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Abstract

We give a new proof for a Ray-Knight representation of Feller’s branching diffusion with logistic
growth in terms of the local times of a reflected Brownian motion H with a drift that is affine
linear in the local time accumulated by H at its current level. In [5], such a representation was
obtained by an approximation through Harris paths that code the genealogies of particle systems.
The present proof is purely in terms of stochastic analysis, and is inspired by previous work of
Norris, Rogers and Williams [7].

1 Introduction

The second one of the two classical Ray-Knight theorems (see e.g. [10] or [11]) establishes a
representation of Feller’s branching diffusion in terms of reflected Brownian motion. In words, it
may be stated as follows: Take a standard Brownian motion on R+ reflected at 0, and stopped
when the local time accumulated at 0 reaches a value x . Then the (total) local time accumulated
by the resulting path at “height” t, viewed as a process indexed by t, is a Feller branching diffusion
obeying the SDE dZ x

t = 2
p

Z x
t dW x

t with Z x
0 = x . One way to interpret this is to view the reflected

Brownian path as an exploration path which codes the genealogy of a continuous state branching
process (see e.g. [6]): the local time of the exploration path at height t measures the “width of
the genealogical forest” at this level, or equivalently, the mass (or size) of the population that is
alive at the time corresponding to this height. This mass is Zt , the state of the branching process
at time t. The exploration path is a concatenation of Brownian excursions, with each excursion
corresponding to a continuum random tree in the sense of Aldous [1]. The independence of
the excursions leads to independent increments of (Z x) when viewed as a process indexed by x .
This mutual independence of offspring coming from different ancestors is also referred to as the
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branching property.
Consider now, instead of a Feller branching diffusion, the same SDE with a logistic drift, namely

dZ x
t =

h

θ Z x
t − γ

�

Z x
t

�2
i

d t + 2
p

Z x
t dW x

t , Z x
0 = x , (1)

where θ ,γ > 0 are given parameters which will be fixed throughout the paper, and x > 0 is the
initial population. Just like Feller’s branching diffusion, also the solution of (1), called Feller’s
branching diffusion with logistic growth, arises as the diffusion limit of discrete population models,
but now with an interaction between individuals. This interaction can be thought of as a compe-
tition among individuals for resources, resulting in “pairwise lethal fights” (with intensity γ) that
counteract the supercritical growth of the population. This population model and its diffusion
limit (1) have been studied in [4].
In this note we will specify an SDE for a process (Hs), from which Feller’s branching diffusion
with logistic growth can be read off in the same way as Feller’s branching diffusion is read off
from reflected Brownian motion. Our proof will rely purely on stochastic analysis. Still, we
give here some brief explanations on the underlying population model (for more illustrations and
background we refer to our survey paper [8]).
The process (Hs) will be reflected Brownian motion with a drift that depends on the local time
` accumulated at the current level Hs up to time s. More specifically, the drift coefficient will be
of the form θ/2 − γ`. One way to understand the form of the drift is to see (Hs) again as the
exploration process of a forest of random real trees, and to think of an approximation in terms
of piecewise linear, continuous processes with constant absolute slope (so-called Harris paths):
the rate of minima (giving rise to new branches) is increased proportional to θ/2, and the rate
of maxima (describing deaths of branches) is increased proportional to the number of individuals
visited by the exploration process so far on the current level. In our recent work [5] we obtained
the process H as the limit of exploration processes of discrete population models, and in this way
provided a Ray-Knight representation of (1). The discrete approach of [5] gives a worthy insight
into the result, since the way how the genealogy is built and how the exploration process codes
the genealogical tree of the population is readily understandable at the discrete level.
The derivation presented in this note does not rely on a discrete approximation, but directly ex-
ploits methods from stochastic analysis. We use ideas from previous work of Norris, Rogers and
Williams [7] to which our attention was drawn after the completion of [5] thanks to a hint of
J-F Le Gall. In [7] a generalization of the first Ray–Knight theorem for “Brownian motions with a
local time drift” was provided for cases that include the drift appearing in the SDE (5).
We also extend the Ray-Knight representation of (1) by establishing an equality between laws
of random fields (random functions of time t and ancestral mass x). In Section 2 we introduce
Feller’s branching diffusion with logistic growth as a random field {Z x

t , t, x ≥ 0}. This is a natural
set-up for the formulation of our main result, which is given in Section 3 and whose proof is
contained in Section 4. The last section gives two remarks concerning a possible shortcut in the
proof of the Theorem, and a general version of the second Ray-Knight theorem in the framework
of [7].

