y� 0 ≤ t ≤ T�

(22)

Here ε is a small parameter, Xε
t may be regarded as Xt/ε2 , where X ≡ X1

with some Brownian motion depending on ε. The processX is the same as that
of the previous sections, and we will again assume the same nondegeneracy
and recurrence conditions �Ab� and �Aσ� with some α ≥ −1. F� G and H are
Borel, locally bounded vector-functions. The dimension of X is again d, the
dimension of Y is l. Notice that under our assumptions there exists at least a
weak solution (Xε�Bε) of the first equation in �22�. That first equation may be
solved independently of the second one. As above, we denote byL the generator
of the processX. The problem we are interested in is the weak convergence of
the slow component Yε as ε→ 0. Concerning the second equation in (22), we
require the Lipschitz condition with respect to the variable y, with a constant
depending on x:

�AL�
�F�x�y� −F�x�y′�� + �G�x�y� −G�x�y′��

+ #H�x�y� −H�x�y′�# ≤ C�x��y− y′��
Note that �Ab�, �Aσ� and �AL� insure that the system (22) of SDEs is well-
posed. We now assume that for all x ∈ �d, G�x� ·� ∈ C2��l��l�, that ∂2yG ∈
C��d+l��l3� and the functionsF�G�H satisfy the following polynomial growth
conditions:

�AP�

�F�x�y�� ≤K�1+ �y���1+ �x�q1��
#H�x�y�#≤K�1+ �y�1/2��1+ �x�q2��
�G�x�y�� ≤K�1+ �y���1+ �x�q3��

#∇yG�x�y�#≤K�1+ �x�q4��
#∂2yG�x�y�#≤K�1+ �x�q5��

We assume moreover that for all y ∈ �l and j = 1�2� � � � � l,

�AG�
∫
Gj�x�y�µ�dx� = 0�

where µ�dx� again denotes the (unique) invariant measure of X. It then fol-
lows from Theorem 1 that the Poisson equations

L!Gj�x�y� = −Gj�x�y�� j = 1� � � � � l�

have unique centered solutions

!Gj�x�y� =
∫ ∞

0
ExGj�X1

t � y�dt�
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Moreover, for some K and q′3, q
′
4, q

′
5, the following holds:

�!G�x�y�� ≤K�1+ �y���1+ �x�q′3��
#∇y!G�x�y�# ≤K�1+ �x�q′4��
#∂2y!G�x�y�# ≤K�1+ �x�q′5��
�∂x!G�x�y�� ≤K�1+ �y���1+ �x�q′3��

�∂x∂y!G�x�y�� ≤K�1+ �x�q′4��
#∂x∂2y!G�x�y�# ≤K�1+ �x�q′5��

The values of q′3, q
′
4 and q′5 can be deduced from those of q3, q4 and q5 by

using Theorem 1 or Theorem 2. We assume that the qi’s are nonnegative and
such that, with r1 �= 2r0 − 1,

�Aq� max�q1�2q2�2q′3� q2 + q′3� q3 + q′3� q3 + q′4� < r1�

The above conditions would take a slightly different form, in case certain qi’s
were negative.

Theorem 3. Let �Ab�, �Aσ�, �AL�, �AP�, �AG� and �Aq� be satisfied. Then
for any T > 0, the family of processes �Yε

t �0 ≤ t ≤ T�0<ε≤1 is weakly rela-

tively compact in C��0�T���l�. Any accumulation point Y is a solution of the
martingale problem associated to the operator

