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NUMERICAL METHODS IN THE CONTEXT OF COMPARTMENTAL MODELS

IN EPIDEMIOLOGY

Peter Kratz1, Etienne Pardoux1 and Brice Samegni Kepgnou1

Abstract. We consider compartmental models in epidemiology. For the study of the divergence of the
stochastic model from its corresponding deterministic limit (i.e., the solution of an ODE) for long time
horizon, a large deviations principle suggests a thorough numerical analysis of the two models. The
aim of this paper is to present three such motivated numerical works. We first compute the solution
of the ODE model by means of a non-standard finite difference scheme. Next we solve a constraint
optimization problem via discrete-time dynamic programming: this enables us to compute the leading
term in the large deviations principle of the time of extinction of a given disease. Finally, we apply the
τ -leaping algorithm to the stochastic model in order to simulate its solution efficiently. We illustrate
these numerical methods by applying them to two examples.

Résumé. On considère des modèles comportementaux en épidémiologie. Afin d’étudier l’écart en
temps long entre le modèle stochastique et sa limite loi des grands nombres (qui est la solution d’une
EDO), on se base sur un principe des grandes dáviations, qui nous conduit à mener une étude numérique
des deux modèles, sur trois aspects différents. Tout d’abord, nous calculons une solution approchée de
l’EDO à l’aide d’une méthode numérique dite “non–standard”. Ensuite une résolvons numériquement
un problème de contrôle sous contrainte, afin de calculer le terme principal des grandes déviations
du temps de sortie d’une situation endémique. Enfin nous mettons en oeuvre l’algorithme du “τ–
leaping” pour simuler efficacement la solution du système stochastique. Nous illustrons ces simulations
numériques en les appliquant à deux exemples.

Introduction

It is well-known that deterministic ODE models of population dynamics (such as the evolution of diseases)
are not appropriate for small population sizes N (i.e., N < 103, 106). Recently, it has been shown (see [1]) that
in some cases the ODE models can diverge from the corresponding stochastic models even for larger population
sizes (N > 106).

We consider the “natural” stochastic extensions for many compartmental ODE models in epidemiology:
individual based Poisson driven models. The ODE models can be recovered from these models as the law
of large numbers limit as the population size N approaches infinity. Hence, the deterministic model can be
considered an appropriate first approximation of the stochastic model for large N . While the dynamics of many
of the underlying deterministic models are well-understood, the analysis of the corresponding stochastic models
is often difficult.

We are interested in the long-term behavior of the epidemic process. For many deterministic models, the
disease will finally either die out or become endemic, depending on the parameter choice and/or the initial
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sizes of the compartments, i.e., the solution of the ODE converges to an asymptotically stable equilibrium.
The theory of Large Deviations (also called the large deviations principle (LDP)) allows us to quantify the
time taken by the stochastic model to diverge significantly from its deterministic limit. In particular, one can
compute asymptotically, for large N , the expected time which is needed to transfer the epidemic process from
the domain of attraction of one equilibrium to the one of another equilibrium. For the simplest models, this
helps, e.g., to answer the question of when an epidemic becomes extinct although it should be endemic according
to the deterministic approximation. Particularly interesting cases are epidemiological models where the ODE
has several stable equilibria (usually a disease-free equilibrium and an endemic equilibrium as, e.g., in [2, 3]).

The remainder of this article is structured as follows. In section 1, we formulate stochastic and deterministic
compartmental models and introduce two specific models which we analyze throughout this article by means of
numerical methods (section 1.1). We furthermore describe how the time of exit from the domain of attraction of
a stable equilibrium can be computed (section 1.2). This motivates three different numerical projects which we
outline in section 1.3. We address these questions in sections 2 - 4 as follows. First we apply a non-standard finite
difference scheme due to [4] in order to compute the solution of the deterministic model numerically. Second,
in section 3, by solving a control problem via dynamic programming, we compute the leading coefficient in the
large deviations analysis of the time of exit τN by the solution of the SDE from the domain of attraction of a
locally stable equilibrium of the ODE. Finally, we simulate the stochastic process using the so-called τ -leaping
algorithm.

1. Compartmental models in epidemiology

1.1. Stochastic and deterministic models

We consider diseases in large populations of (initially) N individuals which are split up into different groups
(or compartments) according to the disease status of the individuals. Such groups are, e.g., the group of
individuals susceptible to the disease, the group of infectious individuals and the group of immune individuals.
In order to better compare the population dynamics for different values of N , we normalize the compartment
sizes by dividing by N ; instead of considering the number of individuals in the different groups, we hence
rather consider their “proportions” with respect to the total size of the population (note that for models with
non-constant population size, these are only initially truly proportions).

For a closed set A ⊂ Rd, we define the d-dimensional jump process ZN via a set of k jump directions hj ∈ Zd
and respective Poisson rates βj(z), j = 1, . . . , k; ZNi (t) denotes the “proportion” of individuals in compartment
i = 1, . . . , d at time t ≥ 0:

ZN (t) := ZN,x(t) := x+
1

N

k∑
j=1

hjPj

(∫ t

0

Nβj(Z
N (s))ds

)
(1)

= x+

∫ t

0

k∑
j=1

hjβj(Z
N (s))ds+

1

N

k∑
j=1

hjMj

(∫ t

0

Nβj(Z
N (s))ds

)
;

here x ∈ A, (Pj)j=1,...,k are i.i.d. standard Poisson processes and Mj(t) = Pj(t) − t, j = 1, . . . , k, are the
associated martingales. The jump directions hj and their respective rates are chosen in such a way that
ZN (t) ∈ A almost surely for all t.

The dynamics of the deterministic model corresponding to the stochastic process in (1) are given by the
solution of the following ODE:

Z(t) := Zx(t) = x+

∫ t

0

k∑
j=1

hjβj(Z(s))ds. (2)
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The two models are connected via a Law of Large Numbers (LLN) (see [5]): if the rates βj are Lipschitz
continuous, we have

lim
N→∞

ZN,x(t) = Zx(t) a.s. uniformly on compact time intervals [0, T ]. (3)

Note also that in the case of Lipschitz continuous rates, equation (2) admits a unique solution on [0, T ].

Example 1.1. SIS model. We first consider a simple SIS model without demography (S(t) being the number
of susceptible individuals and I(t) = N − S(t) the number of infectious individuals at time t) . For β > 0,
we assume that the rate of infections is βS(t)I(t)/N .1 In a similar way, we assume for γ > 0 that the rate
of recoveries is γI(t). We ignore immunity due to earlier infection and assume that an infectious individual
becomes susceptible after recovery. As population size is constant, we can reduce the dimension of the model
by solely considering the proportion of infectious at time t, that is d = 1 and Zt = It. Using the notation of
equations (1) and (2), we have

A = [0, 1], h1 = 1, h2 = −1, β1(z) = βz(1− z), β2(z) = γz.