2 A coupling over the ancestral masses

In this section we define a random field {Z x
t , t, x ≥ 0} such that for any x ≥ 0, Z x := {Z x

t , t ≥ 0}
is a Feller branching diffusion with logistic growth and ancestral mass x , for any t ≥ 0, x 7→ Z x

t
is non-decreasing and x 7→ {Z x

t , t ≥ 0} is a (path-valued) Markov process which will be specified
below.
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To this purpose we define a family of transition probabilities Px , x ≥ 0, on E, where E = C c(R+,R+)
is the set of continuous mappings from R+ to R+ with compact support. Here and below,
R+ = [0,+∞). For x > 0 and z ∈ C c(R+,R+), let Px(z, ·) be the distribution of z + Zz,x , where
Zz,x solves

Z x ,z
t = x +

∫ t

0

Z x ,z
u (θ − γ[Z

x ,z
u + 2z(u)])du+ 2

∫ t

0

p

Z x ,z
u dWu, (2)

with W being a standard Brownian motion. The equality Px(z, E) = 1 is valid because Z x ,0 (and
a fortiori Z x ,z) a.s. hits zero in finite time (for a proof of this fact see e.g. [4]). Before we show
in Lemma 1 that the transition probabilities Px , x ≥ 0, indeed specify a random field {Z x

t }, let us
briefly motivate the form of (2) in the light of the interpretation given in the introduction.
Consider the evolution of the progeny of a sum of ancestral masses z(0) + x . The offspring of
z(0) is assumed to follow (in an autonomous way) the dynamics of a Feller branching with logistic
drift, the path z(t) stands for a realization of this offspring. The progeny (Z x ,z

t ) of the additional
ancestral mass x does not evolve independently of the offspring of x , but experiences an addi-
tional pressure coming from the given z(t), resulting in the negative drift −2γz(t)Z x ,z

t . In a finite
population approximation with k + ` ancestors, this means that the descendants of the ` “addi-
tional” ancestors suffer from the competition with those of the “first” k, while the descendants of
the “first” k do not feel the presence of the descendants of the ` “additional” ancestors. Recall
from the introduction that in an individual-based model the competition leading to the negative
quadratic drift in the populaiton size is modelled by pairwise fights between the individuals. If we
think of the individuals being arranged in a linear order “from left to right”, where this order is
passed on to the individual’s offspring, then in our convention the pairwise fights are always be
won by the individual to the left, resulting in the death of the individual to the right.

Lemma 1. The family Px , x ≥ 0, satisfies the Chapman-Kolmogorov relations.

PROOF: Observe that conditioned on Z x ,z , the random path V := Z y,z+Z x ,z
solves

Vt = y +

∫ t

0

Vu(θ − γ[Vu + 2(z(u) + Z x ,z
u )])du+ 2

∫ t

0

p

VudW ′
u (3)

with W ′ being a standard Brownian motion (independent of W ). Note that in the case γ = 0, the
two processes Z x ,z and V are independent, as they should. Now Z x ,z + V satisfies

Z x ,z
t + Vt = x + y +

∫ t

0

(Z x ,z
u + Vu)(θ − γ[Z x ,z

u + Vu + 2z(u)])du

+2

∫ t

0

p

Z x ,z
u dWu + 2

∫ t

0

p

VudW ′
u .