� =∑
āij�y�∂yi∂yj +

∑
b̄i�y�∂yi�

where

b̄�y� = !F�y� +∑
i

∫
Gi�x�y�∂yi !G�x�y�µ�dx�

+ ∑
i� k

∫
�Hσ∗�ik�x�y�∂xk∂yi !G�x�y�µ�dx�

and

ā�y� = 2� !� + !� + !� ��y��
with

!F�y� =
∫
F�x�y�µ�dx��

!� �y� =
∫
HH∗�x�y�µ�dx��

!� �y� =
∫
�G�x�y�!G∗�x�y� + !G�x�y�G∗�x�y��µ�dx��

�̄ �y� =
∫
��Hσ∗�ik�x�y�∂xk !Gj�x�y�

+ �Hσ∗�jk�x�y�∂xk !Gi�x�y��µ�dx��
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If moreover the martingale problem associated to � is well-posed �it is easy
to state sufficient conditions for that�, then Yε ⇒ Y, and Y is the unique �in
law� diffusion process with generator � .

Notice that all integrals in the definition of � are well-defined, as follows
from �Aq� and Proposition 1.

Proof. Let f ∈ C3
p��l� (the set of functions of class C3 which, together

with their partial derivatives of order 1, 2 and 3, have at most polynomial
growth of some order) and define

fε�x�y� = f�y� + εu�x�y��
where εu�x�y� is a corrector to f; that is, u is the solution of the Poisson
equation

Lu�x�y� = −�∇yf�y��G�x�y���
or in other words,

u�x�y� = �∇yf�y�� !G�x�y���(23)

where !G� �d × �l → �l solves

L!G�x�y� = −G�x�y��
Note that ∫

∂yG�x�y�µ�dx� = 0� y ∈ �l�

and

∂y!G�x�y� = �∂yG�x�y���
From Itô–Krylov’s formula for functions with Sobolev derivatives,

fε�Xε
t �Y

ε
t � − fε�x�y�

=
∫ t

0
�∇yf�Yε

s��F�Xε
s�Y

ε
s� + ε−1G�Xε

s�Y
ε
s��ds

+
∫ t

0
�∇yf�Yε

s��H�Xε
s�Y

ε
s�dBε

s�

+
∫ t

0
�1/2�Tr ∂2yf�Yε

s��HH∗��Xε
s�Y

ε
s�ds(24)

+
∫ t

0
ε�∇yu�Xε

s�Y
ε
s��F�Xε

s�Y
ε
s� + ε−1G�Xε

s�Y
ε
s��ds

+ ε
∫ t

0
�∇yu�Xε

s�Y
ε
s��H�Xε

s�Y
ε
s�dBε

s�

+ ε �1/2�Tr
∫ t

0
∂2yu�Xε

s�Y
ε
s��HH∗��Xε

s�Y
ε
s�ds
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+ ε−1
∫ t

0
Lu�Xε

s�Y
ε
s�ds

+
∫ t

0
�∇xu�Xε

s�Y
ε
s�� σ�Xε

s�dBε
s�

+ ∑
i� k

∫ t

0
∂yi∂xku�Xε

s�Y
ε
s��Hσ∗�ik�Xε

s�Y
ε
s�ds�

If u were more regular, the above would just be the usual Itô formula. Formula
(24) will be justified in the Appendix below. Loosely speaking, we use the fact
that u, ∂xiu and ∂xi∂xju are continuous in y.

From the definition of u, the sum of the terms of order ε−1 vanishes. We
then obtain

f�Yε
t �=f�Yε

t0
� +

∫ t

t0

〈
∇yf�Yε

s��F�Xε
s�Y

ε
s� +

∑
i

Gi�Xε
s�Y

ε
s�∂yi !G�Xε

s�Y
ε
s�

+ ∑
i� k

�Hσ∗�ik�Xε
s�Y

ε
s�∂yi∂xk !G�Xε

s�Y
ε
s�
〉
ds

+ 1
2

∫ t

t0

∑
i� j

∂yi∂yjf�Yε
s�
[
�HH∗�ij�Xε

s�Y
ε
s� + 2�Gi

!Gj��Xε
s�Y

ε
s�

+ 2
∑
k

�Hσ∗�ik�Xε
s�Y

ε
s�∂xk !Gj�Xε

s�Y
ε
s�
]
ds

+
∫ t

t0

�∇yf�Yε
s�� �H�Xε

s�Y
ε
s� + ∇x!G�Xε

s�Y
ε
s�σ�Xε

s��dBε
s�

+ εRε
f�t0� t��

(25)

