The hydrodynamic limit of multiple merger coalescent processes that come down from infinity

Helmut Pitters
joint work with Luke Miller
Supervisor: Alison Etheridge
Department of Statistics
University of Oxford
June 19, 2015

Outline

Motivation

Multiple merger coalescents

Hydrodynamic limit
Exchangeable random partitions
Kingman's coalescent
Beta coalescents
Bell polynomials

References

What is a coalescent process?

- Markov process
- encodes dynamics of particles grouped into so-called blocks
- as time passes, only mergers of (some or all) blocks may occur

Origins: Kingman's coalescent models the genealogy of individuals in population genetics (Kingman, Tavaré, Griffiths, Watterson).

Figure: Simulation of Kingman coalescent tree with sample size $n=100$.

Why study multiple merger coalescents?

- allow for multiple mergers instead of just binary mergers
- better null models than Kingman's coalescent for the genealogy of highly fecund populations

Figure : Examples of highly fecund populations. Left: Atlantic cod (gadus morhua); right: pacific oyster (crassostrea gigas)

- model the genealogy of populations subject to selection
- occur as rescaling limits in the theory of spin glasses/statistical physics
- rich mathematical structure

Definition of multiple merger coalescents I

Fix a sample size $n \geq 2$. The Λn-coalescent $\left\{\Pi^{n}(t), t \geq 0\right\}$

- is a Markov process of jump-hold type,
- has state space the partitions of $[n]=\{1, \ldots, n\}$,
- and rates
$\lambda_{m, k}=$ rate at which any specific k out of m blocks merge

$$
=\int_{0}^{1} x^{k}(1-x)^{m-k} \frac{\Lambda(d x)}{x^{2}}
$$

where Λ is a finite measure on $[0,1]$.
[see Donnelly, Kurtz 1999, Pitman 1999, Sagitov 1999]

Definition of multiple merger coalescents II

There exists a Markov process

$$
\{\Pi(t), t \geq 0\}
$$

on the partitions of \mathbb{N} such that for any n

$$
\text { restriction of }\{\Pi(t), t \geq 0\} \text { to }[n] \quad=_{d} \quad\left\{\Pi^{n}(t), t \geq 0\right\} .
$$

Π is referred to as the Λ coalescent.

Examples of Λ coalescents

$\Lambda(d x)$	name
$\delta_{1}(d x)$	star-shaped coalescent
$\delta_{0}(d x)$	Kingman coalescent
$x d x$	Bolthausen-Sznitman coalescent
$\frac{x^{a-1}(1-x)^{b-1}}{B(a, b)} d x$	beta coalescents

Beta function: $B(a, b)=\int_{0}^{1} x^{a-1}(1-x)^{b-1} d x \quad(a, b>0)$.

Figure : beta $(0.9,1.1)$ coalescent tree with sample size $n=100$.

Type of a partition

Consider a partition π of $[n]$. For fixed $i \in[n]$ let

$$
\mathfrak{c}_{i} \pi=\#\{B \in \pi: \# B=i\}
$$

denote the number of blocks of π of size i. We call

$$
\mathfrak{c} \pi=\left(\mathfrak{c}_{1} \pi, \ldots, \mathfrak{c}_{n} \pi\right)
$$

the type of π.

Hydrodynamic limit

Goal: We would like to understand the evolution of the relative block size frequencies of $\Pi^{n}(t)$

$$
\left\{n^{-1}\left(\mathfrak{c}_{1} \Pi^{n}\left(t \tau_{n}\right), \ldots, \mathfrak{c}_{n} \Pi^{n}\left(t \tau_{n}\right)\right), t \geq 0\right\}
$$

as $n \rightarrow \infty$, with a suitable time-scaling τ_{n}.

Provided this limit exists, it yields information about the distribution of the marginal

$$
\Pi(t)
$$

due to exchangeability.
Fact: $\Pi^{n}(t)$ is an exchangeable random partition.

Exchangeable random partitions

A (random) partition Π of \mathbb{N} is called exchangeable if its distribution is invariant under the action of any finite permutation, i.e. iff for all $n \in \mathbb{N}$

$$
\sigma \Pi={ }_{d} \Pi \quad \text { for any permutation } \sigma \text { of }[n] .
$$

An exchangeable random partition of $[n]$ is defined in complete analogy.