This shows that z+Z x ,z+V has distribution Px+y(z, ·), as required. Indeed, since the two Brownian
motions W and W ′ are independent,

〈2
∫ ·

0

p

Z x ,z
u dWu + 2

∫ ·

0

p

VudW ′
u〉t = 4

∫ t

0

(Z x ,z
u + Vu)du,

and consequently, from a well–known martingale representation theorem, there exists a third
standard Brownain motion W ′′

t such that

2

∫ t

0

p

Z x ,z
u dWu + 2

∫ t

0

p

VudW ′
u = 2

∫ t

0

p

Z x ,z
u + VudW ′′

u .
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Definition 1. Let {Z x}x≥0 be the C c(R+,R+)-valued Markov process with transition semigroup (Px),
starting from Z0 ≡ 0, the null trajectory.

Remark 1. For each x > 0, Z x solves the SDE

dZ x
t =

�

θ Z x
t − γ(Z

x
t )

2
�

d t + 2
p

Z x
t dW x

t , Z x
0 = x , (4)

where {W x
t , t ≥ 0} is a standard Brownian motion. Since for x , y > 0 the increment Z x+y − Z x is

driven by a Brownian motion independent of that driving Z x , we have d〈Z x , Z x+y〉t = d〈Z x , Z x〉t =
Z x

t d t and conseqently d〈W x , W x+y〉t =
Æ

Z x
t /Z

x+y
t d t, with the convention 0

0
= 0.

3 A Ray-Knight representation

Consider the following SDE driven by standard Brownian motion B

Hs = Bs +
1

2
Ls(0) +

θ

2
s− γ

∫ s

0

Lr(Hr)dr, s ≥ 0, (5)

Here and everywhere below, {Ls(t), s ≥ 0, t ≥ 0} denotes the local time of the process {Hs, s ≥ 0}
accumulated up to time s at level t. Proposition 2, stated and proved in the next section, will
ensure (by specializing it to the case z ≡ 0) that equation (5) has a unique weak solution, which
we assume to be defined on some probability space (Ω,F ,P).
Define for any x > 0 the stopping time

Sx = inf{s > 0, Ls(0)> x},

and let {Z x
t , x , t ≥ 0} denote the random field constructed in Section 2.

Our main result is the

Theorem The two random fields {LSx
(t), t, x ≥ 0} and {Z x

t , t, x ≥ 0} have the same law.

4 Proof of the Theorem

To prepare for the proof of the Theorem, we first fix a z ∈ C c(R+,R+) and consider the SDE

Hz
s = Bs +

1

2
Lz

s (0) +
θ

2
s− γ

∫ s

0

{z(Hz
r ) + Lz

r(H
z
r )}dr, s ≥ 0, (6)

where Lz stands for the local time of Hz . We will prove in Subsection 4.1

Proposition 2. The SDE (6) has a unique weak solution.

Suppressing the superscript z, define for any x > 0 the stopping time

Sx = inf{s > 0, Lz
s (0)> x}. (7)

The main step in the proof of the Theorem will be to show

Proposition 3. For x > 0 and z ∈ C c(R+,R+) let {Z x ,z
t , t ≥ 0} be the solution of (2). Then the two

processes {Lz
Sx
(t), t ≥ 0} and {Z x ,z

t , t ≥ 0} have the same law.
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4.1 Proof of Proposition 2

Let H denote Brownian motion reflected above 0, i. e.

Hs = Bs +
1

2
Ls(0),

where B is a Fs–standard Brownian motion defined on a probability space (Ω,F ,P), with F =
F∞, and L is the semimartingale local time of H. Let

Gs = exp
�

Ms −
1

2
〈M〉s

�

, s ≥ 0,

with Ms :=
∫ s

0

¦

θ

2
− γ
�

z(Hr) + Lr(Hr)
�

©

dBr . (Recall that z ∈ C c(R+,R+) is fixed.) The condition

E(Gs) = 1, ∀s ≥ 0 (8)

is sufficient for the local martingale {Gs, s ≥ 0} to be a martingale. In that case, there exists a new
probability measure P̃ on (Ω,F ) such that for all s ≥ 0,

dP̃|Fs

dP|Fs

= Gs,

and it follows from Girsanov’s theorem (see e. g. Theorem VIII 1.4 in [10]) that

B̃s := Bs −
∫ s

0

�

θ

2
− γ
�

z(Hr) + Lr(Hr)
�

�

dr, s ≥ 0, (9)