where

Rε
f�t0� t�=u�Xε

t0
�Yε

t0
� − u�Xε

t �Y
ε
t �

+ 1
2 Tr

∫ t

t0

∂2yu�Xε
s�Y

ε
s��HH∗��Xε

s�Y
ε
s�ds

+
∫ t

t0

�∇yu�Xε
s�Y

ε
s��F�Xε

s�Y
ε
s��ds

+
∫ t

t0

�∇yu�Xε
s�Y

ε
s��H�Xε

s�Y
ε
s�dBε

s��

(26)

We shall exploit these last formulas, both in order to establish tightness of the
sequence �Yε�, and to identify the limit.
Tightness. We will show the relative compactness of �Yε

· � in the metric
space C��0�T���d�. We will use the following slight modification of Theorem
8.2 from Billingsley (1968).

Proposition 3. The collection �Yε
t � 0 ≤ t ≤ T��0<ε≤1� is relatively compact

if it satisfies the two conditions:
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(i) For all δ > 0, there exists M> 0, such that

P

(
sup
0≤t≤T

�Yε
t � >M

)
≤ δ� 0 < ε ≤ 1�

(ii) For any δ > 0, M> 0 there exist ε0 and γ, such that

sup
0<ε≤ε0

P

(
sup

0≤t0≤T
sup

t∈�t0�t0+γ�
�Yε

t −Yε
t0
� ≥ δ� sup

0≤s≤T
�Yε

s � ≤M

)
≤ δ�

We first prove that the sequence �Yε
· � satisfies (i). For the sake of that,

we will use (25) and (26), with t0 = 0 and the function f�y� = log�1 + �y�2�.
Remember that the function u depends on f. Notice that for this choice of f
one has

�1+ �y���∂yf�y�� + �1+ �y��2#∂2yf�y�# + �1+ �y��3#∂3yf�y�# ≤ C�

and then in particular,

�u�x�y�� ≤K�1+ �x�q′3��
From the assumption �Aq� we have that the absolute values of all Lebesgue
integrands in (25) and (26) do not exceed C�1+ �Xε

s �q� with some q < 2r0 − 1.
So, for any Lebesgue integral

∫
K�Xε

s�Y
ε
s�ds in these two formulas we have

Ex�y sup
0≤t≤T

∫ t

0
�K�Xε

s�Y
ε
s��ds ≤

∫ T

0
CEx�y�1+ �Xε

s �q�ds

≤ C
∫ CT

0
Ex�y�1+ �X̃ε

s �q�ds

≤ CT�1+ �x�q��
Each Itô integral

∫
K′ �Xε

s� Y
ε
s�dBs has an integrand which satisfies the

inequality �K′�x�y��2 ≤ C�1 + �x�q� again with q < 2r0 − 1. From Doob’s
inequality,

Ex�y sup
0≤t≤T

∣∣∣∣ ∫ t

0
K′�Xε

s�Y
ε
s�dBs

∣∣∣∣2 ≤ 4Ex�y

∫ T

0
�K′�Xε

s�Y
ε
s��2 ds

≤ CT�1+ �x�q��
The term εu�x�y� is bounded (it even tends to zero). Finally, by virtue of
Corollary 1,

εEx�y sup
0≤t≤T

�u�Xε
t �Y

ε
t �� ≤ CεEx�y sup

0≤t≤T
�1+ �Xε

t ��q
′
3� → 0� ε→ 0�

Combining the above estimates, we deduce that

sup
0<ε≤1

Ex�y sup
0≤t≤T

log�1+ �Yε
t �2� <∞�



ON THE POISSON EQUATION 1077

from which (i) follows. We now prove (ii). For the sake of that, let us first write
(25) and (26) in the particular case of the vector function f�y� = y. We obtain

