
ESAIM: Probability and Statistics Will be set by the publisher

URL: http://www.emath.fr/ps/

RANDOM FRACTALS GENERATED BY A LOCAL GAUSSIAN PROCESS
INDEXED BY A CLASS OF FUNCTIONS

Claire Coiffard1

Abstract. In this paper, we extend the results of Orey and Taylor [11] relative to random fractals
generated by oscillations of Wiener processes to a multivariate framework. We consider a setup where
Gaussian processes are indexed by classes of functions.

Résumé. Dans cet article, nous généralisons les résultats d’Orey et Taylor [11] sur les fractales
aléatoires générées par les oscillations du processus de Wiener, au cas multivarié. Nous considérons le
cadre général où les processus Gaussiens sont indexés par des classes de fonctions.
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1. Introduction

Let {W (t), t ∈ [0, 1]} denote a Wiener process. Lévy [8] studied the modulus of continuity of W , and obtained
the following limiting law. We have

lim
h→0

sup
0≤t≤1−h

W (t + h)−W (t)√
2h log(1/h)

= 1, p.s. (1.1)

This result shows that some points of a Brownian path don’t follow the usual law of iterated logarithm. Ac-
cording to this law, for each fixed t0 ∈ [0, 1],

lim sup
h→0

W (t0 + h)−W (t0)√
2h log log h

= 1, p.s. (1.2)

Orey and Taylor [11] introduced the random sets defined, for Λ ∈ [0, 1], by

EΛ =
{

t ∈ [0, 1] : lim sup
h↓0

(2h log(1/h))−1/2(W (t + h)−W (t)) ≥ Λ
}

.

For each Λ > 0 EΛ collects the exceptional points in [0, 1] where the law of the iterated logarithm (1.2) fails.
Orey and Taylor [11] showed that, with probability 1, EΛ is a random fractal with Hausdorff dimension, given
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by
dim EΛ = 1− Λ2. (1.3)

Recall (see, e.g., Falconer [7]) that the Hausdorff dimension of E ⊂ [0, 1] is defined by

dim E = inf{c > 0 : sc −mes(E) = 0} = sup{c > 0 : sc −mes(E) = ∞},

where sc −mes(E) denotes the Hausdorff measure of E, given by

sc −mes(E) = lim
δ→0

inf
{ ∑

i≥1

|Ui|c : E ⊆
⋃

i≥1

Ui, |Ui| ≤ δ
}

. (1.4)

We denote by |Ui| the diameter of Ui, namely, the supremum of the Euclidean distance between two elements of
Ui. The infimum in (1.4) is taken over all collections {Ui : i ≥ 1} of subsets with diameter |Ui| < δ for all i ≥ 1
and such that E ⊆ ⋃

i≥1 Ui. The identity (1.3) was extended in various directions. In particular, Deheuvels
and Mason [4] and Deheuvels and Lifshits [3] established functional versions of (1.3). Dindar [6] extended this
result to Wiener processes on R2. Our work will rely in part on the approach of Mason [10] where processes are
indexed by class of functions.

The aim of this paper is to provide a largely extended version of (1.1) and (1.3) in the framework of multipa-
rameter Gaussian processes, indexed by classes of functions. We start by giving some notation which is needed
for the statement of our results.

We consider a class F of bounded functions on Id = [0, 1]d. We denote by ‖f‖ the sup-norm of the function
f ∈ F . Let | · |2 denote the usual Euclidean norm on Rd. Assume that the class F satisfies :

F.i. lim|w|2→0 supf∈F
∫
Rd(f(x)− f(x + w))2dx = 0,

F.ii. limλ→1 supf∈F
∫
Rd(f(x)− f(λx))2dx = 0,

F.iii. for each λ ≥ 1, z ∈ Rd and f ∈ F , f(z− λ·) ∈ F ,
F.iv. F is a VC-subgraph class,
F.v. F is pointwise measurable class. That is, there exists a countable subclass F0 of F such that for each

function f ∈ F , there exists a sequence of functions {fm} ∈ F0 such that fm(z) → f(z), z ∈ Rd .
A collection of measurable functions F on a sample space X is called a VC-subgraph class if the collection
of all subgraphs of the functions in F forms a VC-class of sets in X × R. For a definition of a VC-class or
Vapnik-C̆ernonenkis class, we refer to p.141 in Van der Vaart and Wellner [14]. A VC-class satisfies an entropy
condition, of the following type. For each ε > 0, the covering number N(ε,F , ‖ · ‖) is the minimal number of
balls {g : ‖g−f‖ < ε} of radius ε needed to cover the set F . For some A > 0, the covering number N(ε,F , ‖ · ‖)
of a VC-class F grows polynomially in A/ε as ε ↓ 0.

The multivariate local Gaussian process at z ∈ Rd, indexed by f ∈ F , is defined by

W (h, z; f) =
∫

Rd

f
(z− u

h1/d

)
dW (u), (1.5)

where W (z), z ∈ Rd denotes a standard Wiener process with d parameters in Rd. We set

Θh,z(f) =
W (h, z; f)√
2h log(1/h)

=

∫
Rd f(h−1/d(z− u))dW (u)√

2h log(1/h)
. (1.6)

We define an inner product of f1, f2 ∈ F by setting

〈f1, f2〉L2 :=
∫

Id

f1(u)f2(u)du.
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Let G2(F) be the Hilbert subspace of L2(F) spanned by F . For each ϕ ∈ G2(F), we denote by Θϕ the functional
Θϕ(f) =

∫
Id f(u)ϕ(u)du. For each Λ ∈ [0, 1], we set

HΛ =
{

Θϕ(f), f ∈ F , ϕ ∈ G2(F) with
∫

Id

ϕ2(u)du ≤ Λ2
}

. (1.7)

Let `∞(F) denote the class of bounded functions on F , endowed with the sup-norm ‖ · ‖F . For any ϑ ∈ H1 and
ε > 0, set

Bε(ϑ) = {ψ ∈ `∞(F) : ‖ψ − ϑ‖F < ε}. (1.8)

Finally, for any ε > 0, we set

Hε
1 = {ψ ∈ `∞(F) : inf

ϑ∈H1
‖ψ − ϑ‖F < ε}.

The following result gives a uniform functional law of the logarithm for local Gaussian processes indexed by a
class of functions.

Theorem A. Let J be a compact subset of Rd with nonempty interior. Suppose that (F.i-v) hold, and set for
γ > 0,

h−1
k = b(1 + γ)kc.

