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Density-dependent Population Processes

Population Models:

» different types in the population
» interactions between the types

> rates of interactions depend on the current density of types

Examples/Applications:

» epidemic models
» catalytic branching processes

» chemical reaction networks



» Population Types: m distinct types Ay, ..., An
X(t) = (Xi(t), ..., Xm(t)) = # of individuals at time t

» Interactions Between Them: M distinct interactions

m m
E Vi — E Vi Ay, Vi,V € ZT = interaction k
i=1 i=1

(Vix — Viks -+ > Vi — Vmk) = change due to interaction k

» Interactions Rates: depend on current state of system

Me(t) = Mk(X(t)) = rate of interaction k at time ¢t



» Example - SIRS Model :
S+1+—2l A1 = ¢ Xs X Vi—l/l :(—1,1,0)

| — R )\QICRX[ I/é—l/22(0,—1,1)
R— S A3 = cs Xgr v —v3 = (1,0,-1)

» Example - Catalytic Branching Process :

C—2Cor0 )\1 == b1XCXR I/i — = (:|:1,0)
R— 2R or0 /\2 = bZXCXR l/é — Uy = (0, :i:].)

» Example - Chemical Reaction Networks :
viral infection model in B-Kurtz-Popovic-R '05
typically: large # of species & large system of reactions



Stochastic framework

» Counting Processes:

Rk(t) = # of times kth reaction occurs by time t

Ri(t) = Yk(/ot)\k(X(s))ds)

(Y1,..., Ym) = independent Poisson rate 1 processes

Lemma [Meyer '71, Kurtz '80]

If Ry,..., Ry are counting processes with no common jumps and
Ak is the intensity of Ry, then there exist independent unit Poisson
processes Yi,..., Ym such that

Ri(t) = Yk(/o Ae(R(s))ds)



Evolution of the system:

X(t) = # of types in the system at time t

= X(0) + ) R(t)(vk — )
k

= X(0)+> vk(/t Ak(X(5))ds)(vVy — vi)
P 0

Scaling Laws:
- if the total # of particles X is large = O(N)
- the interaction rates A4 are fast = O(N)

Classical scaling laws can NOT be applied if:
- amounts Xi,..., X, are in different orders of abundance
- rates A1,..., Ay are of different orders of magnitude



Multi-scale model

» Scaling parameters: N = order of most abundant species

For each species:  «; € [0, 1] chosen s.t. N~“iX;(t) = O(1)
For each reaction: B4 € [0, 1] chosen s.t. NA<)\,(X) = O(1)

For time scale: speed-up/slow-down time by N?
» Normalized stochastic system:

V¥(e) = V' (0)+) N~ Yk(/ot NAFIN(VT(s))ds) (vi—)
k

Dynamics depends on the relationship between o; & (i

» Model reduction: approximate system by a simpler one



Two time scales

Suppose the normalized abundances on a well chosen time scale
fall essentially into two groups:

» VNV = vector of all the "fast’ components in the system

» VIV = the vector of all the 'slow’ components in the system

Let N be the scale along which the system separates:

{1,2,...,m} =Zr + I, = fast + slow components
vN(t) = v +Z Yk(N/ M(VN($))ds) (Ve — vink), i1 € Ty

VN(t) = V() + 3 NIV, (NG /0 N (VN($))ds) (WL — i), o € T
k



Fluid limit

Suppose fast species are ergodic with unique stationary measure:

» limiting evolution of the slow species depends only on the
stationary distribution of the fast quantities

Theorem 1 [Averaging and deterministic approximation]

IfVs > 0, when VJV(s) = v, is fixed, V}V(s) has a stationary
distribution s(-|v2), then we have a LLN result for Vj'(s):

Ve>0, lim P[ sup [V3'(s) — Va(s)| > €] =0

N—oco " scio¢]

where V5 is the deterministic process: Vi, € T
t
V(1) = Va(0)+ 2 | (ha = vis Ml Vals))es
k

and Ak(Vz(S)) = f)\k(vl, V2(S))7Ts(dvl|\/2(5)).