is a standard Brownian motion. (Note that this does not require that P̃ be absolute continuity with
respect to P on F .) Hence existence of a weak solution to (6) follows from (8), which in turn
(see Theorem 1.1, chapter 7, page 152, in [3]) follows if we can ensure that for each s > 0 there
exists constants a > 0 such that

sup
0≤r≤s

Eexp(aRr)<∞, (10)

where Rr =
�

�

�

θ

2
− γ
�

z(Hr) + Lr(Hr)
�

�

�

�

2
. Since z is bounded, the inequality (10) is immediate from

the following

Lemma 2. Let H be a Brownian motion on R+ reflected at the origin. Then for all s > 0 there exists
α= α(s)> 0 such that

sup
0≤r≤s

E
�

exp(αLr(Hr)
2)
�

<∞.

PROOF: Together with a simple scaling argument and a desintegration with respect to Hr , this is
immediate from the following

Lemma 3. Let β be a standard Brownian motion starting at 0, and denote by L1(y) the local time
accumulated by |β | at position y up to time 1. There exist constants a > 0 and c > 0 (not depending
on y) such that for almost all y ≥ 0

E[eaL1(y)2 | |β1|= y]≤ c. (11)
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PROOF: By symmetry the l.h.s. of (11) a.s. equalsE[eaL1(y)2 |β1 = y]. WritingPy for the probability
measure of a Brownian bridge from the origin at time 0 to position y at time 1, and K1(a) for the
local time accumulated up to time 1 at position a, we thus have to show the inequality

E[ea(K1(y)+K1(−y))2]≤ c (12)

for suitable constants a and c. By the Cauchy-Schwarz inequality, the l.h.s. of (12) is bounded by

�

Ey
h

e4aK1(y)2
i�1/2�

Ey
h

e4aK1(−y)2
i�1/2

. (13)

To estimate the first factor, we desintegrate with respect to the time U at which the path of the
Brownian bridge first hits the level y . Conditioned under {U = u}, the part before time u does
not contribute to the local time at y , and the second part is (by the strong Markov property) a
Brownian bridge from y to y over a time interval of length 1−u, hence (by scaling) the distribution
of its local time at y equals the distribution of

p
1− u K1(0) under P0. We therefore obtain

Ey
h

e4aK1(y)2 |U = u
i

= E0
h

e4a(1−u)K1(0)2
i

≤ E0
h

e4aK1(0)2
i

(14)

To estimate the second factor, we desintegrate with respect to the times (U1, U2) at which the path
of the Brownian bridge hits the position −y for the first resp. the last time (on the event that it
hits this position at all). Again by the strong Markov property and scaling, the distribution K1(−y)
under Py[.|{U1 = u1, U2 = u2}] equals the distribution of

p

u2 − u1 K1(0) under P0. This leads to
an estimate analogous to (14), and allows to conclude

Ey
h

e4aK1(y)2
i

≤ E0
h

e4aK1(0)2
i

, Ey
h

e4aK1(−y)2
i

≤ E0
h

e4aK1(0)2
i

. (15)

By a result due to Lévy (see formula (11) in [9]), K1(0) has under P0 a Raleigh distribution, i.e.

P0(K1(0)> `) = e−
1
2
`2

.

This means that K2
1 (0) is exponentially distributed, and hence, for suitably small δ > 0,E0

�

eδK1(0)2
�

is finite. Now (11) follows from (13) and (15).

So far we have proved existence of a weak solution to (6). Weak uniqueness is easier to prove,
since uniqueness is a local property. Let H be a solution to equation (6), and for all n ≥ 1 let Tn
denote the stopping time

Tn := inf{r > 0 : Lr(Hr)> n}.

By a Girsanov transformation we can change the measure P into a measure P̄ under which, for
all n ∈N, the restriction of the process H to the interval [0, n∧ Tn] is standard Brownian motion
reflected above 0. Since P and P̄ are mutually absolutely continuous, the law of {Hs∧n∧Tn

, s ≥ 0}
under P is uniquely determined, for each n ≥ 1. Uniqueness of the law of H solution of (6) then
follows, since Tn→∞ a. s. as n→∞.