Then, with probability 1,

(a) for each ε > 0, there exists a δ such that, for all 0 < h ≤ δ, {Θh,z : z ∈ J} ⊂ Hε
1,

(b) for each ϑ ∈ H1 and ε > 0, there exists a k(ϑ, ε) such that for all k ≥ k(ϑ, ε), there exists a zk ∈ J such
that Θhk,zk

∈ Bε(ϑ).

Proof. The proof of this theorem is given in Mason [9]. ¤

Now for each ϕ ∈ G2(F), following the lines of Orey and Taylor [11], we consider the set of points defined by

L(Θϕ) =
{
z ∈ Id : lim inf

h↓0
‖Θh,z −Θϕ‖F = 0

}
. (1.9)

This set collects the points of Id where Θhd,z is infinitely often in a neighborhood of the function Θϕ. Set
further, for Λ ≥ 0

LΛ =
⋃{

L(Θϕ), Θϕ ∈ H1, ϕ ∈ G2(F),
∫

Id

ϕ2(u)du ≥ Λ2
}

. (1.10)

Our main result, stated in the following theorem, evaluates the Hausdorff dimensions of L(Θϕ) and LΛ.

Theorem 1.1. Assume that F fulfills F.i-v, and let ϕ ∈ G2(F) be such that

∫

Id

ϕ2(u)du ≤ 1.

Then for each Λ ∈ [0, 1], the sets L(Θϕ) and LΛ are almost surely everywhere dense in Id and satisfy

dim L(Θϕ) = d
(
1−

∫

Id

ϕ2(u)du
)

and dim LΛ = d(1− Λ2). (1.11)

The proof of Theorem 1.1 is based on an adaptation of the arguments of Deheuvels and Mason [5] and Deheuvels
and Lifshits [3] and is given in section 2.



4 TITLE WILL BE SET BY THE PUBLISHER

2. Proof of Theorem 1.1

Let the assumptions of Theorem 1.1 be in force. The proof of (1.11) reduces to show that with probability
1, for all 0 ≤ Λ ≤ 1,

dim LΛ ≤ d(1− Λ2), (2.1)
and, for all Θϕ ∈ H1 and ϕ ∈ G2(F),

dim L(Θϕ) ≥ d
(
1−

∫

Id

ϕ2(u)du
)
. (2.2)

To establish (2.1) and (2.2) we will need the preliminary facts given in the next section. In Section 2.2 we will
establish (2.1) and in Section 2.3 we will provide a proof for (2.2).

2.1. Preliminary facts

Fact 2.1 below is a generalization of the well-known result of Schilder [12] relative to large deviations. For
any ψ ∈ `∞(F), we set

I(ψ) =
{

1
2

∫
Id ξ2(u)du when ψ(f) = 〈f, ξ〉L2 for some ξ ∈ G2(F),

∞ otherwise.

Also, for any subset B ⊂ `∞(F), we set

I(B) = inf{I(ψ) : ψ ∈ B}.

Fact 2.1. Let F be a class of functions fulfilling Fi-Fii, and let {$k : k ≥ 1} be a sequence of constants such
that $k → 0 when k →∞. Set εk = (2 log(1/$k))−1, for k = 0, 1, . . .. Then,

(i) for each closed subset F of `∞(F)

lim sup
k→∞

εk log P{Θ$k,z ∈ F} ≤ −I(F ), (2.3)

(ii) for each open subset G of `∞(F)

lim inf
k→∞

εk log P{Θ$k,z ∈ G} ≥ −I(G). (2.4)

Proof. It follows readily from Theorem 5.2 in Arcones [1]. (This same method is used for the proof of Proposition
1 in Mason [10].) ¤

The next fact will be instrumental in the proof of (2.2).

Fact 2.2. Let A ⊆ Id be such that A =
⋂∞

m=1 Em, where E1 ⊇ E2 ⊇ . . . and Em =
⋃Mm

k=1 Jm,k, with {Jm,k :
1 ≤ k ≤ Mm} being for each m ≥ 1, a collection of disjoint hypercubes of Rd, such that max1≤k≤Mm |Jm,k| → 0
and Mm → ∞ as m → ∞. Then, whenever there exist two constants ∆ > 0 and δ > 0 such that, for every
hypercube J ⊆ Id with |J | ≤ ∆, there is a constant m(J) such that for all m ≥ m(J)

Mm(J) := #{Jm,k ⊆ J : 1 ≤ k ≤ Mm} ≤ δ|J |cMm, (2.5)

we have sc −mes(A) > 0.

Proof. See, e.g., Lemma 2.2 of Orey and Taylor [11]. ¤

The next fact gives a useful property of the binomial distribution.
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Fact 2.3. Let SN follow a binomial distribution with parameters N and p. Then, for all r ∈ [1,∞],

P(SN ≥ Nrp) ≤ exp(−Nph(r)), (2.6)

and for all r ∈ [0, 1],
P(SN ≤ Nrp) ≤ exp(−Nph(r)), (2.7)

where h is the Chernoff function associated with the standard Poisson process and defined by

h(r) =





r log r − r + 1 for r > 0,

1 for r = 0,

∞ otherwise.

Proof. The proof of (2.6) and (2.7) is based on Markov inequalities (See, e.g., Chernoff [2]). This result is in
Lemma 3.8 of Deheuvels and Mason [5]). ¤

2.2. Upper bounds

In this part, we establish (2.1). Actually, it is sufficient to show the result for 0 < Λ < 1. Indeed, if Λ1 ≤ Λ2,
LΛ2 ⊆ LΛ1 and by the properties of the Hausdorff dimension, dimLΛ2 ≤ dim LΛ1 . So, for all 0 < Λ < 1,
dim L1 ≤ d(1− Λ2). Since Λ ∈ (0, 1) is arbitrary, dim L1 = 0. The inequality dim L0 ≤ d is trivial, and so, it is
enough to prove (2.1) for 0 < Λ < 1.
In order to establish (2.1), we must first fix some notation. Set

LΛ+ =
⋃{

L(Θϕ), Θϕ ∈ H1, ϕ ∈ G2(F),
∫

Id

ϕ2(u)du > Λ2
}

. (2.8)

Remember that for every set G, the neighborhood of G in `∞(F) is defined by

Gε = {φ ∈ `∞(F) : inf
ϑ∈G

‖φ− ϑ‖F < ε}.

