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What is a coalescent process?

» Markov process
» encodes dynamics of particles grouped into so-called blocks
» as time passes, only mergers of (some or all) blocks may occur

Origins: Kingman's coalescent models the genealogy of individuals
in population genetics (Kingman, Tavaré, Griffiths, Watterson).
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Figure : Simulation of Kingman coalescent tree with sample size n = 100.



Why study multiple merger coalescents?

» allow for multiple mergers instead of just binary mergers

» better null models than Kingman's coalescent for the
genealogy of highly fecund populations

[ &

Figure : Examples of highly fecund populations. Left: Atlantic cod
(gadus morhua); right: pacific oyster (crassostrea gigas)

» model the genealogy of populations subject to selection
» occur as rescaling limits in the theory of spin glasses/statistical
physics

» rich mathematical structure



Definition of multiple merger coalescents |

Fix a sample size n > 2. The A n-coalescent {I1"(t),t > 0}
» is a Markov process of jump-hold type,
» has state space the partitions of [n] = {1,...,n},

» and rates

Am,; = rate at which any specific k& out of m blocks merge

1
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where A is a finite measure on [0, 1].
[see Donnelly, Kurtz 1999, Pitman 1999, Sagitov 1999]



Definition of multiple merger coalescents |l

There exists a Markov process
{I(t), ¢ > 0}
on the partitions of N such that for any n
restriction of {II(¢),t > 0} to [n] =4 {II"(¢),t > 0}.

II is referred to as the A coalescent.



Examples of A coalescents

A(dz) name
91 (dx) star-shaped coalescent
do(dz) Kingman coalescent
xdx Bolthausen-Sznitman coalescent
%dm beta coalescents

Beta function: B(a,b) = [ 2 (1 —z)>"'dz  (a,b> 0).



Figure : beta(0.9, 1.1) coalescent tree with sample size n = 100.



Type of a partition

Consider a partition 7 of [n]. For fixed ¢ € [n] let
om =#{B e n: #B =i}
denote the number of blocks of 7 of size i. We call
cm = (7, ..., CyT)

the type of .
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Hydrodynamic limit

Goal: We would like to understand the evolution of the relative
block size frequencies of T1"(¢)

{0~ e TI™(t1), . . ., ¢ T (t1,)), £ > 0},

as n — 0o, with a suitable time-scaling 7,,.

Provided this limit exists, it yields information about the
distribution of the marginal

1(?)

due to exchangeability.
Fact: II"(t) is an exchangeable random partition.
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Exchangeable random partitions

A (random) partition IT of N is called exchangeable if its
distribution is invariant under the action of any finite permutation,
i.e. iff for alln € N

oll =411 for any permutation o of [n].

An exchangeable random partition of [n] is defined in complete
analogy.
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Asymptotic frequencies

Given a partition m = (B, B2, ...), and a block B of m, let

|B| :== lim 7#(3 ninl)

denote the asymptotic frequency of B, if this limit exists.
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Exchangeable random partitions: a simple example |

Fix (c1,...,¢,) € N such that >, ¢; = b, and ), ic; = n. Define
a random partition II of [n] with fixed block sizes (c1,...,¢,) by

—1
! . .
Pt =y — | () Fer= (e

0 otherwise.
Notice the Faa di Bruno coefficients

n!

#{m:em=(c1,...,¢0)} = W
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Exchangeable random partitions: a simple example |l

Explicit construction of II

1. Partition 1,2,...,n into some partition, 7 say, with b = )" ¢;
blocks, the first ¢; blocks being singletons, the next co blocks
being doubletons, etc., i.e.

=12 - |ei|ler + 1,e1 + 2]+ |er + 2¢0 — 1,e1 + 2¢9] -+ - .

2. Let
II=3r

be a relabelling of the elements of 7 by a permutation ¥ of [n]
drawn uniformly at random.
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Kingman's paintbox |

We construct an exchangeable random partition of N as follows.
Fix a tiling

se Sy = {82(80,51,...)28120,812522“',Zsizl}
i

of the unit interval. Think of the s;s as boxes of different colours.

F=— I o

|
B B s S3'84'
0 50 1 2 3 545y

16



Kingman's paintbox |l

Let (U;) be a sequence of i.i.d. uniform [0, 1] random variables.

Ur UyUs U Us UUs
| |- - . | . . .
680“ H :81 1 :52: |SJ|§|SE{

Define the partition IT of N via

1,7 are in the same block in I <=
U;, U; fell into the same paintbox, not s

Then II is an exchangeable random partition.
In fact, any exchangeable random partition of N can be constructed
from a (possibly random) tiling of [0, 1].
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Kingman's paintbox Il

Now start with a random partition II of N. For any block B of II
the law of large numbers yields that its asymptotic frequency

#(B N [n])

|B| = lim €[0,1]

exists. If |B| > 0, we have recovered a fragment in the tiling
S = S(IT) € Sy corresponding to II. Moreover,

so=1-> |B

Bell

is the proportion of singletons in II.
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Kingman's correspondence

Theorem (Kingman's correspondence)

There is a bijection between the set of exchangeable random
partitions I and the set of probability distributions on Sy.