Yε
t =Yε

to
+
∫ t

t0

[
F�Xε

s�Y
ε
s� + �Gi∂yi

!G��Xε
s�Y

ε
s�

+ ��Hσ∗�ik∂xk∂yi !G��Xε
s�Y

ε
s�
]
ds

+
∫ t

t0

�H�Xε
s�Y

ε
s� + ∇x!G�Xε

s�Y
ε
s�σ�Xε

s��dBε
s

+ ε
[!G�Xε

t0
�Yε

t0
� − !G�Xε

t �Y
ε
t �

+ 1
2 Tr

∫ t

t0

�∂2y!GHH∗��Xε
s�Y

ε
s�ds

+
∫ t

t0

�∇y!G�Xε
s�Y

ε
s��F�Xε

s�Y
ε
s��ds

+
∫ t

t0

�∇y!G�Xε
s�Y

ε
s��H�Xε

s�Y
ε
s�dBε

s�
]
�

(27)

We rewrite the above as

Yε
t −Yε

t0
= !Yε

t − !Yε
t0
+ Ŷε

t − Ŷε
t0
�

where

!Yε
t − !Yε

to
= ε�!G�Xε

t0
�Yε

t0
� − !G�Xε

t �Y
ε
t ���

Ŷε
t − Ŷε

t0
=
∫ t

t0

Jε�Xε
s�Y

ε
s�ds+

∫ t

t0

Kε�Xε
s�Y

ε
s�dBε

s�

and

Jε = F+Gi∂yi
!G+ �Hσ∗�ik∂xk∂yi !G+ ε

2
Tr ∂2y!GHH∗ + ε�∇y!G�F��

Kε =H+ ∇x!Gσ + ε∇y!GH�

The two processes !Yε and Ŷε will be treated differently; (ii) will follow from:

(ii′) For any δ > 0, there exist ε0 s.t.,

sup
0<ε≤ε0

P

(
sup
0≤t≤T

�!Yε
t � ≥ δ

)
≤ δ

and, following Theorem 8.3 in Billingsley (1968):

(ii′′) For any δ > 0, M> 0, there exist ε0 and γ > 0 such that

γ−1 sup
0<ε≤ε0

sup
0≤t0≤T

P

(
sup

t∈�t0� t0+γ�
�Ŷε

t − Ŷε
t0
� ≥ δ� sup

0≤s≤T
�Yε

s � ≤M

)
≤ δ�
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The estimate (ii′) follows from the estimate for !G, (i), Corollary 1 and condi-
tion �Aq�. To estimate the probability in (ii′′), we shall use the change of time
which was described in Section 2, in order to use the estimate (4). Let

X̃ε
t =Xε

zε�t�� Ỹε
t = Yε

zε�t��

zε�t� = h−1ε �t�� hε�t� =
∫ t

0
κ2�Xε

s�ds�

Let us define the stopping time τMε = inf�r ≥ 0� �Ỹε�r�� ≥ M�. It suffices
to show that for any δ > 0, M> 0, there exist ε0 and γ > 0 such that

γ−1 sup
0<ε≤ε0

sup
0≤t0≤T

P

(
sup

t∈�t0� t0+γ�� t≤τMε
�Ŷε

zε�t� − Ŷε
zε�t0�� ≥ δ

)
≤ δ�(28)

We have [see Ikeda, Watanabe (1981), page 102]

Ŷε
zε�t� − Ŷε

zε�t0�
=
∫ t

t0

Jε�X̃ε
s� Ỹ

ε
s�κ−2�X̃ε

s�ds+
∫ t

t0

Kε�X̃ε
s� Ỹ

ε
s�κ−1�X̃ε

s�dB̃ε
s�

where B̃ε
s is a new Brownian motion and t > t0.