Asymptotic frequencies

Given a partition $\pi=\left(B_{1}, B_{2}, \ldots\right)$, and a block B of π, let

$$
|B|:=\lim _{n} \frac{\#(B \cap[n])}{n}
$$

denote the asymptotic frequency of B, if this limit exists.

Exchangeable random partitions: a simple example I

Fix $\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{N}_{0}^{n}$ such that $\sum_{i} c_{i}=b$, and $\sum_{i} i c_{i}=n$. Define a random partition Π of $[n]$ with fixed block sizes $\left(c_{1}, \ldots, c_{n}\right)$ by

$$
\mathbb{P}\{\Pi=\pi\}= \begin{cases}\left(\frac{n!}{\prod_{j=1}^{n}!^{!_{j}} c_{j}!}\right)^{-1} & \text { if } \mathfrak{c} \pi=\left(c_{1}, \ldots, c_{n}\right) \\ 0 & \text { otherwise }\end{cases}
$$

Notice the Faá di Bruno coefficients

$$
\#\left\{\pi: \mathfrak{c} \pi=\left(c_{1}, \ldots, c_{n}\right)\right\}=\frac{n!}{\prod_{j=1}^{n} j!^{c_{j}} c_{j}!} .
$$

Exchangeable random partitions: a simple example II

Explicit construction of Π

1. Partition $1,2, \ldots, n$ into some partition, π say, with $b=\sum_{i} c_{i}$ blocks, the first c_{1} blocks being singletons, the next c_{2} blocks being doubletons, etc., i.e.

$$
\pi=1|2| \cdots\left|c_{1}\right| c_{1}+1, c_{1}+2|\cdots| c_{1}+2 c_{2}-1, c_{1}+2 c_{2} \mid \cdots
$$

2. Let

$$
\Pi=\Sigma \pi
$$

be a relabelling of the elements of π by a permutation Σ of $[n]$ drawn uniformly at random.

Kingman's paintbox I

We construct an exchangeable random partition of \mathbb{N} as follows.
Fix a tiling

$$
s \in \mathcal{S}_{0}:=\left\{s=\left(s_{0}, s_{1}, \ldots\right): s_{i} \geq 0, s_{1} \geq s_{2} \geq \cdots, \sum_{i} s_{i}=1\right\}
$$

of the unit interval. Think of the $s_{i} \mathrm{~s}$ as boxes of different colours.

Kingman's paintbox II

Let $\left(U_{i}\right)$ be a sequence of i.i.d. uniform $[0,1]$ random variables.

Define the partition Π of \mathbb{N} via
i, j are in the same block in $\Pi \Longleftrightarrow$
U_{i}, U_{j} fell into the same paintbox, not s_{0}
Then Π is an exchangeable random partition.
In fact, any exchangeable random partition of \mathbb{N} can be constructed from a (possibly random) tiling of $[0,1]$.

Kingman's paintbox III

Now start with a random partition Π of \mathbb{N}. For any block B of Π the law of large numbers yields that its asymptotic frequency

$$
|B|=\lim _{n} \frac{\#(B \cap[n])}{n} \in[0,1]
$$

exists. If $|B|>0$, we have recovered a fragment in the tiling $S=S(\Pi) \in \mathcal{S}_{0}$ corresponding to Π. Moreover,

$$
s_{0}=1-\sum_{B \in \Pi}|B|
$$

is the proportion of singletons in Π.

Kingman's correspondence

Theorem (Kingman's correspondence)
There is a bijection between the set of exchangeable random partitions Π and the set of probability distributions on \mathcal{S}_{0}.
Π exchangeable random partition of \mathbb{N}
$\longleftrightarrow s$ (random) tiling of $[0,1]$

Aldous' construction of Kingman's coalescent I

Let $\left(U_{i}\right)$ be i.i.d. uniform $[0,1]$,
let $\left(E_{i}\right)$ be independent exponentials, where E_{i} has parameter $\binom{i}{2}$,

Attach a stick of length τ_{i} to U_{i}.

Aldous' construction of Kingman's coalescent II

 Define $f:[0,1] \rightarrow[0, \infty)$ by $f(u):=\tau_{j}$ if $u=U_{j}$ and $f(u):=0$ otherwise.

Then $\{S(t), t \geq 0\}$ defined by

$$
S(t):=\text { open connected components of }\{u \in(0,1): f(u) \leq t\}
$$

is equal in law to the asymptotic frequencies of Kingman's coalescent.

Hydrodynamic limit of Kingman's coalescent

Goal: Quantify behaviour of \# $\Pi(t)$ for small times t. Idea: "Approximate" $\Pi(t)$ by $\Pi^{n}(t)$ for large n.