It is easy to see that the ODE (2) has a disease free equilibrium x̄ = 0. This equilibrium is asymptotically stable
if R0 = β/γ < 1.2 If R0 > 1, x̄ is unstable and there exists a second, endemic equilibrium x∗ = 1− γ/β which
is asymptotically stable. While in the deterministic model the proportion of infectious individuals converges to
the endemic equilibrium x∗, the disease goes ultimately extinct in the stochastic model.

Example 1.2. A model with vaccination. We consider a (deterministic) model with vaccination and
demography described in [2] and its stochastic counterpart. We illustrate the different transitions in Figure 1;
here, S and I denote the number of susceptible respectively infectious individuals as before and V denotes the
number of vaccinated individuals. We assume that individuals are vaccinated at a certain rate but can lose their
protection again; the vaccine is not perfect but decreases the rate of infection by a factor σ ∈ [0, 1]: if σ = 1,
the vaccine is useless, if σ = 0 it protects the individuals perfectly. Furthermore, we assume that individuals
are born susceptible and die (at the same rate) independently of their disease status. This ensures that the
population size remains constant in the deterministic model. For simplicity, we ensure constant population size
by synchronizing births and deaths in the stochastic model. Hence, we can again reduce the dimension of the
models; the first coordinate of the process denotes the proportion of infective individuals, the second coordinate
denotes the proportion of vaccinated individuals. Using the notations of equations (1) and (2), we obtain

A = {z ∈ R2
+|0 ≤ z1 + z2 ≤ 1},

h1 = (1, 0)>, β1(z) = βz1(1− z1 − z2), h2 = (1,−1)>, β2(z) = σβz1z2,

h3 = (−1, 0)>, β3(z) = γz1, h4 = (0, 1)>, β4(z) = θz2, h5 = (0,−1)>, β5(z) = η(1− z1 − z2),

h6 = (−1, 0)>, β6(z) = µz1, h7 = (0,−1)>, β7(z) = µz2.

The basic reproduction number of this model is given by

R0 =
β

µ+ γ

µ+ θ + ση

µ+ θ + η
, R̃0 :=

β

µ+ γ
;

here, R̃0 denotes the basic reproduction number without vaccination, i.e., V (0) = 0 and φ = 0 (see [2]). There

exists a disease-free equilibrium x̄ (x̄1 = 0) which is asymptotically stable for R0 < 1 and unstable for R̃0 > 1.

1The reasoning behind this is the following. Each individual (in particular each infected individual) meets other individuals at
rate α. The probability that the encounter is with a susceptible is S(t)/N . Denote by p the probability that such an event yields

a new infection. Hence the total rate of new infections is βS(t)I(t)/N , if β = pα.
2R0 is the so-called basic reproduction number. It denotes the average number of secondary cases infected by one primary case

during its infectious period, at the start of the epidemic.
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Figure 1. Schematic representation of the disease transmission for the model with vaccination by [2].

For R0 < 1 < R̃0 (and additional assumptions on the parameters, see [2] again), two endemic equilibria x∗ and x̃
(x∗1, x̃1 > 0) exist: one (say x∗) is locally asymptotically stable and one is unstable; the disease-free equilibrium
is locally asymptotically stable.

1.2. Large deviations

In order to quantify the deviation of the stochastic model from the deterministic model, an LDP is desirable.
For the models we have in mind (cf. Examples 1.1 and 1.2), some of the rates βj : A → R+ tend to zero as x
approaches the boundary of A (this ensures that the process does not leave the domain A). For this reason,
general results for LDPs for Markov jump processes (see [6–8]) do not apply. [9] provides a large deviations
principle which allows for such diminishing rates; however, their assumptions do often not apply to the more
complicated models in epidemiology.3 [10] provides an LDP on the space D([0, T ];A)4 for a large class of
epidemiological models with compact domain A by generalyzing the results from [9]; the rate function IT,x of
the LDP is given as follows:5

IT,x(φ) :=

{∫ T
0
L(φ(t), φ′(t))dt if φ is absolutely continuous and φ(0) = x

∞ else,

where L denotes the Legendre-Fenchel transform:

L(x, y) := sup
p∈Rd

`(p, x, y) (4)

for

`(p, x, y) = 〈p, y〉 −
k∑
j=1

βj(x)(e〈p,hj〉−1).

By [9], we have that
IT,x(φ) = 0 if and only if φ solves the ODE (2). (5)

We interpret IT,x(φ) as the action required to follow a trajectory φ, or in other words the action required to
deviate from the solution of the ODE.

3The assumptions in [9] apply to the SIS model (Example 1.1) but not to the model with vaccination in Example 1.2.
4Here, D([0, T ];A) denotes the space of càdlàg functions on [0, T ] with domain A equipped with an appropriate metric such

that the resulting space is Polish (see, e.g., [11]).
5See, e.g., [12] for an introduction to the theory of large deviations and a definition of the rate function.
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We are particularly interested in the Freidlin-Wentzell theory (see, e.g., [12,13]). First, we want to compute
the time τN,x at which the process ZN,x leaves the domain of attraction of an asymptotically stable equilibrium
O, i.e.,

τN,x := inf{t > 0|ZN,x(t) ∈ A \O}.
In the case of the SIS model (and R0 > 1) we consider the set O = (0, 1]; for the model with vaccination (and

appropriate parameter choice, in particular R0 < 1 < R̃0), we consider the set

O = {z ∈ A| lim
t→∞

Zz(t) = x∗}.6

In other words, we are interested in time of extinction of the disease7 which should eventually become endemic
according to the deterministic model.

If A is compact, it can be deduced from the LDP that for all δ > 0,

lim
N→∞

P
[

eN(V̄−δ) < τN,x < eN(V̄+δ)
]

= 1, (6)

where V̄ is given by the solution of the following optimization problem:

V̄ := inf
z∈A\O

V (x∗, z) (7)

for V (x∗, z) := inf
T>0,φ∈D([0,T ];A):φ(0)=x∗,φ(T )=z

IT,x∗(φ)

(see [10]).
Second, we are interested in the place, where ZN leaves the domain O. Although existing Freidlin-Wentzell

theory cannot be applied to the epidemiological models in Examples 1.1 and 1.2, we strongly believe that the
following holds (see [12, 13] again for corresponding results for other processes): for any compact set C ⊂
∂O ∩ (A \O) with V̄ < infz∈C V (x∗, z), x ∈ O

lim
N→∞

P
[
ZN,x(τN,x) ∈ C

]
= 0.

In particular, if there exits a z∗ ∈ ∂O ∩ (A \O) with V (x∗, z∗) < V (x∗, z) for all other z ∈ ∂O ∩ (A \O), then
for all δ > 0,

lim
N→∞

P
[
|ZN,x(τN,x)− z∗| > δ] = 0. (8)

1.3. Research questions

In order to better understand the differences between deterministic and stochastic compartmental models
in epidemiology, the theoretical results above suggest a thorough numerical analysis of the specific models of
Examples 1.1 and 1.2. In the remainder of this article, we address the following questions.