We set
L(h, ε, Λ) = {z ∈ Id : Θh,z /∈ Hε

Λ}, (2.9)
and

L(ε, Λ) = {z ∈ Id : Θh,z /∈ Hε
Λ i.o }. (2.10)

We can see that for all Λ > 0 and for all integer m0 ≥ 1, we have

LΛ+ ⊆
∞⋃

m=m0

L(1/m,Λ).

Therefore, in order to establish (2.1), it is enough to show that for all 0 < Λ < 1 and ε > 0,

sd(1−Λ2) −mes(L(ε, Λ)) < ∞. (2.11)

The following lemma will be crucial to control the oscillations between two points. For f ∈ F , consider the
process

Y (f) =
∫

Rd

f(u)dW (u).

Notice that for f1, f2 ∈ F , the usual pseudo metric between f1 and f2 is defined by

ρ(f1, f2) =
√

E(Y (f1)− Y (f2))2 =

√∫

Rd

(f1 − f2)2(u)du.
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Lemma 2.4. There exists a function ψ(δ) of δ > 0, fulfilling ψ(δ) → 0 as δ ↓ 0, and such that

lim sup
h↓0

sup
ρ(f1,f2)≤

√
δh

|Y (f1)− Y (f2)|√
2h log(1/h)

= ψ(δ) a.s.

Proof. See, e.g., Mason [9].
¤

Remember that | · |2 stands for the Euclidean norm. By F.i-ii, there exists a function A(δ), δ > 0, such that

lim
δ→0

A(δ) = 0, (2.12)

sup
f∈F

sup
|w|2≤δ

∫

Rd

(f(x)− f(x + w))2dx ≤ A(δ). (2.13)

sup
f∈F

sup
1−δ≤λ≤1+δ

∫

Rd

(f(x)− f(λx))2dx ≤ A(δ). (2.14)

The following lemma will be needed to apply Lemma 2.4 in our proofs.

Lemma 2.5. For all 0 < δ < 1, and t, t′ ∈ Id and h, h′ > 0,

sup
f∈F

sup
|t−t′|2≤δh1/d

E(W (h, t; f)−W (h, t′; f))2 ≤ A(δ)h. (2.15)

and
sup
f∈F

sup
(1−δ)d≤h/h′≤(1+δ)d

E(W (h, t; f)−W (h′, t; f))2 ≤ A(δ)h. (2.16)

Proof. We start with (2.15). Observe that

E
(
W (h, t; f)−W (h, t′; f)

)2

= E
( ∫

Rd

f
(t− u

h1/d

)
− f

(t′ − u
h1/d

)
dW (u)

)2

=
∫

Rd

[
f
(t− u

h1/d

)
− f

(t′ − u
h1/d

)]2

du

= h

∫

Rd

[
f(x)− f

(
x +

t′ − t
h1/d

)]2

dx.

Since |h−1/d(t′ − t)|2 ≤ δ, we infer (2.15) from (2.13). The proof of (2.16) is very similar, since

E
(
W (h, t; f)−W (h′, t; f)

)2 =
∫

Rd

[
f
(t− u

h1/d

)
− f

(t− u
h′1/d

)]2

du

= h

∫

Rd

(
f(x)− f((h/h′)1/dx)2

)
dx.

Given this relation, we infer (2.16) from (2.14) in order to obtain (2.16). ¤
Denote by bxc ≤ x < bxc+ 1 the integer part of x. For γ > 0, set

νk = b(1 + γ)k/dc, k = 1, 2, . . . (2.17)

and for some integer K ≥ 1 and for every k ≥ 1, set

τk(ir, K) =
ir

Kνk
for 0 ≤ ir ≤ Kνk and 1 ≤ r ≤ d.
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In the multivariate framework, we use the notation i = (i1, . . . , id) and we set

τk(i,K) =
(
τk(i1,K), . . . , τk(id,K)

)
.

Finally, we also set

1i1,...,id,k(ε, Λ) = 1{Θ1/νd
k ,τk(i,K) /∈ Hε/2

Λ }, (2.18)

Ii1,...,id,k(ε) =

{ ∏d
r=1

[
τk(ir−1,K)√

d
, τk(ir+1,K)√

d

[
if 1i1,...,id,k(ε, Λ) = 1,

∅ otherwise.
(2.19)

Lemma 2.6. For all K ≥ 1 large enough, there exists almost surely an N < ∞ such that for all k ≥ N ,

Vk(ε, Λ) :=
⋃

1/νd
k≤h<1/νd

k−1

L(h, ε, Λ) ⊆
⋃

0≤i1≤Kνk

. . .
⋃

0≤id≤Kνk

Ii1,...,id,k(ε), (2.20)

Proof. Let t ∈ ⋃
1/νd

k≤h<1/νd
k−1

L(h, ε, Λ). Then, Θh,t /∈ Hε
Λ for some h ∈ [1/νd

k , 1/νd
k−1[, which means that for

any Θϕ ∈ HΛ,

‖Θh,t −Θϕ‖F > ε for some h ∈ [1/νd
k , 1/νd

k−1[.

We choose i = (i1, . . . , id) such that t ∈ ∏d
r=1

[
τk(ir−1,K)√

d
, τk(ir+1,K)√

d

[
. Therefore, by triangular inequality,

‖Θ1/νd
k ,τk(i,K) −Θϕ‖F ≥ ‖Θh,t −Θϕ‖F − ‖Θh,t −Θh,τk(i,K)‖F − ‖Θh,τk(i,K) −Θ1/νd

k ,τk(i,K)‖F . (2.21)

We first bound the term ‖Θh,t −Θh,τk(i,K)‖F . Recalling (2.19), we see that

|t− τk(i,K)|2 ≤ 2
Kνk

.

By applying Lemma 2.5 to δ = 2/K, we get

sup
f∈F

E(W (h, t; f)−W (h, τk(i,K); f))2 ≤ A
( 2

K

)
1/νd

k .

Notice that the function b(h) =
√

2h log(1/h) is increasing for 0 < h < e−1. We infer from Lemma 2.4 that for
some 1/νd

k ≤ h < 1/νd
k−1, there exists a function ψ(δ) of δ > 0, such that ψ(δ) → 0 as δ ↓ 0, and

lim sup
k→∞

sup
f∈F

|W (h, t; f)−W (h, τk(i,K); f)|√
2h log(1/h)

= lim sup
k→∞

sup
ρ(f1,f2)≤

√
A( 2d

K )ν−d
k

|Y (f1)− Y (f2)|√
2h log(1/h)

≤ lim sup
k→∞

sup
ρ(f1,f2)≤

√
A( 2

K )ν−d
k

|Y (f1)− Y (f2)|√
2ν−d

k log(νd
k)

≤ ψ
(
A

( 2
K

))
.