4.2 Proof of Proposition 3

As a by-product of our proof, we will see that the stopping time Sx defined in (7) has finite
expectation. A more direct argument for this would make the proof of Proposition 3 even shorter,
see the discussion in Subsection 5.1. Since we have not been able to prove this directly, we
circumvent this by reflecting the process Hz below the level K , and then let K tend to∞.
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To be specific, for K > 0, let HK be the solution of the SDE

HK
s = Bs +

1

2
LK

s (0)−
1

2
LK

s (K
−), s ≥ 0, (16)

where LK denotes the local time of HK and B is standard Brownian motion defined on the proba-
bility space (Ω,F ,P). In other words, HK is Brownian motion reflected inside the interval [0, K].
Let us first note that if we define

SK
x = inf{s > 0, LK

s (0)> x}, (17)

the next result follows readily from Lemma 2.1 in Delmas [2]:

Lemma 4. For any K > 0 the processes {LSx
(t), 0≤ t ≤ K} and {LK

SK
x
(t), 0≤ t ≤ K} have the same

distribution.

(The intutive explanation of this lemma is as follows: Consider an arbitrary level K > 0. The law
of Brownian motion reflected in [0, K] equals the law of Brownian motion reflected above 0, from
which the excursions above K are removed and the resulting gaps are closed by an appropriate
time shift of each of the excursions below K .)
We next define the martingale

M K
s =

∫ s

0

�

θ

2
− γ{z(HK

r ) + LK
r (H

K
r )}
�

dBr .

The same arguments as those in the proof of Proposition 2 show here also that for all s > 0,

Eexp
�

M K
s −

1

2
〈M K〉s

�

= 1.

Therefore there exists a probability measure P̃K such that for all s > 0,

dP̃K

dP

�

�

�

�
Fs
= exp

�

M K
s −

1

2
〈M K〉s

�

.

From Girsanov’s theorem, under P̃K , HK is a solution of the reflected SDE

HK
s = Bs +

θ

2
s− γ

∫ s

0

[z(HK
r ) + LK

r (H
K
r )]dr +

1

2
LK

s (0)−
1

2
LK

s (K
−), s ≥ 0. (18)

We will require

Lemma 5.
ẼK[SK

x ]<∞.

PROOF: We will prove this by a comparison argument. To this end let, under P̃K , H̄K be the solution
of

H̄K
s = Bs +

θ

2
s+

1

2
L̄K

s (0)−
1

2
L̄K

s (K
−), s ≥ 0, (19)

with L̄K denoting the local time of H̄; in other words, H̄K is a Brownion motion with constant
upward drift θ/2, reflected above 0 and below K . Obviously, for all n = 1, 2, . . . , a ∈ [0, K] and
ε > 0,

P̃(L̄K
n+1(0)− L̄K

n (0)≥ ε|H̄
K
n = a)≥ P̃(L̄K

n+1(0)− L̄K
n (0)≥ ε|H̄

K
n = K) := δ,
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where δ depends on ε and K but not on n and a, and is positive at least for sufficiently small
ε. Choosing this ε and δ, we see that the probability that L̄K(0) increases in the time interval
[n, n+ 1] by at least ε, bounded from below by δ, independent of the past. This implies

ẼK[S̄K
x ]<∞, (20)

where S̄K
x is defined by (17), there with LK

s (0) replaced by L̄K
s (0). From a classical comparison

theorem for SDEs, see e.g. Theorem 3.7, chapter IX of [10], we conclude that HK
s ≤ H̄K

s , s ≥ 0,
a.s. This implies that

L̄K
s (0)≤ LK

s (0), s ≥ 0, a.s.

Consequently, S̄K
x ≥ SK

x a.s.; hence the assertion follows from (20).

The next subsection will be devoted to the proof of

Proposition 4. For any K > 0, the process {LK
SK

x
(t), t ≥ 0} is under P̃K a solution of equation (2),

killed at time K.

