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Abstract

We give a new proof for the Ray-Knight representation of Feller’s
branching diffusion with logistic growth in terms of the local times
of a reflected Brownian motion H with a drift that is affine linear in
the local time accumulated by H at its current level. This proof is
inspired by previous work of Norris, Rogers and Williams [5]. The
arguments from stochastic analysis complement our recent work [4]
which focussed on an approximation by Harris paths that code the
genealogies of particle systems.

1 Introduction

The second one of the two classical Ray-Knight theorems (see e.g. [8] or [9])
establishes a close relation between reflected Brownian motion and Feller’s
branching diffusion. In [4] we proved a generalization, where the role of
reflected Brownian motion is taken by the solution of the SDE (4) below,
and the Feller branching diffusion is replaced by a Feller branching diffusion
with logistic growth [3], see (3) below. As explained in [4] (see also [6]), the
process H solving (4) is the exploration process of a forest of random real
trees that describes (a version of) the genealogy of a population whose size
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evolution is modeled by the Feller diffusion with logistic growth. The gener-
alized Ray–Knight theorem announced in [6] states how the Feller branching
diffusion with logistic growth can be recovered from the exploration process.

Our proof in [4] used an approximation by discrete populations. While
that proof is a bit complicated, we believe that the approach of [4] gives
a worthy insight into the result, since the way how the genealogy is built
and the exploration process codes the genealogical tree of the population is
easily understandable at the discrete level.

After the completion of [4], thanks to a hint of J.F. Le Gall, our attention
was drawn to work of Norris, Rogers and Williams [5], who provided a
generalization of the first Ray–Knight theorem for “Brownian motions with
a local time drift” for cases that include the drift appearing in the SDE (4).
The technique of [5] helps to obtain the Ray-Knight representation of Feller’s
branching diffusion with logistic drift purely in terms of stochastic analysis,
without discrete approximation. Such a direct proof is accomplished in
the present note; the key idea is to use a martingale representation of the
Girsanov density (which induces the “local time drift” of the exploration
processes {Hs}) also in the direction of “real time” t, that is with respect to
the so called excursion filtration {Et}. We also extend slightly our previous
result by establishing an equality between laws of random fields (random
functions of time t and ancestral mass x).

In Section 2 we introduce Feller’s branching diffusion with logistic growth
as a random field {Zx

t }. This is a natural set-up for the formulation of our
main result, which is given in Section 3 and whose proof is contained in
Section 4. The last section gives two remarks concerning a possible shortcut
in the proof of the Theorem, and a general version of the second Ray-Knight
theorem in the framework of [5].

2 A coupling over the ancestral masses

In this section we define a random field {Zx
t , t, x ≥ 0} such that for any

x ≥ 0, Zx := {Zx
t , t ≥ 0} is a weak solution of the SDE (3) formulated

below, i.e. a Feller branching diffusion with logistic growth and ancestral
mass x, and for any t ≥ 0, x 7→ {Zx

t , t, x ≥ 0} is non-decreasing. This
requires a coupling of the Zx, x ≥ 0 which can easily be explained in terms
of an an individual-based model considered in [6] and [4]. The idea is to
think of the individuals being arranged in a linear order “from left to right”,
where this order is passed on to the individual’s offspring, and where the
pairwise fights which induce the negative quadratic term in the logistic drift
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of the population size are always won by the individual to the left.
To be specific, we define a family of transition probabilities Px, x ≥ 0,

on E, where E = Cc(R+,R+) is the set of continuous mappings from R+ to
R+ with compact support. For x > 0 and z ∈ Cc(R+,R+), let Px(z, ·) be
the distribution of z + Zz,x, where Zz,x solves

Zx,z
t = x+

∫ t

0
Zx,z
u (θ − γ[Zx,z

u + 2z(u)])du + 2

∫ t

0

√

Zx,z
u dWu, (1)

with W being a standard Brownian motion. We now show that the family
Px, x ≥ 0, satisfies the Chapman-Kolmogorov relations. To this end, we
observe that conditioned on Zx,z, the random path V := Zy,z+Zx,z

solves

Vt = y +

∫ t

0
Vu(θ − γ[Vu + 2(z(u) + Zx,z

u )])du + 2

∫ t

0

√

VudW
′
u (2)

with W ′ being a standard Brownian motion (independent of W ). Conse-
quently, Zx,z + V satisfies

Zx,z
t + Vt = x+ y +

∫ t

0
(Zx,z

u + Vu)(θ − γ[Zx,z
u + Vu + 2z(u)])du

+2

∫ t

0

√

Zx,z
u dWu + 2

∫ t

0

√

VudW
′
u .