Then, for all K ≥ 1 large enough, there exists almost surely an N < ∞ such that for all k ≥ N ,

‖Θh,t −Θh,τk(i,K)‖F ≤ ε/4. (2.22)

We next provide an upper bound for ‖Θh,τk(i,K) −Θ1/νd
k ,τk(i,K)‖F .
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Recall that 1/νd
k ≤ h ≤ 1/νd

k−1. Thus, using (2.16) in Lemma 2.5, and Lemma 2.4, we find that for K ≥ 1
large enough, there exists almost surely an N < ∞ such that for all k ≥ N ,

‖Θh,τk(i,K) −Θ1/νd
k ,τk(i,K)‖F ≤ ε/4. (2.23)

Next, we infer from (2.21), (2.22) and (2.23) that

‖Θ1/νd
k ,τk(i,K) −Θϕ‖F ≥ ε/2. (2.24)

Finally, (2.18) and (2.24) jointly imply (2.20). ¤
We now turn to the proof of (2.1). For all Λ ∈ (0, 1) we have

sd(1−Λ2) −mes(Vk(ε, Λ)) ≤
Kνk∑

i1=0

· · ·
Kνk∑

id=0

(
2

Kνk
)d(1−Λ2)1i1,...,id,k(ε, Λ),

and so

sd(1−Λ2) −mes(LΛ+) ≤
∑

k≥1

{
sd(1−Λ2) −mes(Vk(ε, Λ))

}

≤
∑

k≥1

Kνk∑

i1=0

· · ·
Kνk∑

id=0

(
2

Kνk
)d(1−Λ2)1i1,...,id,k(ε, Λ).

We set Sk =
∑Kνk

i1=0 . . .
∑Kνk

id=0 1i1,...,id,k(ε, Λ). To establish (2.1), it is enough to show that

∞∑

k=1

E

{
Kνk∑

i1=0

· · ·
Kνk∑

id=0

(
2

Kνk

)d(1−Λ2)

1i1,...,id,k(ε, Λ)

}

≤
∞∑

k=1

(
2

Kνk

)d(1−Λ2)

ESk < ∞. (2.25)

Observe that

ESk =
Kνk∑

i1=0

· · ·
Kνk∑

id=0

P (Θ(1/νk)d,τk(i,K) /∈ Hε/2
Λ )

= (Kνk + 1)dP (Θ(1/νk)d,0 /∈ Hε/2
Λ ),

with 0 = (0, . . . , 0). We now use Fact 2.1, with $k = (1/νk)d and F = `∞(F) − Hε/2
Λ . Obviously, for ρ > 0,

2I(F ) ≥ Λ2 + ρ. We therefore obtain

ESk ≤ (Kνk + 1)d exp{−2d log νk(Λ2 + ρ)/2}
≤ (Kνk + 1)dν

−d(Λ2+ρ)
k .

Thus, (
2

Kνk

)d(1−Λ2)

ESk = (1 + o(1))ν−dρ
k = (1 + o(1))(1 + γ)−kρ.

We have shown that (2.25), and hence (2.1), holds.
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2.3. Lower bounds

In this section, we will establish that for every Θϕ ∈ H1 associated with a function ϕ ∈ G2(F) such that
0 < λ2 =

∫
Id ϕ2(u)du < 1,

dim L(Θϕ) ≥ d
(
1−

∫

Id

ϕ2(u)du
)
. (2.26)

First we will discuss some consequences of this property. Let Λ ∈ (0, 1). By choosing λ = Λ ∈ (0, 1) and taking
ϕ(u) = Λ for u ∈ Id, the obvious inclusion L(Θϕ) ⊆ LΛ implies that

dim LΛ ≥ d(1− Λ2) for each Λ ∈ (0, 1). (2.27)

We next suppose that (2.27) holds. It is obvious that dim L1 ≥ 0 and according to the properties of the
Hausdorff dimension,

dimL0 = dim
⋃

m≥1

L1/m = sup
m≥1

dim L1/m = sup
m≥1

(1−m−2) = 1.

Thus, to prove that (1.11) holds for each Λ ∈ [0, 1], it is enough to efstablish (2.26), for all 0 < λ < 1.

For this purpose, we will apply Fact 2.2, taking for A a suitable subset of L(Θϕ) and c = d(1 − λ2 − η) with
η > 0 small enough. In the following, our attention will be devoted to the construction of A. We will require
some additional notation. Let {hk : k ≥ 1} be a sequence of constants verifying
H1) hk → 0, khd

k →∞ and 0 < hk < 1,
H2) for all 0 < c < 1,

∑∞
k=1 h−1

k exp{−h−c
k /2} is a convergent series.

For all k ≥ 1, we set mk = b(h1/d
k )−1c and tk(i) = (tk(i1), . . . , tk(id)) = (i1h

1/d
k , . . . , idh

1/d
k ). We define for all

ε > 0, ϕ ∈ G2(F) and k ≥ 1,

Wk,ϕ(ε) =
{(

tk(i1), . . . ,tk(id)
)

: 1 ≤ i1, . . . , id ≤ mk,

‖Θhk,tk(i) −Θϕ‖F < ε
}

,
(2.28)

and
Uk,ϕ(ε) =

{
t ∈ [0, 1/2]d : ‖Θhk,t −Θϕ‖F < ε

}
. (2.29)

The ε−neighborhood of a measurable set V ⊆ Id, for ε > 0, is defined by

N(ε, V ) =
⋃

x=(x1,...,xd)∈V

d∏
r=1

(xr − ε, xr + ε). (2.30)

For any t ∈ Id, we can choose i in order to minimize |tk(i) − t|. Before the construction of A, we show a few
lemmas.

Lemma 2.7. For any ε ∈ (0, 1) and θ = θ(ε) < 1 satisfying ψ(dθ) ≤ ε, there exists almost surely a k0(ε, θ)
such that, for all k ≥ k0(ε, θ),

N
(
θhk,Wk,ϕ(ε)

) ⊆ Uk,ϕ(2ε). (2.31)

Proof. Let tk(i) = (tk(i1), . . . , tk(id)) ∈ Wk,ϕ(ε) and t = (t1, . . . td) ∈ [0, 1/2]d be such that for each 1 ≤ r ≤ d,
we have |tk(ir)− tr| < θh

1/d
k . The triangle inequality entails that

‖Θhk,t −Θϕ‖F ≤ ‖Θhk,t −Θhk,tk(i)‖F + ‖Θhk,tk(i) −Θϕ‖F .
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Using Lemmas 2.4 and 2.5, we conclude that for any ε > 0, there exists k0(ε) such that for every k ≥ k0(ε)

‖Θhk,t −Θhk,tk(i)‖F < ψ(dθ).