proof of Theorem 1

> separate evolution of "fast” process in generator LN of VN, L,
is N independent and operates on f as a function of v alone:

LN)"—(Vl7 V2) = N(SLlf(Vl, V2) + Lévf(vl, V2)
> let I'{V be the occupation measure for the "fast” process:

FV(t), Va'(t)) — /vé/ Lif(vi, VAV ()M (dvy x ds)
[O,t]XEl

—/ LYF(v, V()T (dvy x ds) = MM (1)
[O,t]XEl

» if (VJV, V) is tight then for every limit point (V,I1):
/ Llf(vl, VQ(S))rl(dvl X dS) =0
[O,t]XEl
if for each v 3! 7w5(+|v2) so that fot Lif(vi, vo)ms(dvi|va) = 0:
I'1(dv1 X dS) = 7Ts(dV1|V2(S))dS



apply the Stochastic Averaging Theorem (Kurtz '91) - limit of:
O - [ R ) x d)
[0 t]XEl
is a martingale for each function f of v» where:
F(vy, VIV ZA (VM) /\/5( vN+/\/—5(u§k—y2k))—f(v"’))
so for each function f of v, the limit of V' satisfies:

> /Ot3vzf(V2(5))(Vf2k—’/i2k)>\k(V2(S))d5 = f(2(0))

where:

Ak(Va(s)) = /Ak(VL Va(s))ms(dvi|Va(s))



Diffusion limit

For the variability correction to this LLN deterministic
approximation:

> we get a centered Gaussian process that is mean-reverting

» diffusion coefficient o in the FCLT law depends on the
interaction of slow and fast quantities
Theorem 2 [Diffusion correction to the fluid limit]
If UN(t) = N2 (V(t) — Va(t)), then we have a FCLT result:

ul = v,
where U, is the Ornstein-Uhlenbeck process: Vir € T

Un(t) = /Ot Jo2(Va(s))dW(s) + /otu(Vg(s))Ug(s)ds

with W = |Zs|-dimensional BM, o?(v2), u(v2) matrix functions



Note:
» expression for p(v2) is simple — gradient of the drift of V5

» expression for 0%(v») is more complicated — uses the gradient
of the solution of the Poisson equation for the fast process V;

Note:

» analogous results for diffusion approximation of multi-scale
SDEs - Pardoux-Veretennikov '01, '03, '05

» results for more general scaling exponents - separation into
slow set and a fast set, but the vector of slow/fast components
can have different exponents «;, /v, - Kurtz-Popovic '09



proof of Theorem 2

» let m(vi, v2) and m(vy) be the drift of the slow process and of

its limit:
mj,(v1, v2) Z(V,zk Vik) Ak (1, v2)
m;,(v2) = Z(Vigk — Vipk) Ak (v2)
k
> let YV(t) = Yi(t) — t and Ri(t) = V(N0 [ A (VN (s))ds):

s N
NZ(VY(t) = Viy(8)) = N2 (V)
+ ) (Vo — vik)N T2 Re(1) +
k
> let u(v1, v2) be the solution to Poisson equation:

Liu(vi, vo) = m(vi, v2) — m(v2)

where L; is the generator of the "fast” process v; with v, fixed



» then the deviation from the fluid limit can be written as:

UN(t) +Z Vi — vipk) N2 Ri(2)

+ Ng/OtLlu,-2(VN(s))ds s /Om,-z(VzN(s))ds —/Otm,-Q(Vz(s))ds>

» when U2N:> U, the last term converges to the drift of Us:

/0 T (Va(s)) Us(s)ds

» the second term can be expressed as

Nl

N /Lub(v (s))ds = MY, (£) + O(N~%)
0

for MY (t) a martingale correlated with > (v}, — ng)Nfgf?k(t)
K



» to find Mlljv(t) let Ahk = I/I{lk — I/,'lk,A,'2k = N_d(ljlgk - V,'2k)
and use Ito’s formula:

u(VV(t)=u(VN(0 +Z/ (VN(s™) + Ay) — u(VN(s™ )))df"?kN(s)