From this together with Lemma 4, Proposition 3 is immediate.

4.3 Proof of Proposition 4

In this section, x > 0 and K > 0 are fixed. We work under P̃K and take advantage of some of the
techniques from [7].

Tanaka’s formula yields for any r ≥ 0 and 0≤ t < K the identity

(HK
r − t)− = (−t)− −

∫ r

0

1{HK
s ≤t}dHK

s +
1

2
LK

r (t).

With r := SK
x (which is finite P̃K -a.s. due to Lemma 5) this yields

LK
SK

x
(t) = 2

∫ SK
x

0

1{HK
s ≤t}dHK

s . (21)

Plugging (18) into (21) we arrive at

LK
SK

x
(t) = x + 2

∫ SK
x

0

1{HK
s ≤t}dBs

+

∫ SK
x

0

1{HK
s ≤t}

�

θ − 2γ{z(HK
s ) + LK

s (H
K
s )}
�

ds. (22)

It follows from the occupation times formula (see e.g. [10] VI.1.7) that

∫ SK
x

0

1{HK
s ≤t}

�

θ − 2γ z(HK
s )
�

ds =

∫ t

0

�

θ − 2γ z(u)
�

LK
SK

x
(u)du, (23)
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while from a generalization of the same formula (see Exercise 1.15 in Chapter VI of [10]) we have

2γ

∫ SK
x

0

1{HK
s ≤t}L

K
s (H

K
s )ds = 2γ

∫ t

0

∫ SK
x

0

LK
s (u)d LK

s (u)du

= γ

∫ t

0

�

LK
SK

x
(u)
�2

du. (24)

Let us now abbreviate

Nt := 2

∫ SK
x

0

1{HK
s ≤t}dBs, 0≤ t ≤ K . (25)

In order to check that this is a martingale with the appropriate quadratic variation, we define,
following [7], for all 0≤ t ≤ K and s ≥ 0

A(s, t) :=

∫ s

0

1{HK
r ≤t}dr, τ(r, t) := inf{s : A(s, t)> r},

J(s, t) :=

∫ s

0

1{HK
r ≤t}dBr , ξ(r, t) := J(τ(r, t), t).

For fixed t, the process ξ(., t) as a Brownian motion, arising through a time change from the con-
tinuous martingale J(., t). Write F (., t) for the filtration generated by ξ(., t), and Et := F (∞, t)
for the σ-algebra generated by the F (s, t), 0 ≤ s < ∞. With these slight modifications of the
definitions given in [7] p. 273, we can carry over all the steps in the proof of [7], Theorem 1, to
our situation. We will explain here the main ideas and a few details.
A crucial observation is that every bounded Et–measurable random variable F can be represented
as an Itô integral

F = E[F] +

∫ ∞

0

vr dξ(r, t) = E[F] +

∫ ∞

0

vA(s,t)1{Hs≤t}dBs (26)

for some F (., t)–predictable process v such that E
∫∞

0
v2

r dr <∞.

Let us := 2 · 1{0≤s≤SK
x }. This process is predictable, and Lemma 5 implies that E

∫∞
0

u2
s ds < ∞.

Moreover for each t > 0, the process

ũ(s, t), s ≥ 0 is F (., t)–predictable,

since ũ(s, t) = 2 · 1{0≤s≤A(SK
x ,t)}, and A(SK

x , t) is a F (., t)–stopping time.
Consequently (recall (25))

Nt =

∫ ∞

0

us1{HK
s ≤t}dBs =

∫ ∞

0

ũ(s, t)dξ(s, t)

is Et–measurable, as well as

Ct =

∫ ∞

0

u2
s 1{HK

s ≤t}ds =

∫ ∞

0

ũ(s, t)2ds.
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Now writing Nt+h− Nt as the integral

∫ ∞

0

us1{t<Hs≤t+h}dBs,

we see from (26) that E[(Nt+h−Nt)F] = 0, in other words, {Nt , 0≤ t ≤ K} is an (Et)–martingale.