1. In order to analyze the deviation of the stochastic model from its Law of Large Numbers limit, we first
have to compute the solution of the deterministic models in a reliable way in section 2. In order to
avoid instabilities of the solution (such as components becoming negative), we apply a non-standard
finite difference scheme developed in [4].

6We want to remark here that we cannot consider the exit from the domain of attraction of the disease-free equilibrium x̄, i.e.,

O = {z ∈ A| lim
t→∞

Zz(t) = x̄}.

The reason for this is that the absorbing set Ã = {z ∈ A|z1 = 0} (where z1 is the first coordinate of z) cannot be left both by the

solution of the ODE and by the solution of the SDE.
7Respectively in the time when the process is no longer attracted by the endemic equilibrium and hence the probability of

extinction is significantly increased, cf. the LLN, equation (3).
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2. The computation of the time (and place) of exit from domain depends on the solution of the optimization
problem (7). We use dynamic programming to solve the optimization problem numerically and hence
deduce the results about the time of exit according to (6) in section 3.

3. Finally, we simulate the process ZN in section 4. It is not difficult to simulate the process in an exact way
by using Gillespie’s stochastic simulation algorithm (SSA) (see, e.g., [14, 15]). However, the simulation
is rather slow as soon as N becomes large, and we hence adapt the τ -leaping algorithm (see, e.g., [16]).

2. Computation of the solution of the ODE

The large deviations theory will tell us about the deviations between the long–term behaviors of the solution
of the SDE and of its ODE LLN limit. Hence we are interested in the long-term behavior of the deterministic
epidemiological models described by equation (2). Consequently we need a numerical scheme to compute the
solution of the ODE (2) in a “reliable” way. By reliable, we mean in particular that the fixed points of the
solution of the (discrete) numerical scheme are the same as the equilibria of the ODE (with the same local
stability), which forces the long time bahavior of the numerical scheme to resemble that of the solution of the
ODE. Explicit finite difference schemes for the solution of ODEs can have undesirable instabilities. In section 2.2
below, we consider the SIS model from Example 1.1 and illustrate that the solution of such a scheme can be
oscillating around zero (and in particular become negative) if the parameters (particularly the step-size h) are
not chosen with great care. For this reason, we apply a non-standard finite difference (NSFD) method for models
in epidemiology which respects the qualitative behavior of the solution of the ODE (see [4]). This NSFD method
follows two basic rules for NSFD methods (for a detailed description of the NSFD method see, e.g., [17, 18]).
First, quadratic terms of the ODE are approximated in a non-local way (by mixed explicit/implicit terms).
Second, non-trivial denominator functions are used for the discrete derivatives.

The remainder of this section is structured as follows. In section 2.1, we describe the specific NSFD method
for epidemiological models from [4] and outline in which sense the qualitative long-term behavior of the ODE
is respected. In section 2.2, we apply the method to the SIS model (Example 1.1) and compare it to the
corresponding explicit scheme. Finally, we apply the method to the model with vaccination (Example 1.2)
and compute the boundary separating the domains of attraction of the stable endemic equilibrium and the
disease-free equilibrium.

2.1. A NSFD method for epidemiological models

We consider deterministic models for which the ODE (2) can be rewritten in the following form

dZ

dt
= A(Z)Z + f, Z(0) = x, (9)

where A(Z) = (ai,j(Z))i,j=1,...,d ∈ Rd×d is a non-linear Metzler matrix8 and f ∈ Rd; usually, f represents the
rates of birth and immigration into the different compartments (if they exist, cf. Example 1.2).

We follow [4] and discretize time by fixing the time step h > 0; we write tm = mh for m ∈ N and approximate

the solution Z of the ODE (9) at the discrete time points tm by the solution Z̃ of the following implicit NSFD

scheme (i.e., Z̃m ≈ Z(tm)):

Z̃m+1
i − Z̃mi
ψ(h)

=

d∑
j=1

ai,j(Z̃
m)Z̃m+1

j + fi (i = 1, . . . , d), Z̃0 = x;

the denominator function ψ is specified below and satisfies ψ(h) = h + o(h2). We first note that this scheme
can equivalently be written as

(I − ψ(h)A(Z̃m))Z̃m+1 = Z̃m + ψ(h)f, Z̃0 = x; (10)

8A Metzler matrix is a matrix A = (ai,j)i,j=1...,d which satisfies ai,j ≥ 0 for i 6= j.
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(I−ψ(h)A(Z̃m)) is an M -matrix9 and hence invertible (see [4]). For the definition of the denominator function,
we assume that all equilibria of the ODE (9) are hyperbolic. With ϕ : R→ R satisfying ϕ(h) = h+ o(h2) and
0 < ϕ(z) < 1 for z > 0 (e.g., ϕ(z) = 1− exp(−z) or ϕ(z) = z/(1 + z2)), ψ is defined as

ψ(h) :=
ϕ(Qh)

Q
for Q ≥ max

{
|λ|2

2|Re(λ)|

}
, (11)

where the maximum is taken over the eigenvalues λ of the Jacobian of the right hand side of (9) at the equilibrium
points. In particular, we have ψ(h) = h+ o(h2) as desired.

The NSFD scheme (10) is elementary stable in the sense that it has exactly the same fixed points as the
continuous ODE (2) it approximates, with the same local stability for all values of h (see [4]). In addition, it
can be ensured that the components of the solution of the scheme remain positive by choosing h and hence
φ(h) small enough (see [4] again). For the examples we consider, the solution of the scheme always stays in the
“natural domain” of the solution of the ODE (2).

2.2. The SIS model

For the SIS model of Example 1.1, the ODE (2) becomes

Z(t) = x+

∫ t

0

(
βZ(s)(1− Z(s))− γZ(s)

)
ds = x+

∫ t

0

(
− βZ(s)2 + (β − γ)Z(s)

)
ds; (12)

recall that in this case Z(t) denotes the number of infectious individuals at time t. This is a Riccati differential
equation with constant coefficients which admits an explicit solution:

Z(t) =

{
(β−γ)x exp((β−γ)t)

(β−γ)+βx(exp((β−γ)t)−1) if β 6= γ
x

1−βxt else.
(13)

We nevertheless compute the solution of the ODE (12) numerically by a standard (explicit) difference scheme
and by the NSFD scheme introduced in section 2.1 in order to illustrate possible instabilities of the explicit
scheme.

Let us first consider the following explicit scheme:

Z̃m+1 − Z̃m

h
= βZ̃m(1− Z̃m)− γZ̃m, Z̃m = x (14)

or equivalently

Z̃m+1 = Z̃m(1− γh+ βh)− hβ(Z̃m)2, Z̃m = x.

