The hydrodynamic limit of multiple merger coalescent processes that come down from infinity

Helmut Pitters

joint work with Luke Miller Supervisor: Alison Etheridge

Department of Statistics University of Oxford

June 19, 2015

Outline

Motivation

Multiple merger coalescents

Hydrodynamic limit Exchangeable random partitions Kingman's coalescent Beta coalescents Bell polynomials

References

What is a coalescent process?

- Markov process
- ► encodes dynamics of particles grouped into so-called blocks
- ▶ as time passes, only mergers of (some or all) blocks may occur

Origins: Kingman's coalescent models the genealogy of individuals in population genetics (Kingman, Tavaré, Griffiths, Watterson).

Figure : Simulation of Kingman coalescent tree with sample size n = 100.

Why study multiple merger coalescents?

- ► allow for multiple mergers instead of just binary mergers
- better null models than Kingman's coalescent for the genealogy of highly fecund populations

Figure : Examples of highly fecund populations. Left: Atlantic cod (gadus morhua); right: pacific oyster (crassostrea gigas)

- model the genealogy of populations subject to selection
- occur as rescaling limits in the theory of spin glasses/statistical physics
- rich mathematical structure

Definition of multiple merger coalescents I

Fix a sample size $n \ge 2$. The Λ *n*-coalescent $\{\Pi^n(t), t \ge 0\}$

- ► is a Markov process of jump-hold type,
- ▶ has state space the partitions of $[n] = \{1, \ldots, n\},$
- and rates

 $\lambda_{m,k}=$ rate at which any specific k out of m blocks merge $=\int_0^1 x^k(1-x)^{m-k}\frac{\Lambda(dx)}{x^2},$

where Λ is a finite measure on [0,1]. [see Donnelly, Kurtz 1999, Pitman 1999, Sagitov 1999]

Definition of multiple merger coalescents II

There exists a Markov process

 $\{\Pi(t),t\geq 0\}$

on the partitions of $\ensuremath{\mathbb{N}}$ such that for any n

 $\text{restriction of } \{\Pi(t), t \geq 0\} \text{ to } [n] \quad =_d \quad \{\Pi^n(t), t \geq 0\}.$

 Π is referred to as the Λ *coalescent*.

Examples of Λ coalescents

$\Lambda(dx)$	name
$\delta_1(dx)$	star-shaped coalescent
$\delta_0(dx)$	Kingman coalescent
xdx	Bolthausen-Sznitman coalescent
$\frac{x^{a-1}(1-x)^{b-1}}{B(a,b)}dx$	beta coalescents

Beta function: $B(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx$ (a,b>0).

Figure : beta(0.9, 1.1) coalescent tree with sample size n = 100.

Type of a partition

Consider a partition π of [n]. For fixed $i \in [n]$ let

$$\mathfrak{c}_i\pi=\#\{B\in\pi\colon \#B=i\}$$

denote the number of blocks of π of size i. We call

$$\mathfrak{c}\pi=(\mathfrak{c}_1\pi,\ldots,\mathfrak{c}_n\pi)$$

the *type* of π .

Hydrodynamic limit

Goal: We would like to understand the evolution of the relative block size frequencies of $\Pi^n(t)$

```
\{n^{-1}(\mathfrak{c}_1\Pi^n(t\tau_n),\ldots,\mathfrak{c}_n\Pi^n(t\tau_n)),t\geq 0\},\
```

as $n \to \infty$, with a suitable time-scaling τ_n .

Provided this limit exists, it yields information about the distribution of the marginal

 $\Pi(t)$

due to exchangeability. Fact: $\Pi^n(t)$ is an exchangeable random partition.

Exchangeable random partitions

A (random) partition Π of $\mathbb N$ is called *exchangeable* if its distribution is invariant under the action of any finite permutation, i.e. iff for all $n\in\mathbb N$

 $\sigma \Pi =_d \Pi$ for any permutation σ of [n].

An exchangeable random partition of $\left[n\right]$ is defined in complete analogy.