Somewhat related studies of asymptotic properties of beta coalescents:

- Berestycki, Berestycki, Schweinsberg 2007, 2008
- Berestycki, Berestycki, Limic 2010
- Limic, Talarczyk-Noble 2013, 2015

Hydrodynamic limit of Kingman's coalescent

Heuristics

- waiting time in state $N^{n}(t):=\# \Pi^{n}(t) \approx \operatorname{Exp}\left(\binom{N^{n}(t)}{2}\right)$
- for small t and large n
- $\left(\right.$ rate at which $N^{n}(t)$ decreases $)=\frac{-1}{\mathbb{E}\left[\operatorname{Exp}\binom{N^{n}(t)}{2}\right]} \approx-\frac{1}{2} N^{n}(t)^{2}$,
- hence $N^{n}(t) / n$ should be approximated by the ODE

$$
c^{\prime}(t)=-\frac{1}{2} c(t)^{2}, \quad c(0)=1
$$

with solution

$$
c(t)=\frac{2}{2+t} .
$$

Hydrodynamic limit of Kingman's coalescent

Theorem
As $n \rightarrow \infty$

$$
\left\{n^{-1} \nexists \Pi^{n}(t / n), t \geq 0\right\} \rightarrow\left\{\frac{2}{2+t}, t \geq 0\right\}
$$

in the Skorohod topology.
Cf. Aldous 1999 and Wattis 2008.

Hydrodynamic limit of Kingman's coalescent

Theorem

For fixed $d \in \mathbb{N}$ as $n \rightarrow \infty$

$$
\begin{aligned}
& \left\{n^{-1}\left(\mathfrak{c}_{1} \Pi^{n}(t / n), \ldots, \mathfrak{c}_{d} \Pi^{n}(t / n)\right), t \geq 0\right\} \\
& \quad \rightarrow\left\{\left(c_{1}(t), \ldots, c_{d}(t)\right), t \geq 0\right\}
\end{aligned}
$$

in the Skorohod topology, where

$$
c_{j}(t)=c(t)^{2}(1-c(t))^{j-1}, \quad c(t)=\frac{2}{2+t} \quad(t \geq 0, j \in \mathbb{N})
$$

Cf. Aldous 1999 and Wattis 2008.

Figure : Simulated relative sizes of blocks in a beta($0.5,1.5$) coalescent and analytic solution (thick line). black: total number of blocks, red: singletons, blue: doubletons.

Hydrodynamic limit of beta coalescents

Theorem (Miller, P. 2014)

Consider beta (a, b) coalescents with $a<1$. Then as $n \rightarrow \infty$

$$
\left\{n^{-1} \# \Pi^{n}\left(n^{a-1} t\right), t \geq 0\right\} \rightarrow\{c(t), t \geq 0\}
$$

in the Skorohod topology, where

$$
c(t)=\left(\frac{(2-a) \Gamma(b)}{(2-a) \Gamma(b)+\Gamma(a+b) t}\right)^{\frac{1}{1-a}}
$$

Bell polynomials I

For each finite set F_{n} with n elements we are given a construction V that associates with F_{n} a set of V-structures, $V\left(F_{n}\right)$, so

$$
F_{n} \mapsto V\left(F_{n}\right)
$$

such that $\# V\left(F_{n}\right)=v_{n}$, for some fixed sequence $v_{\bullet}=\left(v_{n}\right) . V$ is called a species of combinatorial structures.

Table: Examples of combinatorial species

$V\left(F_{n}\right)$	$\# V\left(F_{n}\right)$
F_{n}	1
permutations of F_{n}	$n!$
partitions of F_{n}	$B_{n}(n$th Bell number $)$

[Further information: Pitman 2006, Combinatorial stochastic processes
For a rich theory of combinatorial species see Bergeron, Labelle, Leroux 2013]

Bell polynomials II

Consider two combinatorial species, V, W, such that for any set F_{n} with $\# F_{n}=n$

$$
\# V\left(F_{n}\right)=v_{n}, \quad \# W\left(F_{n}\right)=w_{n} .
$$

Let

$$
(V \circ W)\left(F_{n}\right)=\left\{\begin{array}{l}
\text { set of all ways to partition } F_{n} \text { into } \\
\text { blocks }\left\{A_{1}, \ldots, A_{k}\right\} \text { for some } k, \\
\text { assign each partition a } V \text {-structure } \\
\& \text { assign each block } A_{i} \text { a } W \text {-structure. }
\end{array}\right.
$$