We note that if, e.g., β = 1/h and γ = 2/h, Z̃m < 0 for all m ≥ 1 which is obviously undesirable. If, e.g.,

β = 1/h and γ = 4/h, the solution is oscillating around zero with Z̃m < 0 for m odd and Z̃m > 0 for m even.
We illustrate the solution for the latter case in the left picture of Figure 2.

Let us now apply the NSFD scheme to the model. We represent the ODE in the form (9) by setting
A(Z) = −βZ+β−γ and define the denominator function ψ according to equation (11) (for ϕ(z) = 1−exp(−z)).
The solution does not suffer from the same instabilities as the solution of the explicit scheme as illustrated in the
middle picture of Figure 2. We compare the solutions of the two schemes with the exact solution of the ODE as
given in equation (13) (right picture of Figure 2). We want to remark here that the NSFD scheme is of course
by no means the only possible scheme which avoids instabilities in this simple case. However, [4] provides us
with a theoretical basis which ensures that instabilities do not occur even for much more complicated models.

9An M -matrix is a matrix A with ai,j ≤ 0 for i 6= j which is invertible such that all entries of its inverse are non-negative.
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Figure 2. The left picture denotes the solution of the explicit finite difference scheme (14). The
middle picture denotes the solution of the NSFD scheme. The right picture denotes the exact
solution of the ODE according to equation (13). Z(0) = 0.3, T = 4, h = 0.1, β = 4/h = 40,
γ = 2/h = 20. We choose here a large step size h on purpose, to show how the two schemes
behave for large step size. Of course, both improve if we reduce h.

2.3. The model with vaccination

We now consider the model with vaccination from Example 1.2. We denote the proportions of susceptible,
vaccinated and infectious individuals at time t by Z1(t), Z2(t) and Z3(t) = 1−Z1(t)−Z2(t), respectively. Note
that we cannot reduce the dimension from three to two if we want to represent the ODE in the form (9) (with
appropriate Metzler matrix A). We set

A(Z) =

 −βZ3 − µ− η θ γ
η −σβZ3 0
βZ3 σβZ3 −µ− γ

 and f = (µ, 0, 0)>

and choose the denominator function ψ according to equation (11) for ϕ(z) = 1− exp(−z). We readily observe
that the relevant assumptions for the NSFD scheme are satisfied and apply the scheme for time step h = 0.1
to different initial values Z(0) and a set of parameters (cf. Figure 3) such that there exists a stable disease-
free equilibrium (x̄ = (0.14, 0.86, 0)>), a stable endemic equilibrium (x∗ = (0.24, 0.45, 0.31)>) and an unstable
endemic equilibrium (x̃ = (0.23, 0.59, 0.18)>; cf. the corresponding discussion in Example 1.2). We illustrate
the evolution of the proportions of vaccinated and infectious individuals for different initial values in Figure 3.
While the disease eventually dies out in the left picture, it becomes endemic in the right picture.

The NSFD scheme also allows us to approximately compute the characteristic boundary, i.e., the boundary
separating the domains of attractions of the two stable equilibria x̄ and x∗ (in other words: the set of points
for which the solution of the ODE converges to the unstable equilibrium x̃). We illustrate the characteristic
boundary in Figure 4.

3. Computation of V̄

In order to answer the question of when the disease dies out, we have to compute the quantity V̄ (cf. equa-
tions (6) and (7)). In other words, we have to solve a control problem. We first fix the time horizon T > 0.
We recall that we only have to consider absolutely continuous trajectories (as else IT,x(φ) =∞) and hence we
control the trajectory φ via its “derivative”; for t ∈ [0, T ), s ∈ [t, T ] and an integrable function α, we write

φα(s) := φ(s) = φ(t) +

∫ s

t

α(r)dr;
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Figure 3. Evolution of the proportions of vaccinated individuals (dashed lines) and infectious
individuals (solid lines) for initial values Z2(0)=0.5, Z3(0) = 0.05 (left picture) respectively
Z2(0)=0.5, Z3(0) = 0.2 (right picture). T = 600, β = 3.6, γ = 1, η = 0.3, θ = 0.02, µ = 0.03,
σ = 0.1.

Figure 4. The characteristic boundary separating the domains of attractions of x̄ = (0, 0.86)>

(on the left) and x∗ = (0.31, 0.45)> (on the right). The unstable equilibrium x̃ = (0.18, 0.59)>

is on the characteristic boundary. Note the slight abuse of notation due to the reduction from
dimension three to two. The parameters are as in Figure 3.

for x ∈ O, we define the set of admissible controls starting from (t, x) by

AT (t, x) :=
{
α : [t, T ]→ Rd integrable

∣∣∣ x+

∫ s

t

α(r)dr ∈ Ō ∀s ∈ [t, T ] and x+

∫ T

t

α(r)dr ∈ A \O
}
. (15)

The cost of an admissible control α starting from (t, x) is given by

JT (t, x, α) =

∫ T

t

L(φα(s), α(s))ds,
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and thus the value function of the optimization problem becomes (t ∈ [0, T ))

vT (t, x) = inf
α∈AT (t,x)

J(t, x, α) (16)

and

vT (T, x) =

{
0 if x 6∈ O
∞ else.

The value function thus has a singularity at the terminal time T which is due to the constraint φ(T ) 6∈ O. For
the models we have in mind (cf. Examples 1.1 and 1.2), it is possible to move on ∂O ∩ (A \O) by following the

solution of the ODE (2) (which is free of cost, cf. (5)).10 For this reason, we have vT (t, x) ≤ vT̃ (t, x) for T̃ < T
and therefore

lim
T→∞

vT (0, x∗) = V̄ .

We want to remark here that any admissible control α with φα(T ) 6∈ (A \ O) ∩ ∂O (cf. (5) again) cannot be
optimal. Therefore, it would be equivalent to require the weaker restriction x+

∫ s
0
α(r)dr ∈ A for s ∈ [0, T ] in

equation (15).
In the following, we describe a discrete dynamic programming algorithm for the numerical approximation

of V̄ (section 3.1) and apply this algorithm to the models from Example 1.1 (section 3.2) and Example 1.2
(section 3.3).

3.1. Approximation by discrete-time dynamic programming

In order to numerically compute the solution of the optimization problem (16), we apply discrete-time
dynamic programming. To this end, we discretize time and consider n+ 1 (n ∈ N) equidistant time points

0 = t0 < · · · < tn = T, i.e., tnm = tm = m∆t for ∆t =
T

n
.

For j = 0, . . . , n− 1 let α̃ = (α̃(tm))m=j,...,n−1, where α̃(tm) ∈ Rd. We consider piecewise constant trajectories
and define recursively for x ∈ O,

φ̃α̃(tj) = φ̃(tj) = x, φ̃(tm+1) = φ̃(tm) + α̃(tm)∆t (m = j, . . . , n− 1).

We define the set of admissible controls by

ÃT,n(tj , x) :=
{
α̃
∣∣∣ φ̃α̃(tm) ∈ A∀m = j, . . . , n− 1 and φ̃α̃(tn) ∈ (A \O) ∩ ∂O

}
.