We derive (28) from the two following estimates, with ν > 0 small enough
such that condition �Aq� implies the bounds below. Note that, in particular,
(4) is used in their derivation:

Exy

(
sup

t0≤t≤t0+γ

∣∣∣ ∫ t∧τMε

t0∧τMε
Jε�X̃ε

s� Ỹ
ε
s�κ−2�X̃ε

s�ds
∣∣∣1+ν)

≤ CγνExy

∫ �t0+γ�∧τMε

t0∧τMε
�Jε�X̃ε

s� Ỹ
ε
s��1+ν ds

≤ CMγ
ν
∫ t0+γ

t0

Ex�1+ �X̃s�q
′′ �ds

≤ CMγ
1+ν�1+ �x�q′′ ��

Exy

(
sup

t0≤t≤t0+γ

∣∣∣ ∫ t∧τMε

t0∧τMε
Kε�X̃ε

s� Ỹ
ε
s�κ−1�X̃ε

s�dB̃ε
s

∣∣∣2+2ν)

≤ CExy

(
sup

t0≤t≤t0+γ

∣∣∣ ∫ t∧τMε

t0∧τMε
K2

ε�X̃ε
s� Ỹ

ε
s�κ−2�X̃ε

s�ds
∣∣∣1+ν)�

which is estimated exactly as above.
So we get (28) which implies (ii′′) for the process Ỹ instead of Y. Therefore,

the process Ỹ satisfies condition (ii). Notice that the change of time zε has
a derivative which is bounded and bounded away from zero. So (ii) for the
process Y follows from the same assertion with Ỹ.
Identification of the limit. Let Y be a limiting point for �Yε� and let ?t0

�·�
be a bounded continuous functional on C��0�T���l� which is measurable with
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respect to the sigma-field σ�ϕt� ϕ ∈ C��0�T���l�� t ≤ t0�. We are to show
that for any t0 ≥ 0, any such ? and any function f ∈ C∞

0 ��l� (infinitely
differentiable functions with compact support) the following assertion holds:

E

[(
f�Yt� − f�Yt0

)
−
∫ t

t0

� f�Ys�ds�?t0
�Y�

]
= 0� t ≥ t0�

We first deduce from �25� and �26� that (in the sequel always t ≥ t0)

Ex�y

[(
f�Yε

t � − f�Yε
t0
�

−
∫ t

t0

〈
∇yf�Yε

s��F�Xε
s�Y

ε
s� +Gi�Xε

s�Y
ε
s�∂yi !G�Xε

s�Y
ε
s�

+ �Hσ∗�ik�Xε
s�Y

ε
s�∂yi∂xk !G�Xε

s�Y
ε
s�
〉
ds

− 1
2Ex�y

∫ t

t0

∂yi∂yjf�Yε
s�
[�HH∗�ij�Xε

s�Y
ε
s� + 2�Gi

!Gj��Xε
s�Y

ε
s�

+ 2�Hσ∗�ik�Xε
s�Y

ε
s�∂xk !Gj�Xε

s�Y
ε
s�
]
ds

− εRε
f�t0� t�

)
?t0

�Yε�
]
=0�

(29)

It follows from the arguments used in the proof of compactness that

εEx�y�Rε
f�t0� t�?t0

�Yε�� → 0�

as ε→ 0. Due to the tightness of the sequence �Yε�, there exists a sequence
εn → 0 and a continuous process Y, such that Yεn (⇒ Y, as n→∞. Conse-
quently Ex�y�Bn� → 0, as n→∞, where