This shows that z + Zx,z + V has distribution Px+y(z, ·), as required.

Definition Let {Zx}x≥0 be the C
c(R+,R+)-valued Markov chain with tran-

sition semigroup (Px).

Remark 1 For each x > 0, Zx solves the SDE

dZx
t =

[

θZx
t − γ(Zx

t )
2
]

dt+ 2
√

Zx
t dW

x
t , Zx

0 = x, (3)

where {W x
t , t ≥ 0} is a standard Brownian motion. Since the increments

Zx+y −Zx, x, y > 0, are driven by independent Brownian motions, we have

d〈Zx, Zx+y〉t = d〈Zx, Zx〉t = Zx
t dt

and conseqently

d〈W x,W x+y〉t =
√

Zx
t

Zx+y
t

dt, with the convention
0

0
= 0.
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3 A Ray-Knight representation

Consider the following reflecting SDE driven by standard Brownian mo-
tion B

Hs = Bs +
1

2
Ls(0) +

θ

2
s− γ

∫ s

0
Lr(Hr)dr, s ≥ 0, (4)

Here and everywhere below, {Ls(t), s ≥ 0, t ≥ 0} denotes the local time of
the process {Hs, s ≥ 0} accumulated up to time t at level s. Proposition 2,
stated and proved in the next section, will ensure (by specializing it to the
case z ≡ 0) that equation (4) has a unique weak solution, which we assume
to be defined on some probability space (Ω,F ,P).

Define for any x > 0 the stopping time

Sx = inf{s > 0, Ls(0) > x},

and let {Zx
t , x, t ≥ 0} denote the random field constructed in Section 2.

Our main result is the
Theorem The two random fields {LSx(t), t, x ≥ 0} and {Zx

t , t, x ≥ 0}
have the same law.

4 Proof of the Theorem

To prepare for the proof of the Theorem, we first fix a z ∈ Cc(R+,R+) and
consider the SDE

Hz
s = Bs +

1

2
Lz
s(0) +

θ

2
s− γ

∫ s

0
{z(Hz

r ) + Lz
r(H

z
r )}dr, s ≥ 0, (5)

where Lz stands for the local time of Hz. We are going to prove in Subsec-
tion 4.1 the

Proposition 2 The SDE (5) has a unique weak solution.

Suppressing the superscript z, define for any x > 0 the stopping time

Sx = inf{s > 0, Lz
s(0) > x}. (6)

The main step in the proof of the Theorem will be to show

Proposition 3 For x > 0 and z ∈ Cc(R+,R+) let {Zx,z
t , t ≥ 0} be the

solution of (1). Then the two processes {Lz
Sx
(t), t ≥ 0} and {Zx,z

t , t ≥ 0}
have the same law.
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4.1 Proof of Proposition 2

This is an easy adaptation of the arguments in [4], Section 2, which we do
explicitly for the reader’s convenience, suppressing the superscript z.

Let H denote Brownian motion reflected above 0, i. e.

Hs = Bs +
1

2
Ls(0),

where B is a standard Brownian motion defined on a probability space
(Ω,F ,P), and L is the semimartingale local time of H. Existence of a weak
solution to (5) will follow from the existence of a new probability measure
P̃ under which

B̃s := Bs −
∫ s

0

{

θ

2
− γ [z(Hr) + Lr(Hr)]

}

dr, s ≥ 0, (7)

is a standard Brownian motion. A sufficient condition for the existence of
such a P̃ is that

E exp

(

Ms −
1

2
〈M〉s

)

= 1, s ≥ 0, (8)

with Ms :=
∫ s
0

{

θ
2 − γ [z(Hr) + Lr(Hr)]

}

dBr.
From Theorem 1.1, chapter 7 (page 152) in [2], a sufficient condition for

(8) is that for each s > 0 there exists constants a > 0 such that

sup
0≤r≤s

E exp(aRr) < ∞. (9)

In our situation, Rr =
∣

∣

θ
2 − γ [z(Hr) + Lr(Hr)]

∣

∣

2
, where z is bounded. Hence

all we have to show is

Lemma 1 Let H be a Brownian motion on R+ reflected at the origin. Then
for all s > 0 there exists α = α(s) > 0 such that

sup
0≤r≤s

E
(

exp(αLr(Hr)
2)
)

< ∞.