The cost of an admissible control α̃ ∈ ÃT,n(tj , x) is given by

J̃T,n(tj , x, α̃) := ∆t

n−1∑
m=j

L(φ̃α̃(tm), α̃(tm))

and the value function is given by

ṽT,n(tj , x) := inf
α̃∈ÃT,n(tj ,x)

J̃T,n(tj , x, α̃). (17)

10For the SIS model, we have ∂O ∩ (A \O) = {0}. For the model with vaccination, we have

∂O ∩ (A \O) = {z ∈ A| lim
t→∞

Zz(t) = x̃}

(recall that x̃ is the unstable endemic equilibrium).
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The constraint implies that

ṽT,n(tn−1, x) = ∆t inf
α̃∈Rd:x+α̃∆t∈(A\O)∩∂O

L(x, α̃). (18)

Furthermore, for j < n− 1, the dynamic programming principle implies the following Bellman equation:

ṽT,n(tj , x) = inf
α̃∈Rd:x+α̃∆t∈A

{
L(x, α̃)∆t+ ṽT,n(tj+1, x+ α̃∆t)

}
.

Hence the solution of the optimization problem can be computed backward in time.
We need next to discretize space. Note also that in the SIS model, the functional L is explicitly known, while

this is not the case in the vaccination model. For that reason we now distinguish between the two cases.

3.2. The SIS model

We discretize space via a grid of the set A = [0, 1] with fineness ∆x = 1/n̄, for some new integer n̄. Hence
the grid points are given by

xi := i∆x for i = 0, . . . , n̄.

Given a function f which is only defined on the grid points, we define values of the function for arbitrary
x ∈ A by its linear interpolation fint. In other words, we obtain for x ∈ A,

fint(x) := n̄

n̄∑
i=0

1{x∈[xi,xi+1)}

{
f(xi)(xi+1 − x) + f(xi+1)(x− xi)

}
.

We obtain the following (backward in time) algorithm for the solution of the optimization problem (17).

1. For x on the grid,

v̄T,n,n̄(tn−1, x) = ∆t inf
α̃∈Rd:x+α̃∆t∈(A\O)∩∂O

L(x, α̃).

We denote the solution of this minimization problem by α̃∗(tn−1) = α̃∗(tn−1, x).
2. For m < n− 1, x on the grid,

v̄T,n,n̄(tm, x) = inf
α̃∈Rd:x+α̃∆t∈A

{
L(x, α̃)∆t+ v̄T,n,n̄int (tm+1, x+ α̃∆t)

}
.

We denote the solution of this minimization problem by α̃∗(tm) = α̃∗(tm, x).

Note that this algorithm involves the solution of n × n̄ minimization problems. We recover an approximation
φ̃∗ = (φ∗(tm))m=0,...,n of the optimal trajectory starting from the stable equilibrium x∗, by the following
procedure (including another linear interpolation).

3. For m = 0, . . . , n− 1,

φ̃∗(t0) = x∗, φ̃∗(tm+1) = φ∗(tm) + α̃∗int(tm, φ
∗(tm))∆t.

It is well-known that under appropriate assumptions, the solution of this procedure converges to the solution
of the optimization problem (16) (see, e.g., [19, 20]); the optimal coupling of time and space discretization is
∆t = ∆x. We want to remark here that standard assumptions do not apply to our model. For instance, the
function L is not Lipschitz continuous, even L(x, y)→∞ for x→ ∂A is possible.11 Furthermore, the terminal

11This is e.g. the case for y < 0 and x→ 0. Note however that the action required to approach the boundary, e.g., at constant

speed one is finite and we have
∫ t
0 L(t− s,−1)ds→ 0 as t→ 0.
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Figure 5. Optimal trajectory φ̃∗ for T = 5 (left picture), T = 20 (middle picture) and T = 60
(right picture); ∆t = ∆x = 1

100 , β = 1.5 and γ = 1.

constraint results in a singularity of the value function at terminal time T . We are not aware of any analytical
results including our set–up. We nevertheless have reasons to believe that

V̄ ≈ v̄T,n,n̄int (t0, x
∗) for large enough T.

It is not in the scope of this article to provide a thorough analytical proof of the convergence of the algorithm.
We readily observe that for the SIS model, the Legendre-Fenchel transform is given explicitly by

L(x, y) = y log θ̃ − βx(1− x)(θ̃ − 1)− γx
(1

θ̃
− 1
)
,

where

θ̃ :=
y +

√
y2 + 4βγx2(1− x)

2βx(1− x)
.

Furthermore, the boundary consists of the single point {0}; hence equation (18) becomes

ṽT,n(tn−1, x) = ∆tL(x,−x/∆t).

We consider the following parameters: β = 1.5, γ = 1; in particular, we have R0 = 1.5 > 1 and the endemic
equilibrium x∗ = 1/3 is stable. We apply the dynamic programming algorithm described in section 3.1 with
∆t = ∆x = 1/100 and T = 5, 10, 20, 40, 60 (i.e., n̄ = 100 and n = 500, 1000, 2000, 4000, 6000). We obtain

v5,n,n̄
int (t0, x

∗) = 0.0953, v10,n,n̄
int (t0, x

∗) = 0.0757, v20,n,n̄
int (t0, x

∗) = 0.0705,

v40,n,n̄
int (t0, x

∗) = 0.0702, v60,n,n̄
int (t0, x

∗) = 0.0702.

We hence deduce that V̄ ≈ 0.0702 and thus E[τN,x] ≈ exp(0.0702N) for large N . We illustrate the solution of
the optimization problem in Figure 5 for T = 5, 20, 60. We observe that it is the cheapest to move slowly near
the stable equilibria x∗ and the unstable equilibrium x̄ = 0.

3.3. The model with vaccination

Unlike in section 3.2, the place of exit from O is a priori not clear for the model with vaccination (cf. Exam-
ple 1.2). It seems plausible that it is cheapest to exit O at the unstable endemic equilibrium x̃. Indeed, if T
is chosen large enough, an optimal (or near optimal) trajectory φ can move on the boundary towards x̃ after
the exit time without generating any extra cost (cf. (5)); in this case we have limt→∞ φ(t) = x̃. Hence, we can
assume that x̃ is indeed the place of exit for the numerical computation of V̄ . Therefore, equation (18) becomes

ṽT,n(tn−1, x) = ∆tL(x, (x̃− x)/∆t).
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However, the Legendre-Fenchel transform L cannot be computed explicitly. Here we use the following defi-
nition of L, which is equivalent to (4) (see [10]):

L(x, y) :=

{
infµ∈Bx,y

˜̀(µ, x) if Bx,y 6= ∅
∞ if not,

where for µ ∈ Bx,y,

˜̀(µ, x) :=
∑
j

{
βj(x)− µj + µj log

( µj

βj(x)

)}
;

and

Bx,y :=
{
µ ∈ Rk+|µj > 0 only if βj(x) > 0 and y =

∑
j

µjhj

}
.