So,
‖Θhk,t −Θϕ‖F ≤ 2ε.

The conclusion of the lemma is therefore immediate. ¤
For every measurable set E ⊆ Id, we set

mk(E) = #
{

(i1, . . . , id) : 0 ≤ i1, . . . ,id ≤ mk,

d∏
r=1

[tk(ir), tk(ir + 1)] ⊆ E
}

,
(2.32)

and, remembering (1.6)

Nk,ϕ(ε) = #
{

(i1, . . . , id) : 1 ≤i1, . . . , id ≤ mk,

‖Θhk,tk(i) −Θϕ‖F ≤ ε
}

.
(2.33)

For every measurable set E ⊆ Id we define Nk,ϕ(ε, E) to be

Nk,ϕ(ε; E) = #
{

(i1, . . . , id) : 1 ≤ i1, . . . , id ≤ mk;

(tk(i1), . . . , tk(id)) ∈ E, ‖Θhk,tk(i) −Θϕ‖F < ε
}

.
(2.34)

Finally, for every 0 ≤ i1, . . . , id ≤ mk, we set

Xi1,...,id
= 1{‖Θhk,tk(i) −Θϕ‖F < ε}. (2.35)

Observe that these variables are independent and identically distributed Bernouilli random variables with prob-
ability of success

pk(ε) := P (X0 = 1) = P (‖Θhk,0 −Θϕ‖F < ε). (2.36)
The following lemma provides an evaluation of this probability.

Lemma 2.8. For all δ ∈ (0, λ2), there exist 0 < δ′ < δ, ε0 = ε0(δ) > 0 and a k1(ε, δ) ≥ 1 such that for each
ε ∈ (0, ε0] and k ≥ k1(ε, δ), we have

pk(ε) ≥ hλ2−δ′
k ≥ hλ2

k . (2.37)

Proof. We set
Nε(Θϕ) = {Ξ ∈ `∞(F) : ‖Ξ−Θϕ‖F < ε}. (2.38)

Recall the definition (1.6) of Θhk,tk(i) and (2.36). Observe that

pk(ε) = P
(
Θhk,0 ∈ Nε(Θϕ)

)
.

Setting G = Nε(Θϕ), which is an open set of `∞(F), we apply Fact 2.1 (ii), with $k = hk. We obtain then for
all k large enough,

pk(ε) ≥ exp{−ε−1
k I(Nε(Θϕ))} ≥ exp{−2 log(h−1

k )I(Nε(Θϕ))}.
But, I(Nε(Θϕ)) < I(Θϕ) = λ2/2. Thus, for any fixed δ > 0, there exists an ε0(δ) > 0 such that for each
ε ∈ (0, ε0(δ)], λ2 − δ < 2I(Nε(Θϕ)) < λ2. It follows that (2.37) holds choosing δ′ ∈ (0, λ2 − 2I(Nε(Θϕ))). ¤
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Let E be an union of disjoint hypercubes of Lebesgue measure vol(E) greater than S ≥ 3dhk. Then we have

vol(E)
3dhk

≤
(

1− 2h
1/d
k

S1/d

)d
vol(E)

hk
≤ mk(E) ≤ vol(E)

hk
. (2.39)

Lemma 2.9. Let ε ∈ (0, ε0) where ε0 is as in Lemma 2.8 and let δ ∈ (0, 1 − λ2) be fixed. For any σ ∈ (0, 1)
there exists almost surely a k2(ε, σ, δ) ≥ 1 such that, for all k ≥ k2(ε, σ, δ), we have

|Nk,ϕ(ε,E)−mk(E)pk(ε)| < σmk(E)pk(ε), (2.40)

where E is an union of disjoint hypercubes of Lebesgue measure vol(E) greater than h1−λ2−δ
k

Proof. Since Nk,ϕ(ε, .) and mk(.) are additive set functions, it suffices to prove (2.40) when E is a hypercube
of Id with Lebesgue measure greater than h1−λ2−δ

k .
Fix σ′ and δ′ such that 0 < σ′ < σ and 0 < δ′ < δ. We next prove that it is enough to prove the lemma when
E = J is a hypercube of the form

d∏
r=1

[tk(ir), tk(ir + l(k))),

for some 0 ≤ i1, . . . , id ≤ 2mk, and with l(k) := bh−(λ2+δ′)/d
k c. To see this, assume that (2.40) is satisfied for

E = J , σ = σ′ and δ = δ′. Let K(k) := bhδ′−δ
k c. From (H1), we can choose k(δ, σ) < ∞ such that, for all

k ≥ k(δ, σ), we have

3 ≤ K(k), (2.41)

3dhk < h1−λ2−δ
k , (2.42)

(1 + σ′)

{
1 + 4/(K(k)− 2)

1− 2h
(λ2+δ)/d
k

}d

≤ (1 + σ), (2.43)

and

1− σ ≤ (1− σ′)

{
1− 2h

(λ2+δ′)/d
k

1 + 4/(K(k)− 2)

}d

. (2.44)

For all k ≥ 1, we have

K := K(E, k) =
⌊ vol(E)1/d

h
(1−λ2−δ′)/d
k

⌋
.

Observe that K ≥ K(k) →∞. For k ≥ k(δ, σ), there exist (K + 2)d disjoint hypercubes J1, . . . , J(K+2)d of the
form

∏d
r=1[tk(ir), tk(ir + l(k))] such that

(K−2)d⋃

`=1

J` ⊆ E ⊆
(K+2)d⋃

`=1

J`.

Given the form of the hypercubes J`, we see that vol(J`) = (1+ o(1))h1−λ2−δ′
k . Moreover, we have the following

inequalities.