Proof: Together with a simple scaling argument and a desintegration with
respect to Hr, this is immediate from the following

Lemma 2 Let β be a standard Brownian motion starting at 0, and denote
by L1(t) the local time accumulated by |β| at position t up to time 1. There
exist constants a > 0 and c > 0 (not depending on t) such that

E[eaL1(t)2 | |β1| = t] ≤ c, t ≥ 0. (10)
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Proof: Denote by K1(x) the local time of β accumulated up to time 1 at
position x. First observe that for t ≥ 0

L1(t) = K1(t) +K1(−t) a.s. (11)

For deriving (10), by symmetry it suffices to condition under the event
{β1 = t}. Writing P

x for P[ . |β1 = x] we conclude from (11) and the Cauchy-
Schwarz inequality that for all a > 0

E
t[eaL1(t)2 ] ≤

(

E
t
[

e4aK1(t)2
])1/2 (

E
t
[

e4aK1(−t)2
])1/2

. (12)

For u ≤ 1, the distribution of K1(t) under P
t and conditioned under the

event that β hits t first at time u, equals the distribution of
√
1− uK1(0)

under P
0. Similarly, for u1, u2 ≤ 1, the distribution of K1(−t) under P

t

and conditioned under the event that (βv)0≤v≤1 hits −t first at time u1 and
last at time u2, equals the the distribution of

√
u2 − u1 K1(0) under P

0.
Consequently,

E
t
[

e4aK1(t)2
]

≤ E
0
[

e4aK1(0)2
]

, E
t
[

e4aK1(−t)2
]

≤ E
0
[

e4aK1(0)2
]

. (13)

By a result due to Lévy (see formula (11) in [7]), K1(0) has under P
0 a

Raleigh distribution, i.e.

P
0(K1(0) > ℓ) = e−

1

2
ℓ2 .

This means that K2
1 (0) is exponentially distributed, and hence, for suitably

small δ > 0, E0
[

eδK1(0)2
]

is finite. Now (10) follows from (12) and (13).

So far we have proved existence of a weak solution to (8). Weak unique-
ness is easier to prove, since uniqueness is a local property. Let H be a
solution to equation (8), and for all n ≥ 1 let Tn denote the stopping time

Tn := inf{r > 0 : Lr(Hr) > n}.

By a Girsanov transformation we can change the measure P into a measure
P̄ under which, for all n ∈ N, the restriction of the process H to the interval
[0, n ∧ Tn] is standard Brownian motion reflected above 0. Since P and P̄

are mutually absolutely continuous, the law of {Hs∧n∧Tn , s ≥ 0} under P is
uniquely determined, for each n ≥ 1. Uniqueness of the law of H solution
of (8) then follows, since Tn → ∞ a. s. as n → ∞.
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4.2 Proof of Proposition 3

As a by-product of our proof, we will see that the stopping time Sx defined
in (6) is finite a.s. A more direct argument for the a.s. finiteness of Sx would
make the proof of Proposition 3 even shorter, see the discussion in Subsection
5.1. Since we have not been able to prove this directly, we circumvent this
by reflecting the process Hz below the level K, and then let K tend to ∞.

To be specific, for K > 0, let HK be the solution of the SDE

HK
s = Bs +

1

2
LK
s (0) − 1

2
LK
s (K−), s ≥ 0, (14)

where LK stands for the local time of HK and B is standard Brownian
motion defined on the probability space (Ω,F ,P). In other words, HK is
Brownian motion reflected inside the interval [0,K].

Let us first note that if we define

SK
x = inf{s > 0, LK

s (0) > x},

the following result follows readily from Lemma 2.1 in Delmas [1]

Lemma 3 For any K > 0 the processes {LSx(t), 0 ≤ t ≤ K} and {LK
SK
x
(t), 0 ≤

t ≤ K} have the same distribution.

We next define the martingale

MK
s =

∫ s

0

[

θ

2
− γ{z(HK

r ) + LK
r (HK

r )}
]

dBr.

The arguments in Section 2 of [4] show here also that for all s > 0,

E exp

(

MK
s − 1

2
〈MK〉s

)

= 1.