Asymptotic frequencies

Given a partition $\pi = (B_1, B_2, \ldots)$, and a block B of π , let

$$|B|\coloneqq \lim_n \frac{\texttt{\#}(B\cap [n])}{n}$$

denote the asymptotic frequency of B, if this limit exists.

Exchangeable random partitions: a simple example I

Fix $(c_1, \ldots, c_n) \in \mathbb{N}_0^n$ such that $\sum_i c_i = b$, and $\sum_i ic_i = n$. Define a random partition Π of [n] with fixed block sizes (c_1, \ldots, c_n) by

$$\mathbb{P}\{\Pi = \pi\} = \begin{cases} \left(\frac{n!}{\prod_{j=1}^{n} j!^{c_j} c_j!}\right)^{-1} & \text{if } \mathfrak{c}\pi = (c_1, \dots, c_n), \\ 0 & \text{otherwise.} \end{cases}$$

Notice the Faá di Bruno coefficients

$$\#\{\pi: \,\mathfrak{c}\pi = (c_1, \dots, c_n)\} = \frac{n!}{\prod_{j=1}^n j!^{c_j} c_j!}$$

Exchangeable random partitions: a simple example II

Explicit construction of Π

1. Partition 1, 2, ..., n into some partition, π say, with $b = \sum_i c_i$ blocks, the first c_1 blocks being singletons, the next c_2 blocks being doubletons, etc., i.e.

$$\pi = 1|2|\cdots|c_1|c_1+1, c_1+2|\cdots|c_1+2c_2-1, c_1+2c_2|\cdots$$

2. Let

$$\Pi = \Sigma \pi$$

be a relabelling of the elements of π by a permutation Σ of [n] drawn uniformly at random.

Kingman's paintbox I

We construct an exchangeable random partition of $\mathbb N$ as follows. Fix a tiling

$$s \in \mathcal{S}_0 \coloneqq \left\{ s = (s_0, s_1, \ldots) \colon s_i \ge 0, s_1 \ge s_2 \ge \cdots, \sum_i s_i = 1 \right\}$$

of the unit interval. Think of the s_i s as boxes of different colours.

$$0$$
 s_0 s_1 s_2 s_3 s_4 s_5

Kingman's paintbox II

Let (U_i) be a sequence of i.i.d. uniform [0,1] random variables.

Define the partition Π of $\mathbb N$ via

i,j are in the same block in $\Pi\iff U_i,U_j$ fell into the same paintbox, not s_0

Then Π is an exchangeable random partition. In fact, any exchangeable random partition of \mathbb{N} can be constructed from a (possibly random) tiling of [0, 1].

Kingman's paintbox III

Now start with a random partition Π of \mathbb{N} . For any block B of Π the law of large numbers yields that its asymptotic frequency

$$|B| = \lim_{n} \frac{\#(B \cap [n])}{n} \in [0, 1]$$

exists. If |B|>0, we have recovered a fragment in the tiling $S=S(\Pi)\in\mathcal{S}_0$ corresponding to $\Pi.$ Moreover,

$$s_0 = 1 - \sum_{B \in \Pi} |B|$$

is the proportion of singletons in Π .

Kingman's correspondence

Theorem (Kingman's correspondence)

There is a bijection between the set of exchangeable random partitions Π and the set of probability distributions on S_0 .

 $\Pi \text{ exchangeable random partition of } \mathbb{N}$ $\longleftrightarrow s \text{ (random) tiling of } [0,1]$

Aldous' construction of Kingman's coalescent I

Let (U_i) be i.i.d. uniform [0, 1],

let (E_i) be independent exponentials, where E_i has parameter $\binom{i}{2}$,

$$\tau_i \coloneqq \sum_{k \ge i+1} E_k < \infty.$$

Attach a stick of length τ_i to U_i .

Aldous' construction of Kingman's coalescent II Define $f: [0,1] \rightarrow [0,\infty)$ by $f(u) \coloneqq \tau_j$ if $u = U_j$ and $f(u) \coloneqq 0$ otherwise.