Bn �=
[
f�Yεn

t � − f�Yεn
t0
�

−
∫ t

t0

〈
∇yf�Yεn

s ��F�Xεn
s �Y

εn
s � +Gi�Xεn

s �Y
εn
s �∂yi !G�Xεn

s �Y
εn
s �

+ �Hσ∗�ik�Xεn
s �Y

εn
s �∂yi∂xk !G�Xεn

s �Y
εn
s �

〉
ds

− 1
2Ex�y

∫ t

t0

∂yi∂yjf�Yεn
s �

[
�HH∗�ij�Xεn

s �Y
εn
s � + 2�Gi

!Gj��Xεn
s �Y

εn
s �

+ 2�Hσ∗�ik�Xεn
s �Y

εn
s �∂xk !Gj�Xεn

s �Y
εn
s �

]
ds

]
?t0

�Yεn��

All we need to show is that E�Bn� → E�B�, where

B �=
[
f�Yt� − f�Yt0

� −
∫ t

t0

� f�Ys�ds
]
?t0

�Y��

We use the standard idea of freezing the slow component; see, for example,
Lemmas 3 and 5 in Pardoux and Veretennikov (1997). To this end, we establish
the following lemma.
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Lemma 1. For any δ > 0 there exist N ∈ � and �l–valued step functions
y1� � � � � yN s.t.

P

(
N⋂
k=1

{
sup
0≤t≤T

�Yεn
t − ykt � > δ

})
< δ ∀ n ∈ ��

P

(
N⋂
k=1

{
sup
0≤t≤T

�Yt − ykt � > δ

})
< δ�

Proof. The result follows from the tightness of the set �Y� Yεn� n ∈ ��,
the separability of C��0�T���d� and the fact that to any continuous function
we can associate a step function which is arbitrarily close to the former in sup
norm.

To each y ∈ C��0�T���l�, and k = 1�2� � � � �N, we associate the number

βk�y� �= sup
0≤t≤T

�y�t� − ykt ��

Let

ψ�ϕ1� � � � � ϕN� C��0�T���l� → �0�1�
be continuous mappings such that:

(i) ψ�y� +∑N
k=1 ϕk�y� = 1 ∀ y ∈ C��0�T���l�;

(ii) suppψ ⊂ ⋂N
k=1�y�βk�y� > δ�;

(iii) suppϕk ⊂ �y� βk�y� < 2δ�� 1 ≤ k ≤N.

We define moreover the random variables

ξn �= ψ�Yεn�� ξ = ψ�Y�� ηkn = ϕk�Yεn�� ηk = ϕk�Y�� n ∈ �� 1 ≤ k ≤N�

Note that

suppξn ⊂ An =
N⋂
k=1

{
sup
0≤t≤T

�Yεn
t − ykt � > δ

}
�

and similarly,

suppξ ⊂ A =
N⋂
k=1

{
sup
0≤t≤T

�Yt − ykt � > δ

}
�

Define Bkn as the random variable Bn, where Yεn is replaced by yk, and Bk as
the quantity obtained by replacing Y by yk in the expression for B. The above
considerations yield the fact that

Ex�y�Bnξn� +
N∑
k=1

Ex�y�Bnηkn� → 0�

as n→∞. We also use the decomposition

E�B� = E�Bξ� +
N∑
k=1

E�Bηk��
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(Recall that f here has a compact support.) Now, let p�q > 1, p−1 + q−1 = 1,
and p is close to 1, namely,

p max�q1�2q2�2q′3� q2 + q′3� q3 + q′3� q3 + q′4� < r1�

Then by the Hölder inequality,

�E�Bnξn�� ≤
(
E�Bn�p

)1/p(
P�An�

)1/q ≤ Cδ1/q�

�E�Bξ�� ≤ (
E�B�p)1/p(P�A�)1/q ≤ Cδ1/q�

Indeed, hypothesis �Aq� allows estimating from above all Lebesgue and Itô
integrals in the expression E�Bn�p in a standard manner. The value E�B�p is
bounded just because f ∈ C∞

0 . Also,

N∑
k=1

E�Bnηkn� =
N∑
k=1

E��Bn − Bkn�ηkn� +
N∑
k=1

E�Bknηkn��

N∑
k=1

E�Bηk� =
N∑
k=1

E��B− Bk�ηk� +
N∑
k=1

E�Bkηk��

From the Lipschitz property of the coefficients of Bn and B with respect to y,∣∣∣∣ N∑
k=1