Since we seek to minimize

V := inf
T,φ s.t. φ(0)=x∗,φ(T )=x̃

∫ T

0

L(φ(t), φ′(t))dt,

our discretized dynamic programming equation reads: for each x ∈ G (the space grid),

v(tk, x) = inf
x′∈G

{
L

(
x,
x′ − x

∆t

)
∆t+ v(tk+1, x

′)
}

= inf
x′∈G

{
˜̀(µ̂(x, x′), x)∆t+ v(tk+1, x

′)
}
,

where µ̂(x, x′) is the argument which realizes the following minimum

inf
µ, x+∆

∑
j µjhj=x′

˜̀(µ, x).

Note that here we avoid to consider interpolation between points on the grid. We have implemented this
algorithm on a grid whose one of the axis is the line passing through x∗ and x̃, with the following values of the
parameters : β = 3.6, θ = 0.02, µ = 0.03, η = 0.3, σ = 0.1 and γ = 1.

The approximation of V̄ which we have found is 0.3891, with ∆t = 0.05, and the ∆x1 = ∆x2 = 0.005.
This means that E[τN,x

∗
] ≈ exp(0.3891N) for large N . Note that if ∆t is not small enough compared to ∆x,

since we restrict the above minimization to x′ ∈ G, we cannot allow small speed, and we get larger values of
V̄ . We expect that more accurate results could be obtained, by doing the minimization over x′ on a finer grid,
which necessitates to interpolate v(tk+1, ·) between points on the grid. We have not been able to implement
this refinement, by lack of time. This will be done in the future. It should improve the numerical estimate of
V̄ . The above quantity should be considered as an upper bound of the true value.

4. Simulation of ZN

In this section, we describe known exact and approximate simulation methods for the simulation of the

solution ZN of equation (1). To this end, we fix N ; with the notations νj =
hj

N and aj(z) = Nβj(z), equation (1)
can be rewritten as

ZN (t) = x+

k∑
j=1

νjPj

(∫ t

0

aj(Z
N (s))ds

)
. (19)
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Note that our ultimate goal would be to simulate the value of τN which, from the above Large Deviations
results, is huge, as soon as N is large. This may be seen as impossible. However, this is similar to the problem
of rare event simulation, for which there exist specific techniques, which we intend to implement in the future.
See also the discussion below in section 4.7.2. In the framework of this paper, we present some preliminary
numerical work, which aims only at simulating the stochastic process ZN over a given finite time horizon.

In the following, we first introduce the so-called stochastic simulation algorithm (SSA) proposed in [14, 15]
(section 4.1). The SSA allows for the exact simulation of the process ZN . Unfortunately, this algorithm is
rather slow in some circumstances, typically when there are too many jumps of the Poisson processes on a
fixed time interval. Therefore, we discuss faster approximate simulation methods in the subsequent sections: in
section 4.2, we introduce the explicit τ -leaping algorithm (see [16]) in the form of [21]; in section 4.3, we discuss
modifications of the τ -leaping algorithm: implicit and mid-point τ -leaping (section 4.3.1) and the algorithm
from [22] which ensures that the simulated process remains in its domain, e.g., by preventing the components
of the process from becoming negative (section 4.3.2). We apply the SSA and the modified τ -leaping algorithm
from section 4.3.1 to the specific models from Examples 1.1 and 1.2 in sections 4.4 and 4.5, respectively. We
conclude by addressing open research questions concerning the simulation of the process ZN in section 4.7.

4.1. The stochastic simulation algorithm

A mathematically exact procedure for simulating the evolution of the process ZN given by equation (19) is
the stochastic simulation algorithm (SSA) first proposed in [14,15]. The SSA changes the value of the solution
at each jump time of one of the Poisson processes. The simplest implementation of the SSA is the so-called
direct method :

Whenever t < T :

1. While in state z at time t, evaluate all functions aj(z) and their sum a0(z) :=
∑k
j=1 aj(z).

2. Generate the time increment τ as the realization of an exponential random variable with parameter
a0(z).

3. Choose an index j ∈ {1, . . . , k} according to the probability distribution
aj(z)
a0(z) (j = 1, . . . , k).

4. Update
i. t← t+ τ ,
ii. z ← z + νj .

5. Record (t, z). Return to 1. if t+ τ < T ; else stop.

Carrying out step 3. is mathematically straightforward: we draw one realization r of a uniform random
variable on [0, 1]; then, j is the smallest positive integer for which

j∑
i=1

ai(z) > ra0(z).

The SSA is mathematically exact. However, the task of explicitly simulating each jump makes the SSA too
slow for practical implementation in some circumstances. The reason is that for large N , there are too many
jumps on any fixed time interval.

4.2. The explicit Poisson τ-leaping algorithm

A faster but approximate stochastic simulation procedure is the explicit Poisson τ -leaping algorithm (see [16]).
The basic idea of this procedure is to advance the system by a preselected time increment τ (in contrast to the
randomly generated time increment τ in the SSA). On the one hand, τ should be chosen large enough in order
to ensure that “many” jumps occur during this length of time (as else, the savings in computation time are not
significant); on the other hand, it should be small enough such that the values of the functions aj are unlikely
to change “significantly” (as else, the procedure is not accurate enough). The latter restriction is called the leap
condition. A strategy due to [21] for satisfying this condition is to require that the changes of the functions aj
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during a leap τ are “likely” to be bounded by εa0(z); here, ε (0 < ε � 1) is the error control parameter. In
other words,

|aj(ZN (t+ τ))− aj(ZN (t))| ≤ εa0(ZN (t)) for j = 1 . . . , k with high probability.

We estimate the largest value of τ that meets this particular requirement as follows. First, we compute

fjj′(z) :=

d∑
i=1

∂aj(z)

∂zi
νij′ for j, j′ = 1, . . . , k; (20)

here νij denotes the i-th component of the vector νj . Subsequently, we calculate

µj(z) :=

k∑
j′=1

fjj′(z)aj(z) and σ2
j (z) :=

k∑
j′=1

f2
jj′(x)aj(z) for j = 1, . . . , k (21)

and set

τ = τ(z) := min
j=,1...,k

{
εa0(z)

|µj(z)|
,
ε2a2

0(z)

σ2
j (z)

}
. (22)

Note that for a standard Poisson process P ,

Pj

(∫ t+τ

0

aj(Z
N (s))ds

)
− Pj

(∫ t

0

aj(Z
N (s))ds

)
d
= P

(∫ t+τ

t

aj(Z
N (s))ds

)
≈ P (aj(Z

N (t))τ) = P (aj(z)τ) =: pj

and thus

ZN (t+ τ)
d
≈ ZN (t) +

k∑
j=1

pjνj = z +

k∑
j=1

pjνj .