Then $\{S(t), t \ge 0\}$ defined by

S(t) := open connected components of $\{u \in (0,1) \colon f(u) \le t\}$

is equal in law to the asymptotic frequencies of Kingman's coalescent.

Goal: Quantify behaviour of $\#\Pi(t)$ for small times t. Idea: "Approximate" $\Pi(t)$ by $\Pi^n(t)$ for large n.

Somewhat related studies of asymptotic properties of beta coalescents:

- Berestycki, Berestycki, Schweinsberg 2007, 2008
- Berestycki, Berestycki, Limic 2010
- ► Limic, Talarczyk-Noble 2013, 2015

Heuristics

- waiting time in state $N^n(t) \coloneqq \#\Pi^n(t) \approx \operatorname{Exp}(\binom{N^n(t)}{2})$
- for small t and large n
 - ► (rate at which $N^n(t)$ decreases) = $\frac{-1}{\mathbb{E}[\exp\left(\frac{N^n(t)}{2}\right)]} \approx -\frac{1}{2}N^n(t)^2$,
 - \blacktriangleright hence $N^n(t)/n$ should be approximated by the ODE

$$c'(t) = -\frac{1}{2}c(t)^2, \qquad c(0) = 1$$

with solution

$$c(t) = \frac{2}{2+t}.$$

Theorem

As $n \to \infty$

$$\{n^{-1} \# \Pi^n(t/n), t \ge 0\} \to \left\{\frac{2}{2+t}, t \ge 0\right\},$$

in the Skorohod topology.

Cf. Aldous 1999 and Wattis 2008.

Theorem

For fixed $d \in \mathbb{N}$ as $n \to \infty$ $\{n^{-1}(\mathfrak{c}_1 \Pi^n(t/n), \dots, \mathfrak{c}_d \Pi^n(t/n)), t \ge 0\}$ $\to \{(c_1(t), \dots, c_d(t)), t \ge 0\}$

in the Skorohod topology, where

$$c_j(t) = c(t)^2 (1 - c(t))^{j-1}, \quad c(t) = \frac{2}{2+t} \qquad (t \ge 0, j \in \mathbb{N}).$$

Cf. Aldous 1999 and Wattis 2008.

N = 1000, alpha = 1.5, simulations = 10

Figure : Simulated relative sizes of blocks in a beta(0.5, 1.5) coalescent and analytic solution (thick line). black: total number of blocks, red: singletons, blue: doubletons.

Hydrodynamic limit of beta coalescents

Theorem (Miller, P. 2014)

Consider beta(a, b) coalescents with a < 1. Then as $n \to \infty$

$$\{n^{-1} \# \Pi^n(n^{a-1}t), t \geq 0\} \to \{c(t), t \geq 0\},$$

in the Skorohod topology, where

$$c(t) = \left(\frac{(2-a)\Gamma(b)}{(2-a)\Gamma(b) + \Gamma(a+b)t}\right)^{\frac{1}{1-a}}$$

Bell polynomials I

For each finite set F_n with n elements we are given a construction V that associates with F_n a set of V-structures, $V(F_n)$, so

 $F_n \mapsto V(F_n),$

such that $\#V(F_n) = v_n$, for some fixed sequence $v_{\bullet} = (v_n)$. V is called a *species of combinatorial structures*.

Table : Examples of combinatorial species		
$V(F_n)$	$\#V(F_n)$	
F	1	
permutations of F_n	n!	
partitions of F_n	B_n (nth Bell number)	

[Further information: Pitman 2006, Combinatorial stochastic processes

For a rich theory of combinatorial species see Bergeron, Labelle, Leroux 2013]

Bell polynomials II

Consider two combinatorial species, $V,W\!,$ such that for any set F_n with $\#F_n=n$

$$#V(F_n) = v_n, #W(F_n) = w_n.$$

Let

$$(V \circ W)(F_n) = \begin{cases} \text{set of all ways to partition } F_n \text{ into} \\ \text{blocks } \{A_1, \dots, A_k\} \text{ for some } k, \\ \text{assign each partition a } V \text{-structure} \\ \& \text{ assign each block } A_i \text{ a } W \text{-structure}. \end{cases}$$