E��Bn − Bkn�ηkn�
∣∣∣∣+

∣∣∣∣ N∑
k=1

E��B− Bk�ηk�
∣∣∣∣ ≤ ρ�δ��

where ρ�δ� → 0, as δ→ 0. It finally remains to show that

E�Bknηkn� → E�Bkηk��
as n → ∞. Since ηkn ⇒ ηk and �ηkn� ≤ 1, it suffices to show that Bkn → Bk in
L1�F� (note that Bk is nonrandom). Indeed,∣∣∣E�Bknηkn − Bkηk�

∣∣∣ ≤ E
∣∣∣�Bkn − Bk�ηkn

∣∣∣+ �Bk�
∣∣∣E�ηkn − ηk�

∣∣∣
≤ E�Bkn − Bk� + �Bk� × �E�ηkn − ηk���

Finally, the L1�F�–convergence of Bkn toward Bk follows from the following
lemma.

Lemma 2. Let K�Xεn
s � yks � denote any of the functions under the integral

sign in the expression for Bkn. Denote !K�y� = ∫
K�x�y�µ̃�dx�. Then for any

t < T,

E
∣∣∣ ∫ t

0
�K�Xεn

s � y
k
s � − !K�yks ��ds

∣∣∣→ 0� εn → 0�

Proof. Let �ak� bk� ⊂ �0�T� be an interval on which yk is constant, equal
to zk. The a.s. convergence∫ bk

ak

K�Xεn
s � z

k�ds→ �bk − ak� !K�zk�
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follows from the ergodic theorem. The L1�F�-convergence follows by uniform
integrability, which is deduced from Proposition 1 and condition �Aq�. ✷

APPENDIX

Proposition 4. Under the assumptions of Theorem 3, (24) holds true.

The proof will follow from four lemmas and a localization procedure. All
lemmas are established under the assumptions of Theorem 3.

Lemma 3. For any R > 0, p > 1 and bounded D,

sup
�y�≤R

#∂y!G�·� y�#W2
p�D� <∞� ∂y!G ∈ C��d × �l�

and

∂yi
!G�x�y� =

∫ ∞

0
Ex∂yiG�Xt�y�dt�

Proof.

vi�x�y� �=
∫ ∞

0
Ex�∂/∂yi�G�Xt�y�dt�

Due to Theorem 1 this function is well-defined because

�∂yiG�·� y�� µ� = ∂yi

∫
G�x�y�µ�dx� = 0�

The first equality here follows from the bounds

�G�x�y�� ≤ C�1+ �y� + �x�q3��
#∇yG�x�y�# ≤ C�1+ �x�q4�� q3� q4 < 2r0 − 1

and from the inequality
∫ �x�qµ�dx� <∞ for any q < 2r0 − 1.

Due to Theorem 1, vi�·� y� ∈ ⋂
p>1W

2
p� loc locally uniformly w.r.t. y, moreover,

for any R > 0,

sup
�x�≤R

sup
y

∣∣∣ ∫ N

0
Ex�∂/∂yi�G�Xt�y�dt− vi�x�y�

∣∣∣→ 0� N→∞

due to the assumptions of Theorem 3 on ∂yG. This implies that vi ∈ C��d×�l�.
The equality vi�x�y� = ∂yi

!G�·� y� follows from the uniform convergence of
the integral

∫∞
0 �Ex∂yiG�Xt�y��dt, see theorem 1. Lemma 3 is proved. ✷

Lemma 4. For any R > 0, p > 1 and bounded D,

sup
�y�≤R

#∂2y!G�·� y�#W2
p�D� <∞� ∂2y

!G ∈ C��d × �l�

and

∂yi∂yj
!G�x�y� =

∫ ∞

0
Ex∂yi∂yjG�Xt�y�dt�
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The proof is similar to the proof of Lemma 3.

Lemma 5. For any R > 0, p > 1 and bounded D,

sup
�y�≤R

#∂xi∂yj !G�·� y�#W1
p�D� <∞� ∂xi∂yj

!G ∈ C��d × �l��

Proof. The first assertion follows from Lemma 3. Moreover, we get from
the embedding theorem that for any R > 0 there exist C�λ > 0 such that

sup
�y�≤R

sup
�x�≤R

�∂x∂y!G�x�y� − ∂x∂y!G�x′� y�� ≤ C�x− x′�λ�

Now the second assertion follows from this and the first assertion in Lemma
4. Lemma 5 is proved. ✷