This procedure for the selection of τ yields the following τ -leaping algorithm.
Whenever t < T :

1. While in state z at time t, evaluate the functions aj and their sum a0(z) =
∑k
j=1 aj(z).

2. Compute τ via the formulas (20)-(22).
3. Fix a small integer n (typically, e.g., n = 10) and a moderate integer n̄ (typically, e.g, n̄ = 100).

i. If τ < n
a0(z) , reject τ and execute n̄ iterations of the SSA. Then, return to step 1.

ii. If τ ≥ n
a0(z) , proceed to step 4.

4. For j = 1, . . . , k, generate pj as a Poisson random variable with mean aj(z)τ .
5. Update

i. t← t+ τ ,

ii. z ← z +
∑k
j=1 pjνj .

6. Record (t, z). Return to 1. if t+ τ < T ; else stop.

Let us shortly comment on this algorithm. pj represents an approximation of the number of jumps of type j
during the time interval [t, t+τ [. We remark again that the approximation by pj in step 4. is justified as long as
aj(z) remains more or less constant over the subsequent time interval of length τ . The reason for step 3. i. is the
following. 1

a0(z) is the mean time step to the next jump when applying the SSA. If τ is not significantly larger

than 1
a0(z) , the computation of τ (via equations (20)-(22)) is no more efficient then applying the SSA directly

(which is also of course more accurate); as this property is likely to persist for a while, it is more appropriate
to apply the SSA for some time before returning to the τ -selection procedure again.



184 ESAIM: PROCEEDINGS AND SURVEYS

The explicit τ -leaping algorithm above has been shown to provide accurate simulation results; furthermore,
it is substantially faster than the SSA for many “not-too-stiff” systems12 (see [22]; see also [24] for theoretical
evidence for this). We illustrate the gain of computation time by numerical experiments in sections 4.4 and 4.5
below for a modification of this algorithm (cf. section 4.3.2).

4.3. Modifications of the τ-leaping algorithm

There exist several variants of the above described explicit τ–leaping algorithm. We now describe some of
these.

4.3.1. Implicit and mid–point τ -leaping algorithms

One may want to freeze the rates not at the value of the solution at the beginning of the discretization
interval, but rather at an approximate value of the position at the end of that interval, or else at the mid-point.

The “implicit” τ -leaping algorithm is obtained by replacing aj(Z
N (t))τ with

aj
(
ZN (t) + τb(ZN (t))

)
τ,

and the mid–point τ -leaping algorithm consists in replacing the same quantities by

aj
(
ZN (t) + τb(ZN (t))/2

)
τ.

In [24] it is proved that the error in the mid-point τ -leaping algorithm is less than the one produced by the
explicit τ–leaping algorithm.

4.3.2. A modified τ -leaping algorithm

As most numerical schemes, the τ -leaping algorithm has the disadvantage that the approximate solution
might very well jump over the boundaries which the solution of the stochastic equation (19) can never cross.
More precisely, the solution of (1) satisfies certain constraints. For example, in the case of constant total

population, we have that ZNi (t) ≥ 0, 1 ≤ i ≤ d, and ZN0 (t) := 1 −
∑d
i=1 Z

N
i (t) ≥ 0. We would like that the

approximate solution satisfies these constraints as well. However, this might not be the case with a standard
τ -leaping algorithm. In particular, if for some 0 ≤ i ≤ d, ZNi (t) is very small, then some of the Poisson driving
processes may push it over to a negative value during the next time interval of length τ . Because of that, at
the beginning t of each time step, we define

Lj := min
0≤i≤d, νijaj(ZN (t))<0

ZNi (t), where ν0j := −
d∑
i=1

νij ,

and choose a critical value nc. The critical directions will be chosen by comparing Lj to nc.
The modified Poisson τ -leaping procedure requires that a critical Poisson process cannot jump more than once

in a time interval of length τ . That makes it impossible for a critical Poisson process to drive any component of
ZN to a negative value. The theoretical justification for each step in this modified τ -leaping procedure is given
in [22].

Whenever t < T :

1. While in state z at time t, evaluate the functions aj(z) and their sum a0(z) =
∑k
j=1 aj(z).

2. Identify the currently critical Poisson processes as those Pj for which

aj(z) > 0 and Lj < nc.

12I.e., systems for which the difference between the smallest and the largest jump rates is not too large (see, e.g., [22]).
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3. Modify the τ -selection procedure from equations (20)-(22) by only taking into account those jump
directions j′ corresponding to the non-critical Poisson processes. Denote the resulting time step by τ ′.
If there is no non-critical Poisson process, set τ ′ =∞.

4. Fix a small integer n (typically, e.g.,n = 10) and moderate integer n̄ (typically, e.g, n̄ = 100).
i. If τ ′ < n

a0(z) , reject τ ′ and execute n̄ iterations of the SSA. Then, return to step 1.

ii. If τ ′ ≥ n
a0(z) proceed to step 5.

5. Compute the sum ac0(z) of the functions aj(z) of the critical Poisson processes. Generate τ ′′ as a
realization of the exponential random variable with parameter ac0(z).

6. i. If τ ′ < τ ′′, set τ = τ ′. For all the critical Poisson processes Pj , set pj = 0. For all the non-critical
Poisson processes Pj , generate pj as a realization of the Poisson random variable with mean aj(z)τ .

ii. If τ ′′ ≤ τ ′, set τ = τ ′′. Generate an integer jc according to the probability distribution aj(z)/a
c
0(z)

(i.e., j runs over the index values of the critical Poisson processes). Set pjc = 1, and for all the
other critical Poisson process, set pj = 0. For all the non-critical Poisson processes Pj , generate pj
as a realization of the Poisson random variable with mean aj(z)τ .

7. Update
i. t← t+ τ ,

ii. z ← z +
∑d
j=1 pjνj .

8. If z is not in its domain, replace τ ′ ← τ ′/2, and return to step 6.
9. Record (t,z). Return to 1 if t+ τ < T ; else stop.

Remark 4.1. It may seem strange to use a uniform critical value nc, independent of the value of the rate
of each Poisson process. It would be natural to compare each Lj with the corresponding aj(Z

N (t))τ , which
however would require to compute a first value of τ . We intend to search for improvements in that direction in
the future.

Remark 4.2. Although the modified τ–leaping algorithm is designed so as to reduce the chance of a negative
value of any of the ZNi (t), it cannot completely rule them out. This is the reason for step 8. of the algorithm.
We suspect that this step might introduce a bias in the simulation, in that it tends to delete simulations
with exceptionally large values of some of the Poisson process increments, and also to reduce the chance of
approaching or hitting any of the boundaries, which is specially annoying for our purposes.

We intend to check two other possible approaches. The first one consists in projecting the computed point, if
it is outside the domain. The second consists in replacing τ by τ/2, but without resimulating a new independent
value of the Poisson process increment, but rather by simulating the new increments according to the conditional
law of Pj(t+τ ′)−Pj(t), given the previously simulated value of Pj(t+τ)−Pj(t), which, if Pj(t+τ)−Pj(t) = k,
follows a binomial law with parameters k and τ ′/τ .