(K − 2)dvol(J1) ≤ vol(E) ≤ (K + 2)dvol(J1).
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Hence, applying (2.39) and Lemma 2.9 for E = J`, it follows that, for all k large enough,

Nk,ϕ(ε,E) ≤
(K+2)d∑

`=1

Nk,ϕ(ε, J`) ≤ (1 + σ′)
{ (K+2)d∑

`=1

mk(J`)
}

pk(ε)

≤ (K + 2)d(1 + σ′)vol(J1)h−1
k pk(ε)

≤ (K + 2)d

(K − 2)d
(1 + σ′)vol(E)h−1

k pk(ε)

≤ (1 + σ′)
{ 1 + 4

K−2

1− 2h
(λ2+δ)/d
k

}d

mk(E)pk(ε)

≤ (1 + σ)mk(E)pk(ε). (2.45)

A similar argument shows that

Nk,ϕ(ε,E) ≥
(K−2)d∑

`=1

Nk,ϕ(ε, J`) ≥ (K − 2)dNk(J1)

≥ (K − 2)d(1− σ′)mk(J1)pk(ε)

≥ (K − 2)d(1− σ′)
vol(J1)

hk
(1− 2h

(Λ2
1+δ′)/d

k )dpk(ε)

≥ (K − 2)d

(K + 2)d
(1− σ′)

vol(E)
hk

(1− 2h
(Λ2

1+δ′)/d
k )dpk(ε)

≥ (1− σ′)

{
1− 2h

(λ2+δ′)/d
k

1 + 4
K−2

}d

mk(E)pk(ε)

≥ (1− σ)mk(E)pk(ε). (2.46)

We obtain that it suffices to show the lemma when E is a hypercube J of the form

J =
d∏

r=1

[tk(ir), tk(ir + `(k))] with 0 ≤ ir ≤ 2mk and 1 ≤ r ≤ d. (2.47)

Note here that the total number of hypercubes of this form is bounded above by h−1
k . For all k ≥ 1, we set

Qk = P (Nk,ϕ(ε, J) > rk,1) where rk,1 = (1 + σ′)mk(J)pk(ε). We now apply Fact 2.3 for SN = Nk,ϕ(ε, J),
N = mk(J), p = pk(ε) and r = (1 + σ′). We obtain for k sufficiently large,

Qk ≤ exp{−mk(J)pk(ε)h(1 + σ′)}.

Moreover, for k large enough, we have

mk(J) ≥
[

vol(J)1/d

h
1/d
k

− 2

]d

≥ 1
2d

h−λ2−δ′
k .

Thus, applying Lemma 2.8, we see that for k large enough,

h−1
k Qk ≤ h−1

k exp{− 1
2d

h−δ′
k h(1 + σ′)}.
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We use (H2) to obtain
∑∞

k=1 h−1
k Qk < ∞. Therefore, the Borel-Cantelli lemma implies that with probability

1, for all k sufficiently large, we have

Nk,ϕ(ε, J) ≤ (1 + σ′)mk(J)pk(ε).

Define likewise Rk = P (Nk,ϕ(ε, J) < rk,2) where rk,2 = (1 − σ′)mk(J)pk(ε). By a similar argument, we show
that with probability 1, for all k sufficiently large,

Nk,ϕ(ε, J) ≥ (1− σ′)mk(J)pk(ε).

Finally, (2.40) is proved for any hypercube of the form (2.47). This concludes the proof of Lemma 2.9. ¤

We shall now prove the existence of a sequence of sets E1, E2, . . . fulfilling the assumptions of Fact 2.2 and such
that A =

⋂∞
m=1 Em ⊆ L(Θϕ). Let see the steps needed for the construction of these sets. In a first step, we

establish the existence of this sequence via an induction argument. In a second step, we show that {Em : m ≥ 1}
satisfies (2.5). Finally, in a last step, we apply the Fact 2.2 to establish (2.2).

Step 1: Existence of Em. We choose two sequences of nonnegative constants {σm : m ≥ 1} and
{δm : m ≥ 1} such that

(1i) 0 < σm < 1/2, for any m ≥ 1,
(1ii)

∏m
i=1(1 + σi)2/(1− σi)2 ≤ 2,

(1iii) δ0 = 0, δm ≥ 0, for any m ≥ 1,
(1iv)

∑∞
m=1 δm ≤ η/3 < 1

6 min(λ2, 1− λ2).
We select two decreasing sequences of positive constants {εm : m ≥ 1} and {θm : m ≥ 1} such that

(2i) ε1 < 1, εm ↓ 0, εm < δm,
(2ii) θm < (1/2)ε2

m,
(2iii) (1 + 2θm−1)d(1−λ2−2∆m−1) ≤ 1+σm

1+1/2σm
,

(2iv) 3d(1−λ2−2∆m−1) ≤ 1+σm

1+1/2σm
.

For further use, we choose k2(εm, σm, δm) ≥ k1(εm, δm ≥ k0(εm) as in Lemmas 2.7, 2.8 and 2.9. We set
∆m =

∑m
k=1 δk. Observe that for every m ≥ 1,

∆m <
1
6

min(λ2, 1− λ2),

and 0 < δm < ∆m < 1. The construction of the sets Em relies on an inductive argument. That is to say that
given Em−1 and {Mm−1, km−1, E

∗
m−1}, we evaluate Em and {Mm, km, E∗

m}. The constants Mm−1, km−1 and
the sets E∗

m−1 are defined below.
We set

k0 = 1, L0 = 1, M0 = 1, (2.48)
and, for every m ≥ 1,

Lm = θmh
1/d
km

and L∗m−1 = Lm−1 − Lm. (2.49)
We choose km a positive integer such that the following conditions are verified.

(3i) km > max{km−1, k2(εm, σm, δm)},
(3ii) 3dLm < 3dh

1/d
km

< h
(1−λ2−δm)/d
km

< L∗m−1 < Lm−1,
(3iii) Ld

m−1/(L∗m−1)
d ≤ 1 + (1/2)σm,

(3iv) 1− σm ≤ (1− 2h
1/d
km

L∗m−1
)d,

(3v) 2
hδm

km

h
λ2+δm−1
km−1

≤ θd
m for m ≥ 2,
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(3vi) 2(1− 3−d)−dhδm

km
≤ θd

m, for any m ≥ 1,
(3vii) 6hδm

km
≤ θd

mMm−1(L∗m−1)
d, for m ≥ 1.