 $(V \circ W)(F_n)$ is called a *composite structure* on F_n .

$$\#(V \circ W)(F_n) = \sum_{\pi \in \mathcal{P}_{[n]}} v_{\#\pi} \prod_{B \in \pi} w_{\#B} = \sum_{k=1}^n v_k \sum_{\pi \in \mathcal{P}_{[n],k}} \prod_{B \in \pi} w_{\#B}$$

Bell polynomials III Recall

$$\#(V \circ W)(F_n) = \sum_{\pi \in \mathcal{P}_{[n]}} v_{\#\pi} \prod_{B \in \pi} w_{\#B} = \sum_{k=1}^n v_k \sum_{\pi \in \mathcal{P}_{[n],k}} \prod_{B \in \pi} w_{\#B}.$$

 \mathbf{m}

Denote by

$$B_{n,k}(w_{\bullet}) \coloneqq \sum_{\pi \in \mathcal{P}_{[n],k}} \prod_{B \in \pi} w_{\#B}$$

the (n,k)th partial Bell polynomial, and by

$$B_n(v_{\bullet}, w_{\bullet}) \coloneqq \sum_{k=1}^n v_k B_{n,k}(w_{\bullet})$$

the nth complete Bell polynomial. Then

$$#(V \circ W)(F_n) = B_n(v_{\bullet}, w_{\bullet}).$$

Hydrodynamic limit of beta coalescents

Theorem (Miller, P. 2014) For fixed $d \in \mathbb{N}$ we have $\{n^{-1}(\mathfrak{c}_1\Pi^n(n^{a-1}t),\ldots,\mathfrak{c}_d\Pi^n(n^{a-1}t)),t>0\}$ $\rightarrow \{(c_1(t), \ldots, c_d(t)), t \ge 0\}$ as $n \to \infty$ in the Skorohod topology, where for each $i \in \mathbb{N}$ $c_i(t) = \frac{c(t)^{2-a}}{i!} B_i\left(\left(\frac{1}{1-a}\right)^{-1} (-c(t)^{1-a})^{\bullet-1}, (1-a)^{\bullet}\right),$

with $x^{\overline{k}} \coloneqq x(x+1)\cdots(x+k-1)$ the ascending factorial power.

What does this tell us about the asymptotic frequencies of beta coalescents?

Informally,

$$"S_{\Pi^n}(tn^{a-1}) \to S_{\Pi}(tn^{a-1})" \qquad \text{as } n \to \infty.$$

For very large n, at time tn^{a-1} a block of size i has "asymptotic frequency" of order i/n, and there are roughly $nc_i(t)$ of them, hence together occupy a fraction $ic_i(t)$ of the corresponding tiling.

References I

- Aldous 1999, Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists.
- ► Berestycki 2009, Recent progress in coalescent theory.
- Berestycki, Berestycki, Schweinsberg 2007 Beta-coalescents and continuous stable random trees.
- Berestycki, Berestycki, Schweinsberg 2008 Small-time behaviour of beta coalescents.
- Berestycki, Berestycki, Limic 2010 The Lambda-coalescent speed of coming down from infinity.
- Bergeron, Labelle, Leroux 2013, Introduction to the theory of species of structures.
- Donnelly, Kurtz 1999, Particle representations for measure-valued population models.
- ▶ Kingman 1982, The coalescent.

References II

- Limic, Talarczyk-Noble 2013 Second-order asymptotics for the block counting process in a class of regularly varying Lambda-coalescents.
- ► Limic, Talarczyk-Noble 2015 Diffusion limits at small times for coalescents with a Kingman component.
- ▶ Pitman 1999, Coalescents with multiple collisions.
- ► Pitman 2006, Combinatorial stochastic processes.
- Sagitov 1999, The general coalescent with asynchronous mergers of ancestral lines.
- Wattis 2008, An introduction to mathematical models of coagulation-fragmentation processes: a discrete deterministic mean-field approach.