Lemma 6. For any p > 1, R > 0,

lim
δ→0

sup
�y�≤R

∫
�x�≤R

sup
�z�≤δ

∣∣∣∂xi∂xj !G�x�y� − ∂xi∂xj
!G�x�y+ z�

∣∣∣p dx = 0�

Proof. Let R > 0� p > 1. It follows from the inequality

sup
�y�≤R+1

#∂y!G�·� y�#W2
p�BR� =� CR <∞

that ∫
�y�≤R+1

∫
�x�≤R

�∂2x�∂y!G�x�y���p dxdy <∞�

By virtue of the Fubini theorem, we get for a.s. �x� ≤ R,∫
�y�≤R+1

#∂2x�∂y!G�x�y��#p dy =� C�x� <∞�

where
∫
�x�≤R C�x�dx < ∞. So, due to the embedding theorem we get that if

�y�� �y′� ≤ R,

#∂2x!G�x�y� − ∂2x
!G�x�y′�# ≤ CC�x�1/p�y− y′�λ�

Here λ > 0 only depends on d and p which is, indeed, arbitrary large, C
depends on R and d. Hence

sup
�y�≤R

∫
�x�≤R

sup
�z�≤δ

#∂2x!G�x�y� − ∂2x
!G�x�y+ z�#p dx

≤ Cδpλ
∫
�x�≤R

C�x�dx→ 0

as δ→ 0. Lemma 6 is proved. ✷

Corollary 2.

sup
�y�≤R

#∂2x!G�·� y�# ∈
⋂
p>1

Lp�BR��
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Proof of Proposition 4. We will omit the index ε. Let τR = inf �t ≥
0� �Xt�Yt� "∈ BR�. Here BR = ��x�y�� ��x�y�� ≤ R�. It is sufficient to prove
formula (24) with min�t� τR� for any R, instead of t. Let us consider a con-
volution !Gn�x�y� = !G�·� y� ∗ ψn�x� with the kernel ψn�x� = ndψ�x/n� where
ψ ∈ C∞

0 , ψ ≥ 0,
∫
ψ�x�dx = 1. Then we have

sup
BR

(
�!Gn�x�y� − !G�x�y�� + #∂x!Gn�x�y� − ∂x!G�x�y�#

+#∂y!Gn�x�y� − ∂y!G�x�y�#

+#∂x∂y!Gn�x�y� − ∂x∂y!G�x�y�#
)
→ 0� n→∞�

Moreover, due to Lemma 6,

sup
�y�≤R

#∂2x!Gn�·� y� − ∂2x
!G�·� y�#Lp�BR� → 0� n→∞�

So, one can pass to the limit in the Itô formula for !Gn, by the uniform conver-
gence in all terms but the last one,

∫min�t� τ�
0 ∂2x

!Gn�Xs�Ys�ds where one can do
it by Krylov’s estimate and due to Lemma 6. Indeed,

E
∫ min�t� τ�

0
�∂2x�!Gn − !G��Xs�Ys��ds

≤ E
∫ min�t� τ�

0
sup
�y�≤R

#∂2x�!Gn − !G��Xs�y�#ds

≤ C
∥∥∥ sup
�y�≤R

#�∂2x!Gn − ∂2x
!G��·� y�#

∥∥∥
Lp�BR�

→ 0� n→∞�

Proposition 4 is proved. ✷
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