By (H1), we can choose km such that (3i-3vii) hold. Now, for every m ≥ 1, given km and {Mm−1, km−1, E
∗
m−1},

we define the sets Em, E∗
m, and the positive integer Mm. We set

Em =
⋃

1≤i1,...,ir≤mkm

(tkm (i1),...,tkm (id))∈Wkm,ϕ(εm)∩E∗m−1

d∏
r=1

[
tkm

(ir), tkm
(ir) + Lm

]
, (2.50)

with E0 = Id

E∗
m =

⋃

1≤i1,...,ir≤mkm

(tkm (i1),...,tkm (id))∈Wkm,ϕ(εm)∩E∗m−1

d∏
r=1

[
tkm(ir), tkm(ir) + L∗m

]
, (2.51)

with E0 = [0, L∗0]
d. Recalling (2.34), we set M0 = 1 and for all m ≥ 1

Mm := Nkm,ϕ(εm, E∗
m−1) = #{(i1, . . . , id) : i1, . . . , id = 1, . . . , mkm ,

(tkm(i1), . . . , tkm(id)) ∈ Wkm,ϕ(εm) ∩ E∗
m−1}.

(2.52)

It is obvious that for all m ≥ 0, Em (resp. E∗
m) is an union of Mm hypercubes of Lebesgue measure Lm (resp.

L∗m), which will be denoted by Jm,` (resp. J∗m,`) for ` = 1, . . . ,Mm. Moreover, these hypercubes are disjoint
since tkm(ir) + Lm < tkm(ir + 1) and tkm(ir) + L∗m < tkm(ir + 1) by (3ii). We have for m ≥ 0

Em =
Mm⋃

`=1

Jm,` and E∗
m =

Mm⋃

`=1

J∗m,`. (2.53)

By construction,
Em ⊆ Em−1 and E∗

m ⊆ E∗
m−1. (2.54)

To prove that the induction process involved in the construction of the sets Em carries from stage m − 1 to
stage m, we need to verify that Mm ≥ 1 for any m ≥ 1. This is shown with the help of the lemma below.

Lemma 2.10. We have M0(L∗0)
d ≥ (1− 3−d)d. Moreover, if Mm−1 ≥ 1 for m ≥ 1, then

Mm(L∗m)d ≥ hλ2+δm

km
. (2.55)

Proof. (2.48) and (3ii) imply that

M0(L∗0)
d = (L∗0)

d = (L0 − L1)d ≥ (L0 − 3−dL∗0)
d ≥ (1− 3−d)d.

Assume that {Mk, hk, Ek, E∗
k} have been defined for all k ∈ {0, . . . , m − 1}, and that Mm−1 ≥ 1. We apply

Lemma 2.9 for δ = δm, σ = σm, E = E∗
m−1. vol(E∗

m−1) = Mm−1(L∗m−1)
d ≥ (L∗m−1)

d ≥ h1−λ2−δm

km
using (3ii).

Recalling (2.52), one obtains :

1− σm ≤ Mm

mkm(E∗
m−1)pkm(ε)

≤ 1 + σm. (2.56)

We may also apply (2.39) with k = km and S = (L∗m−1)
d, to have

(
1− 2h

1/d
km

L∗m−1

)d vol(E∗
m−1)

hkm

≤ mkm(E∗
m−1) ≤

vol(E∗
m−1)

hkm

. (2.57)
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By (3iv), we see that

(1− σm)h−1
km

≤ mkm
(E∗

m−1)
Mm−1(L∗m−1)d

≤ h−1
km

. (2.58)

Using now Lemma 2.8, for k = km, δ′ = δm and ε = εm, we get

hλ2

km
≤ hλ2−δm

km
≤ pkm(εm). (2.59)

By (2.56) and (2.58), we have

(1− σm)2h−1+λ2

km
≤ (1− σm)2h−1

km
pkm

(εm)

≤ Mm

mkm
(E∗

m−1)pkm
(εm)

mkm
(E∗

m−1)
Mm−1(L∗m−1)d

pkm
(εm)

≤ Mm

Mm−1(L∗m−1)d
. (2.60)

By (1i), notice that for all m ≥ 1, the inequalities 1/2 ≤ 1− σm+1 and 1 + σm+1 ≤ 3/2 hold. Then, we get

1/6 ≤ (1− σm)2
1

1 + σm+1
. (2.61)

These inequalities when combined with (3iii) imply that

1
6
θd

mMm−1(L∗m−1)
dhλ2

km

≤ (1− σm)2

(1 + σm+1)
Mm−1(L∗m−1)

dh−1+λ2

km
hkmθd

m

≤ Mm
1

1 + σm+1
Ld

m ≤ Mm(L∗m)d. (2.62)

We infer from (3vii) that
Mm(L∗m)d ≥ hλ2+δm

km
. (2.63)

This completes the proof of Lemma 2.10. ¤

We now apply Lemma 2.10, to prove that Mm ≥ 1 for all m ≥ 1. By (1iv), we easily see that λ2 − 1 + δm ≤
−2/3(1 − λ2) < 0. Next, by (2ii), θm < (1/2)ε2

m < 1/2. So, L∗m < Lm < h
1/d
km

/2. We use Lemma 2.10 to see

that Mm ≥ 2dh−1+λ2+δm

km
≥ 2dh

−2(1−λ2)/3
km

. This last inequality, combined with (H1) and hkm < 1 jointly imply
that Mm ≥ 2d ≥ 1.

This last property establishes the existence of {Mm, km, Em, E∗
m}, for all m ≥ 0.

Step 2 : Properties of Em. In this step, we prove the existence of the constants c, d, and ∆ such that the
inequality (2.5) of Fact 2.2 is verified for any hypercube J ⊆ Id with |J | ≤ ∆. We see, remembering (2.5) and
(2.34), that for any hypercube J ⊆ Id and for m ≥ 1

Mm(J) ≤ Nkm,ϕ(εm, J). (2.64)

We have to distinguish several cases, depending on the nature of the hypercube J ⊆ Id.
Case 1.: for some m ≥ 1, J ⊆ Jm−1,`0 , for some `0 ∈ {1, . . . , Mm−1},
Case 2.: for some m ≥ 1, J ∩ Jm−1,`0 6= ∅, for some `0 ∈ {1, . . . , Mm−1},
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Case 3.: for some m ≥ 1, J ∩ Jm−1,` = ∅, ∀` ∈ {1, . . . , Mm−1}.
Case 1. For m ≥ 1, assume that J ⊆ Jm−1,`0 where `0 ∈ {1, . . . ,Mm−1}. Three possibilities have to be
considered.

Possibility 1a. Assume that vol(J) ≥ h1−λ−δm

km
(This is possible by (3ii)). We may apply Lemma 2.9, with

δ = δm, σ = σm, E = J , and k = km, combined with (2.39) and (2.64), to obtain

Mm(J) ≤ (1 + σm)h−1
km

vol(J)pkm(εm). (2.65)

When m ≥ 2, we have
vol(J) ≤ vol(Jm−1,k0) = Ld

m−1 = θd
m−1hkm−1 ≤ hkm−1 .