4.4. The SIS model

In this section, we apply the simulation algorithms from sections 4.1 and 4.3.2 to the SIS model (Example 1.1).
We consider an endemic situation (β = 1.5, γ = 1, hence R0 = 1.5 > 1 and x∗ = 1/3) and compare the
performance of the SSA to the modified τ -leaping algorithm. If the population size is relatively small, N = 2000,
we observe that the computation times are similar for both algorithms (even smaller for the SSA). A closer look
at the realized trajectory of the τ -leaping procedure confirms that almost all jumps are of size 1/2000. This
suggests that in most cases, the selected time step τ ′ is rejected and the SSA is applied (cf. steps 3. and 4. i. of
the algorithm). Hence, there is no significant gain in computation time. If we let N = 20000, the number of
jumps (and hence the computation time) for the SSA increases approximately by a factor ten. The τ -leaping
algorithm is significantly faster which suggests that the time step τ ′ is now rarely refused. While the SSA
becomes inefficient for very large time horizons (e.g., T = 600) and population sizes (e.g., N = 200000), the
process can still be simulated efficiently by the τ -leaping algorithm.
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Figure 6. Realized trajectories of the SSA for N = 2000 (left picture) and N = 20000 (right
picture). Z(0) = 0.1, T = 50, β = 1.5, γ = 1.

Figure 7. Realized trajectories of the modified τ -leaping procedure for N = 2000 (left picture)
and N = 20000 (right picture). The parameters are as in Figure 6.

We illustrate realized trajectories of the SSA and the modified τ -leaping algorithm in Figures 6 and 7,
respectively (left pictures: N = 2000, right pictures: N = 20000). We observe that they approach the solution
of the ODE as N increases for both algorithms as predicted by the LLN (cf. (3); see [5]).

4.5. The model with vaccination

We now apply the same algorithms to the model with vaccination (Example 1.2). We consider the bistable
situation from section 2.3 (cf. Figure 3 for the parameters) and observe the same qualitative properties concerning
computation times as for the SIS model in section 4.4. In Figures 8 and 9, we illustrate the realized trajectories
for the SSA and the modified τ -leaping algorithm, respectively (left pictures: N = 2000, right pictures: N =
20000). For simplicity, we only display the proportions of infectious individuals. As in section 4.4, we observe
that the trajectories approach the solution of the ODE as N →∞.

It is tempting to compare those figures, in order to obtain the error induced by the tau–leaping scheme,
compared to the exact SSA scheme. However, this would require that the two schemes are computed using the
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Figure 8. Realized trajectories for the proportion of infectious individuals simulated by the
SSA (left picture: N = 2000, right picture: N = 20000). Z2(0) = 0.2, Z3(0) = 0.7, T = 50. All
other parameters are as in Figure 3.

Figure 9. Realized trajectories for the proportion of infectious individuals simulated by the
τ -leaping algorithm (left picture: N = 2000, right picture: N = 20000). All parameters are as
in Figure 8.

same realization of the Poisson processes. This is not what we have done here. We intend to do this in a near
future, in order to confront simulations with the predictions of the theory concerning the error induced by the
tau–leaping algorithm, see e.g. [23], [24].

4.6. Computation time

In the next table we present the computation times (in seconds) of the SSA and modified tau-leaping for
different population sizes in the SIS model. All programs were written and executed in Matlab. We remark
that from N = 20000 on, the computation time of the tau-leaping scheme is spectacularly smaller than that of
the SSA scheme. We also note that the computation time of the tau–leaping scheme seems to be a decreasing
function of N . The reason is probably that the larger N , the less frequently the scheme uses SSA steps.
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SSA Population size N Time horizon T Computation time
2000 50 2.8
20000 50 24.66
200000 50 225.44

Modified tau-leaping
2000 50 2.3
20000 50 3.02
200000 50 1.05

The next table presents the computation times of the SSA and modified tau-leaping for different population
sizes in the SIV model. The same comments as for the SIS model apply.

SSA Population size N Time horizon T Computation time
2000 50 4.51
20000 50 36.4
200000 50 352.64

Modified tau-leaping
2000 50 2.95
20000 50 1.04
200000 50 0.67

4.7. Open questions

We conclude by describing two further open questions concerning the simulation of the process ZN . We
discuss briefly the simulation of models where some jump types are significantly more frequent than others
(section 4.7.1). Finally, we discuss the simulation of rare events with the help of large deviations theory
(section 4.7.2).

4.7.1. Models with different time scales

The simulation algorithms described in sections 4.1-4.3 tend to become inefficient or inaccurate if some of
the jump rates are much larger than others (cf. also Footnote 12). In epidemiology, this is typically the case for
so-called host-vector diseases (e.g., malaria), where the disease is transmitted from vectors (mosquitoes) to hosts
(humans) and vice versa. In the particular case of malaria, the jumps concerning only the mosquito population
have a much shorter time scale than those also concerning the human population (see, e.g., the model in [3]).
It is hence time consuming to simulate a significant number of jumps within the human population.

In order to overcome this problem, we simulate only the jumps with small rates via τ -leaping. Within the
interval [t, t + τ [13, the jumps with large rates are approximated by the solution of the ODE (cf. section 2).14

We intend to analyze the efficiency and accuracy of this procedure. In particular, we are interested in whether
the large deviations behavior (cf. section 1.2) is changed by this partial ODE approximation significantly.

4.7.2. Simulation of rare events

We are particularly interested in sampling the probability of the event that the process ZN exits the domain
of attraction of a stable equilibrium before a given time T (cf. section 1.2). If N is large and T is relatively
small, the probability of this event is typically extremely small. Applying a näıve Monte Carlo (MC) approach
is therefore inefficient and we rely on rare events simulation techniques. In [25], the application of Importance
Sampling is explained in the context of diffusion processes. We intend to adapt this method in the following
way. Via a change of measure, we transfer the process ZN to a jump process Z̃ (see, e.g., [6] for a Girsanov
theorem for processes of the type of ZN ) for which the event of interest is much more probable. Then, we apply

MC simulation to the process Z̃ and associate a weight with each realization (hence the average in the MC is

13Here, τ is the time step chosen by the τ -selection procedure applied to only the small rates.
14The initial value z for this computation can either be chosen explicitly, i.e., z = ZN (t) or implicitly/at the mid-point of the

interval (cf. the somehow related issue in section 4.3.1).
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replaced by a weighted average). In order to choose the process Z̃ appropriately (i.e., such that the probability
of exit is “maximized”), we use the theory of large deviations: the “cheapest” way to exit the domain is given
by the trajectory φ∗ (cf. sections 1.2 and 3); hence, we change the rates of the process in such a way that the
corresponding rate function I(φ∗) becomes small (ideally, φ∗ is approximately the solution of the ODE for the
modified rates).
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