+/ot(LNu(VN(s)) - N5L1u(vN(s)))ds +/tN5L1u(V’V(s))ds

0
s [ N N
= N2 0 L1U,’2(V (5))d Mu 12( ) u:g( )+ O( )
> where M}, (t) is the i coordinate of the martingale:
e Z/ (VN(s) + ) — u(V(s7) ) dRE(s)
» and sﬁiz(t) is the i» coordinate of the error term:

N —_gtNu N(s)) = N°Lyu(VN(s)))ds = 3
) = N[ (L (s) = W Liu(v™(s))) ds = (V)



» the deviation from the fluid limit can now be written as:
b~
UN(t) = UY(0) + > ApiN™2Ri(t) — MY, (1)
k
s s t N t
+ON4)+ N3 (/ m,, (VI (s))ds —/ mi (Va(s))ds )
0 0

> let Aoy = (Aik)iez, and Ak = (Djk)iezs
the fluctuations of UN(t) follow from the quadratic variation
of two martingale terms above:

) = [ dnn oL )
—Z/ (VY(s7)+ A) = u(VN(s ) )N 2dRY(5)] ()

Q
N

Ri(t) = »”/k(Né/o M(VN(5))ds), A = O(1), Api = O(N0)



» when U} = U, the diffusion coefficient is:

(VM) = [ 3080 1) ()l ) s(alv2)
k
for S(Vl, V2) = A2k — 8\,1 u(vl, V2)A1k

» while the drift coefficient is:

(V2 :> /ZA2k 8v2)\k(vl, V2)7T5(V1‘V2) Vm(v2)

Note: the expression for 2 depends on solving the Poisson
equation Lju(vi, v2) = m(vq, v2) — m(v2) for u(vi, vo) explicitly

» when the rates A\x(v1, v2) are polynomial in vy, vo

Nk Nigk
A(vi, o) = Ckl | ) vy,
hn€ZLf,ihels " 2

this may be done using a polynomial for u(vy, v»)



Example: Michaelis-Menten enzymatic reactions

Reactions: S+ E — SE Rates: k1X1Xo
S+ E+~——SE I-Cz(M—Xl)
P+ E—SE k3(M — Xi)

Species: X1 = # of unbound enzymes E
Xo = # of unbound substrate S
X3 = # of enzymatic product P
M — X1 = # of bound enzymes SE

# of unbound enzymes + # of bound enzymes = M
Ko, k3 >> K1, then N = O(X3) >> M while X; + X3 =M

Fast species: bound & unbound enzymes SE, E
Slow species: unbound substrate S



Stationary distribution for V{V(s) (# of unbound enzymes) is:
7s(-|Va(s)) ~ Binomial(M, p(Va(s)))

p(Va(s)) = (k2 + k3)/ (k2 + K3 + K1 Va(s))

LLN limit for ViV (# of unbound substrate) is:

k1k3Va(s)
Vo(t) = - M ds
2(t) / K2 + K3 + k1 Va(s)

CLT for the deviation of V2N from V5 satisfies:

_ /Ot,/UZ(vz(s))dW(s)+/Otu(v2(s))uz(s)ds



where we can explicitly calculate:

—Mk1k3(k2 + K3)
(K2 + K3 + K1v2)?

u(v2) =

o*(uz) = M | (14 () (varap(s) + wall - p(s)) ) ds
+ /\/I/Ot u1(v2)?k3(1 — p(s))ds

for u(v2) = (k1va + k2)/(K1v2 + K2 + K3)

since u*2(v1) = viu1(v2) solves
K1K3Vo

L2u(wv) = —kivivo + ko(M — )+ M—M=
1u(ve) K1V1V2 2( 1) w2 1 K3 1 Five

LY2F(v1) = [kiviva (F(vi—1)—F)+(ko+k3)(M—vi)(F(vi+1)—F)]
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