Therefore there exists a probability measure P̃
K such that for all s > 0,

dP̃K

dP

∣

∣

∣

∣

Fs = exp

(

MK
s − 1

2
〈MK〉s

)

.

From Girsanov’s theorem, under P̃K , HK is a solution of the reflected SDE

HK
s = Bs +

θ

2
s− γ

∫ s

0
[z(HK

r ) +LK
r (HK

r )]dr+
1

2
LK
s (0)− 1

2
LK
s (K−), s ≥ 0.

(15)
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It is obvious that 0 is a recurrent state both for the solution HK of (15) and
the solution of

H̄K
s = Bs +

θ

2
s+

1

2
L̄K
s (0)− 1

2
L̄K
s (K−), s ≥ 0, (16)

with L̄K denoting the local time of H̄.
By comparing the solutions of (15) and (16), we see that for fixed ε the
conditional probability P̃(LK

s+1(0) − LK
s (0) > ε

∣

∣Fs ∩ {HK
s = 0}) can be

bounded away from 0 uniformly in s. This shows that

P̃
K(SK

x < ∞) = 1. (17)

We conclude from Proposition 1.3, Chapter VIII of [8] that

P̃
K ≪ P on FSK

x
, and

dP̃K

dP

∣

∣

∣

F
SK
x

= exp

(

MK
SK
x
− 1

2
〈MK〉SK

x

)

. (18)

From Lemma 3 and the second Ray–Knight theorem (see e.g. [8], Thm.
XI.2.4) we deduce that under P the process {Zx,K

t := LK
SK
x
(t), t ≥ 0} is a

solution of the SDE

dZx,K
t = 2

√

Zx,K
t dWt, Zx,K

0 = x

killed at time t = K. Thus, Proposition 3 follows immediately from Lemma 3
and

Proposition 4 For any K > 0, the process {LK
SK
x
(t), t ≥ 0} is under P̃

K a

solution of equation (1), killed at time K.

4.3 Proof of Proposition 4

In this section, x > 0 and K > 0 are fixed. We start by working with the
SDE (14), and take advantage of some of the techniques from [5].

Tanaka’s formula gives for 0 ≤ t < K the identity

LK
SK
x
(t) = LK

SK
x
(0) + 2

∫ SK
x

0
1{HK

s ≤t}dBs, (19)

8



since 1{HK
s ≤t}dL

K
s (K) = 0 and 2HK

0 ∧ t−2HK
Sx

∧ t = 0 (both terms vanish).

On the other hand, from the second Ray–Knight theorem, {LK
SK
x
(t), 0 ≤ t <

K} is a P–martingale with quadratic variation given by

〈LK
SK
x
〉t = 4

∫ t

0
LK
SK
x
(u)du.

Our aim is to identify the drift which

Y K
t := 2

∫ SK
x

0
1{HK

s ≤t}dBs = LK
SK
x
(t)− x (20)

acquires under the measure change (18). The key idea for this is to represent
the random variable MK

SK
x

showing up in (18) as the terminal outcome (t =

K) of the process

NK
t =

∫ SK
x

0
1{HK

s ≤t}

(

θ

2
− γ{z(HK

s ) + LK
s (HK

s )}
)

dBs, 0 ≤ t ≤ K,

which with respect to a suitable filtration turns out to be a P-martingale.
Following [5], this filtration is obtained as follows: We define for all 0 ≤ t ≤
K (suppressing the superscript K in the defined quantities)

A(s, t) :=

∫ s

0
1{HK

r ≤t}dr, τ(s, t) := inf{r : A(r, t) > s},

H(s, t) :=

∫ t

0
1{HK

r ≤t}dH
K
r , ξ(s, t) := H(τ(s, t), t),

F(s, t) := σ({ξ(r, t) : r ≤ s}), Et := F(∞, t).