IT exchangeable random partition of N
<— s (random) tiling of [0, 1]
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Aldous’ construction of Kingman's coalescent |
Let (U;) be i.i.d. uniform [0, 1], ‘
let (F;) be independent exponentials, where E; has parameter (z),

2
. 7—5
time T s -
e T CEETTEEEEEEEEER SR .
T1
T7
‘ |
0
Uz UyUsg Ui Us UUYs
T; = Z B <>
k>it1

Attach a stick of length 7; to U;. 20



Aldous’ construction of Kingman's coalescent |l
Define f: [0,1] = [0,00) by f(u) :=7; if u=Uj and f(u) =0

otherwise.
time o S 1, 75
_____ g = mmmmmm = TA |
-
1 A
T7
0 | 1
U7 Ui]@ Ul U8 UW5

Then {S(t),t > 0} defined by
S(t) := open connected components of {u € (0,1): f(u) <t}

is equal in law to the asymptotic frequencies of Kingman's
coalescent.
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Hydrodynamic limit of Kingman's coalescent

Goal: Quantify behaviour of #I1(¢) for small times ¢.
Idea: “Approximate” II(¢) by II"(t) for large n.

Somewhat related studies of asymptotic properties of beta
coalescents:

» Berestycki, Berestycki, Schweinsberg 2007, 2008
» Berestycki, Berestycki, Limic 2010
» Limic, Talarczyk-Noble 2013, 2015
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Hydrodynamic limit of Kingman's coalescent

Heuristics
> waiting time in state N"(t) := #I1"(t) ~ Exp(("3{"))
» for small ¢ and large n

H n _ —1 ~ _ 1 am(4\2
» (rate at which N"(t) decreases) = £ (V)] SN (),

» hence N™(t)/n should be approximated by the ODE

with solution
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Hydrodynamic limit of Kingman's coalescent

Theorem
Asn — oo

2
-1 n
#1"(t t>0} < ——,t>0
{n (/n)7 = } {2 2=

in the Skorohod topology.
Cf. Aldous 1999 and Wattis 2008.

b
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Hydrodynamic limit of Kingman's coalescent

Theorem
For fixedd € N as n — oo

{n~ (el (t/n),. .., cgI"(t/n)),t > O}
= {(e1(®); .-, ca(t)),t > 0}

in the Skorohod topology, where

ci(t) = c(®)2(1 — ()T, e(t) = (t>0,j €N).

Cf. Aldous 1999 and Wattis 2008.



N = 1000, alpha = 1.5, simulations = 10
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Figure : Simulated relative sizes of blocks in a beta(0.5, 1.5) coalescent
and analytic solution (thick line). black: total number of blocks, red:
singletons, blue: doubletons.
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Hydrodynamic limit of beta coalescents

Theorem (Miller, P. 2014)

Consider beta(a,b) coalescents with a < 1. Then as n — oo
{n AT (n% 1), t > 0} — {c(t),t > 0},

in the Skorohod topology, where

1

_ (2—a)L'(b) =3
el = <(2 —a)L'(b) +T(a+ b)t) '
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Bell polynomials |

For each finite set F;, with n elements we are given a construction
V' that associates with F), a set of V-structures, V (F,,), so

F, — V(EF,),

such that #V (F,,) = vy, for some fixed sequence ve = (vy,). V' is
called a species of combinatorial structures.

Table : Examples of combinatorial species

V(F,) \ #V (F,)
F, 1
permutations of F, n!
partitions of F, B,, (nth Bell number)

[Further information: Pitman 2006, Combinatorial stochastic processes

For a rich theory of combinatorial species see Bergeron, Labelle, Leroux 2013]
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Bell polynomials |1

Consider two combinatorial species, V, W, such that for any set F,
with #F,, = n

#V (F,) = vp, #W(F,) = wy,.
Let

set of all ways to partition F,, into
blocks {A1,..., A} for some k,

(VoW)(Fn) =4 "
assign each partition a V-structure

& assign each block A; a W-structure.

(Vo W)(F,) is called a composite structure on F,,.

#(VoW)(F,) = > v#nHw#B—ka > ] wes

TEPn) Ber = TEPn),x BET
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Bell polynomials Ill
Recall

n
(VOW Z U#wHw# :ka Z Hw#B
k=1  wE€P,, Ber

TEP ] Ber

Denote by

B, k(wo = Z H WxB

ﬂ'E’P[ 1.k Ber

the (n, k)th partial Bell polynomial, and by
'tho = ZUank w.

the nth complete Bell polynomial. Then

#(V o W)(F,,) = Bp(ve, we).
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Hydrodynamic limit of beta coalescents

Theorem (Miller, P. 2014)

For fixed d € N we have

(e IM(ne ), .. ., (e 1t)),t > 0}
S {(e1(t),. .. calt)),t > 0}

as n — oo in the Skorohod topology, where for each i € N

) = 0 p, ((1 L) et a>°> ,

with ¥ == z(z + 1) - (x + k — 1) the ascending factorial power.
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What does this tell us about the asymptotic frequencies of
beta coalescents?

Informally,
“Strn (tn® 1) — Sy (tn®1)” as n — 0.

For very large n, at time tn®~! a block of size i has “asymptotic
frequency” of order i/n, and there are roughly nc;(t) of them,
hence together occupy a fraction ic;(t) of the corresponding tiling.
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