Applying Itô’s formula to the process s 7→
�

∫ s

0
ur1{t<Hr≤t+h}dBr

�2
, s ≥ 0, we obtain as in [7] that

E[(Nt+h− Nt)
2F] = E[

∫ ∞

0

u2
s 1{t<Hs≤t+h}ds · F] = 4E[

∫ SK
x

0

1{t<Hs≤t+h}ds · F],

which reveals the quadratic variation of (Nt) as 〈N〉t = 4
∫ SK

x

0
1{HK

s ≤t} ds. Again by the occupation

times formula, this equals 2
∫ t

0
LK

SK
x
(u) du. Consequently, there exists a Brownian motion {Wt , t ≥

0} such that

Nt = 2

∫ t

0

q

LK
SK

x
(u)dWu, 0≤ t ≤ K . (27)

The proof of Proposition 3 is now completed by combining (22), (23), (24) (25) and (27).

4.4 Completion of the proof of the Theorem

It follows from the description of the law of {Z x
t , t ≥ 0}x≥0 made in Section 2 that Z is Markov (as

a process indexed by x , with values in the set of continuous paths from R+ into R+ with compact
support). The fact that {LSx

(t), t ≥ 0}{x≥0} enjoys the same property follows from the fact that
the process H x

r := HSx+r solves the SDE (6) with z(t) = LSx
(t) and a Brownian motion B which,

from the strong Markov property of Brownian motion, is independent of {LSx
(t), t ≥ 0}.

Hence it suffices to prove that for any 0 ≤ x < x + y , the conditional law of LSx+y
(·) given LSx

(·)
equals that of Z x+y

· , given Z x
· . Conditioned upon LSx

(·) = z(·), LSx+y
(·)− LSx

(·) is the collection
of local times accumulated by the solution of (6) up to time Sy , i. e. it has the law of the process
{Lz

Sy
(t), t ≥ 0}, while conditionally upon Z x

· = z(·), the law of Z x+y
· − Z x

· is that of Z y,z , solution
of equation (2). Thus, the assertion of the Theorem follows from Proposition 3.

5 Concluding remarks

5.1 A possible shortcut in the proof of Proposition 3

As a direct consequence of Proposition 3 and the occupation times formula, the stopping time S x

defined by (7) obeys

Sx
d
=

∫ ∞

0

Z x ,z
t d t,

where Z x ,z is the solution of (2). This together with a representation of
∫∞

0
Z x ,0

t d t as the random
time at which an Ornstein-Uhlenbeck process first hits 0 (see [4]) proves

Lemma 6. For any x > 0, the stopping time Sx defined in (7) has finite expectation.
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If we could prove Lemma 6 directly from the SDE (6), then we could simplify our proof of Propo-
sition 3, avoiding the reflection below the arbitrary level K . Here is an attempt of a direct intuitive
explanation why Lemma 6 holds. While climbing up, the Brownian motion with positive drift
θ/2 accumulates local time at various levels. Sooner or later, it accumulates so much local time
around some level in R+ that the process H governed by (5) starts to go down. It then contin-
ues to accumulate local time at various levels, and goes back to zero. After reflection at zero,
the next excursions will have already a stronger drift downwards that awaits H. Remarkably, the
recurrence of H to the state 0 holds independently of the relative constellations of the positive
parameters θ and γ.

5.2 A second Ray-Knight theorem for Brownian motion with a local time
drift

The equation (6) is of the form

Hs = Bs +
1

2
Ls(0) +

∫ s

0

g(Hr , Lr(Hr))dr, s ≥ 0, (28)

The proof of Proposition 3 shows that {LSx
(t), t ≥ 0} satisfies the SDE

Zt = x +

∫ t

0

f (u, Zu)du+ 2

∫ t

0

p

ZudWu (29)

with f (t,`) =
∫ `

0
g(t, y)d y , provided g is such that (28) and (29) have unique weak solu-

tions which arise via Girsanov transformations from the distributions with g ≡ 0, and provided
Sx = inf{s > 0, Ls(0) > x} is finite a.s. This more general problem will be the object of a forth-
coming paper, where we will in particular make precise the interaction inside the population, at
the discrete population level, leading to the continuous limit (29).
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