It is shown in [10] that {Et, 0 ≤ t ≤ K} is a right–continuous filtration, and
it follows from Theorem 1 in [5] that {NK

t , 0 ≤ t ≤ K} is an (Et)–martingale.
Lemma 3 in the same paper yields

〈NK , Y K〉t =
∫ SK

x

0
1{HK

s ≤t}

(

θ − 2γ{z(HK
s ) + LK

s (HK
s )}

)

ds (21)

Reexpressing the r.h.s. of (21) via both the standard and the extended
occupation times formula (for a reference to the latter, see e.g. Exercise
1.15 in Chapter VI of [8]) yields

〈NK , Y K〉t =
∫ t

0
[θ − 2γz(u)]LK

SK
x
(u)du− γ

∫ t

0

(

LK
SK
x

)2
(u)du. (22)
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In view of (20) and (22), Girsanov’s theorem (see e.g. Theorem 1.4 in
[8]) reveals that under P̃K ,

RK
t := LK

SK
x
(t)− x−

∫ t

0
[θ − 2γz(u)]LK

SK
x
(u)du+ γ

∫ t

0

(

LK
SK
x

)2
(u)du

is a martingale on the interval 0 ≤ t ≤ K. Since the quadratic variation
remains unchanged under a Girsanov transformation, we infer that 〈RK〉t =
4
∫ t
0 L

K
SK
x
(u)du, 0 ≤ t < K. Consequently, there exists a Brownian motion

{Wt, t ≥ 0} such that LK
SK
x
(t) solves for 0 ≤ t < K the SDE (1).

4.4 Completion of the proof of the Theorem

It follows from the description of the law of {Zx
t , t ≥ 0}x≥0 made in Section 2

that Z is Markov (as a process indexed by x, with values in the set of
continuous paths from R+ into R+ with compact support). The fact that
{LSx(t), t ≥ 0}{x≥0} enjoys the same property follows from the fact that the
process Hx

r := HSx+r solves the SDE (5) with z(t) = LSx(t) and a Brownian
motion B which, from the strong Markov property of Brownian motion, is
independent of {LSx(t), t ≥ 0}.

Hence it suffices to prove that for any 0 ≤ x < x+ y, the conditional law
of LSx+y

(·) given LSx(·) equals that of Zx+y
· , given Zx

· . Conditioned upon
LSx(·) = z(·), LSx+y

(·) − LSx(·) is the collection of local times accumulated
by the solution of (5) up to time Sy, i. e. it has the law of the process
{Lz

Sy
(t), t ≥ 0}, while conditionally upon Zx

· = z(·), the law of Zx+y
· − Zx

·

is that of Zy,z, solution of equation (1). Thus, the assertion of the Theorem
follows from Proposition 3.

5 Concluding remarks

5.1 A possible shortcut in the proof of Proposition 3

As a direct consequence of Proposition 3 and the occupation times formula
(cf. Remark 6.4 in [4]) we deduce (deleting the z for simplicity) that

Sx =

∫ ∞

0
Zx
t dt.

This together with the fact that Feller’s branching diffusion with logistic
drift dies out a.s. in finite time proves

Lemma 4 For any x > 0, the stopping time Sx defined in (6) is finite a.s.
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If we could prove Lemma 4 directly from the SDE (5), then we could simplify
our proof of Proposition 3, avoiding the reflection below the arbitrary level
K. Here is a hint which tries to explain why Lemma 4 holds. While climbing
up, the Brownian motion with positive drift θ/2 accumulates local time at
various levels. Sooner or later, it accumulates so much local time around
some level in R+ that the process H governed by (4) starts to go down.
It then continues to accumulate local time at various levels, and goes back
to zero. After reflection at zero, the next excursions will have already a
stronger drift downwards that awaits H. It is remarkable that the recurrence
of H to the state 0 holds independently of the relative constellations of
the positive parameters θ and γ. Similarly, one may hope to learn about
recurrence/transience properties of reflected Brownian motions with more
general “local time drifts” from their Ray-Knight transforms.

5.2 A second Ray-Knight theorem for Brownian motion with

a local time drift

The equation (5) is of the form

Hs = Bs +
1

2
Ls(0) +

∫ s

0
g(Hr, Lr(Hr))dr, s ≥ 0, (23)

The proof of Proposition 3 shows that {LSx(t), t ≥ 0} satisfies the SDE

Zt = x+

∫ t

0
f(u,Zu)du+ 2

∫ t

0

√

ZudWu (24)

with f(t, ℓ) =
∫ ℓ
0 g(t, y)dy, provided g is such that (23) and (24) have unique

weak solutions which arise via Girsanov transformations from the distribu-
tions with g ≡ 0, and provided Sx = inf{s > 0, Ls(0) > x} is finite a.s. We
intend to study this more general problem in the future, together with the
interpretation of (24) as a model for the evolution of the size of a population.
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