$(V \circ W)\left(F_{n}\right)$ is called a composite structure on F_{n}.

$$
\#(V \circ W)\left(F_{n}\right)=\sum_{\pi \in \mathcal{P}_{[n]}} v_{\# \pi} \prod_{B \in \pi} w_{\# B}=\sum_{k=1}^{n} v_{k} \sum_{\pi \in \mathcal{P}_{[n], k}} \prod_{B \in \pi} w_{\# B}
$$

Bell polynomials III

Recall

$$
\#(V \circ W)\left(F_{n}\right)=\sum_{\pi \in \mathcal{P}_{[n]}} v_{\# \pi} \prod_{B \in \pi} w_{\# B}=\sum_{k=1}^{n} v_{k} \sum_{\pi \in \mathcal{P}_{[n], k}} \prod_{B \in \pi} w_{\# B}
$$

Denote by

$$
B_{n, k}\left(w_{\bullet}\right):=\sum_{\pi \in \mathcal{P}_{[n], k}} \prod_{B \in \pi} w_{\# B}
$$

the (n, k) th partial Bell polynomial, and by

$$
B_{n}\left(v_{\bullet}, w_{\bullet}\right):=\sum_{k=1}^{n} v_{k} B_{n, k}\left(w_{\bullet}\right)
$$

the nth complete Bell polynomial. Then

$$
\#(V \circ W)\left(F_{n}\right)=B_{n}\left(v_{\bullet}, w_{\bullet}\right)
$$

Hydrodynamic limit of beta coalescents

Theorem (Miller, P. 2014)

For fixed $d \in \mathbb{N}$ we have

$$
\begin{array}{r}
\left\{n^{-1}\left(\mathfrak{c}_{1} \Pi^{n}\left(n^{a-1} t\right), \ldots, \mathfrak{c}_{d} \Pi^{n}\left(n^{a-1} t\right)\right), t \geq 0\right\} \\
\rightarrow\left\{\left(c_{1}(t), \ldots, c_{d}(t)\right), t \geq 0\right\}
\end{array}
$$

as $n \rightarrow \infty$ in the Skorohod topology, where for each $i \in \mathbb{N}$

$$
c_{i}(t)=\frac{c(t)^{2-a}}{i!} B_{i}\left(\left(\frac{1}{1-a}\right)^{\boldsymbol{\bullet}}\left(-c(t)^{1-a}\right)^{\bullet-1},(1-a)^{\boldsymbol{\bullet}}\right),
$$

with $x^{\bar{k}}:=x(x+1) \cdots(x+k-1)$ the ascending factorial power.

What does this tell us about the asymptotic frequencies of beta coalescents?

Informally,

$$
" S_{\Pi^{n}}\left(t n^{a-1}\right) \rightarrow S_{\Pi}\left(t n^{a-1}\right) " \quad \text { as } n \rightarrow \infty
$$

For very large n, at time $t n^{a-1}$ a block of size i has "asymptotic frequency" of order i / n, and there are roughly $n c_{i}(t)$ of them, hence together occupy a fraction $i c_{i}(t)$ of the corresponding tiling.

References I

- Aldous 1999, Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists.
- Berestycki 2009, Recent progress in coalescent theory.
- Berestycki, Berestycki, Schweinsberg 2007 Beta-coalescents and continuous stable random trees.
- Berestycki, Berestycki, Schweinsberg 2008 Small-time behaviour of beta coalescents.
- Berestycki, Berestycki, Limic 2010 The Lambda-coalescent speed of coming down from infinity.
- Bergeron, Labelle, Leroux 2013, Introduction to the theory of species of structures.
- Donnelly, Kurtz 1999, Particle representations for measure-valued population models.
- Kingman 1982, The coalescent.

References II

- Limic, Talarczyk-Noble 2013 Second-order asymptotics for the block counting process in a class of regularly varying Lambda-coalescents.
- Limic, Talarczyk-Noble 2015 Diffusion limits at small times for coalescents with a Kingman component.
- Pitman 1999, Coalescents with multiple collisions.
- Pitman 2006, Combinatorial stochastic processes.
- Sagitov 1999, The general coalescent with asynchronous mergers of ancestral lines.
- Wattis 2008, An introduction to mathematical models of coagulation-fragmentation processes: a discrete deterministic mean-field approach.