Then, using Lemma 2.10, we get

Mm−1(L∗m−1)
d ≥ h

λ2+δm−1
km−1

≥ vol(J)λ2+δm−1 .

Next, (2.59) and (2.60) jointly imply that

Mm(J)
Mm

=
Mm−1(L∗m−1)

d

Mm
Mm(J)

1
Mm−1(L∗m−1)d

≤ 1
(1− σm)2h−1

km
pkm(εm)

(1 + σm)h−1
km

vol(J)pkm(εm)
1

Mm−1(L∗m−1)d

≤ 1 + σm

(1− σm)2
vol(J)

1
Mm−1(L∗m−1)d

≤ (1 + σm)
(1− σm)2

vol(J)1−λ2−δm−1 (2.66)

≤ (1 + σm)
(1− σm)2

d−d/2(1−λ2−δm−1)|J |d−dλ2−dδm−1 , (2.67)

where |A| is the diameter of A (see p.2). When m = 1, we know that M0(L∗0)
d ≥ (1− 3−d)d, therefore,

M1(J)
M1

≤ (1− 3−d)−d 1 + σ1

(1− σ1)2
vol(J)

≤ (1− 3−d)−d 1 + σ1

(1− σ1)2
d−d/2|J |d

≤ (1− 3−d)−d 1 + σ1

(1− σ1)2
d−d/2|J |d(1−λ2).

Possibility 1b. Consider the possibility where

(θmh
1/d
km

)d/2 ≤ vol(J) ≤ h1−λ2−δm

km
.

In this case, it is always possible to choose a hypercube J ′, such that J ⊆ J ′ ⊆ Id with vol(J ′) = h1−λ2−δm

km
.

Then, it is easy to see that h
1/d
km

≤ θ−1
m (2 vol(J))1/d and therefore,

h1−λ2−2δm

km
≤ 2θ−d

m vol(J)1−λ2−2δm . (2.68)
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For any m ≥ 2, apply (2.67) with the formal replacement of J by J ′. This combined with (2.68) and (3v),
implies

Mm(J)
Mm

≤ Mm(J ′)
Mm

≤ 1 + σm

(1− σm)2
vol(J ′)h−λ2−δm−1

km−1

≤ 1 + σm

(1− σm)2
h1−λ2−δm

km
h
−λ2−δm−1
km−1

≤ 1 + σm

(1− σm)2
h1−λ2−2δm

km

hδm

km

h
λ2+δm−1
km−1

≤ 1 + σm

(1− σm)2
vol(J)1−λ2−2δm2θ−d

m

hδm

km

h
λ2+δm−1
km−1

≤ 1 + σm

(1− σm)2
vol(J)1−λ2−2δm

≤ 1 + σm

(1− σm)2
d−d/2(1−λ2−2δm)|J |d−dλ2−2dδm . (2.69)

For m = 1, applying the same result, with the formal replacement of J by J ′, and with (3vi), we obtain

M1(J)
M1

≤ (1− 3−d)−d 1 + σ1

(1− σ1)2
vol(J ′)

≤ (1− 3−d)−d 1 + σ1

(1− σ1)2
h1−λ2−δ1

k1

≤ (1− 3−d)−d 1 + σ1

(1− σ1)2
2θ−d

1 vol(J)1−λ2−2δ1hδ1
k1

≤ 1 + σ1

(1− σ1)2
d−d/2(1−λ2−2δ1)|J |d−dλ2−2dδ1 . (2.70)

Possibility 1c. Finally, suppose that vol(J) < (θmh
1/d
km

)d/2. Recalling that for every ` = 1, . . . , Mm, we have

vol(Jm,`) = (θmh
1/d
km

)d. Then, for any m ≥ 1,

Mm(J)
Mm

= 0. (2.71)

In view of the results obtained for all possibilities of the Case 1, we conclude that for any J ⊆ Id verifying
I ⊆ Jm−1,`0 , for `0 ∈ {1, . . . , Mm−1}, we have the inequalities :

M1(J)
M1

≤ 1 + σ1

(1− σ1)2
d−d/2(1−λ2−2δ1)|J |d−dλ2−2dδ1 , (2.72)

Mm(J)
Mm

≤ 1 + σm

(1− σm)2
d−d/2(1−λ2−2δm)|J |d−dλ2−2dδm for m ≥ 2. (2.73)

Case 2. We now consider the case where J is not necessarily a subset of Jm−1,`0 .

Possibility 2a. Assume that `0 ∈ {1, . . . , Mm−1} is the unique integer verifying J ∩ Jm−1,`0 6= ∅. Let J ′ :=
J∩Jm−1,`0 . It is easy to see that Mm(J) = Mm(J ′). Moreover, J ′ verifies the assumptions of Case 1. Therefore,
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we use (2.73) to obtain for any m ≥ 2,

Mm(J)
Mm

≤ 1 + σm

(1− σm)2
d−d/2(1−λ2−2δm)|J ′|d−dλ2−2dδm

≤ 1 + σm

(1− σm)2
d−d/2(1−λ2−2δm)|J |d−dλ2−2dδm . (2.74)

Possibility 2b. Assume that J verifies J ∩ Jm−1,` 6= ∅ for at least two different ` ∈ {1, . . . ,Mm−1}. For any
m ≥ 1, let H(m) denote the following property : ∀T ⊆ Id,

Mm(T )
Mm

≤
m∏

i=1

(
1 + σi

1− σi

)2

d−
d
2 (1−λ2−2∆m)|T |d−dλ2−2d∆m , where ∆m :=

m∑

k=1

δk. (2.75)

Remark 2.11. For m = 1 and for all T ⊆ Id, (2.72) implies (2.75). Moreover, for any m ≥ 1, and T verifying
the assumptions of Case 1, (2.73) implies (2.75), and (2.75) is still true for any m ≥ 1 verifying the assumptions
of Case 2a.

Here and elsewhere, ∂A denote the frontier of A, and
◦

A the interior of A, for A ⊆ Rk,k ≥ 1.

Lemma 2.12. For m ≥ 2, We assume that H(m− 1) holds and that T ⊆ Id is a hypercube such that

∂T ∩
Mm−1⋃

`=1

◦
J m−1,` = ∅. (2.76)

Then, we have

Mm(T )
Mm

≤ 1 + (1/2)σm

1 + σm

m∏

i=1

(
1 + σi

1− σi

)2

d−
d
2 (1−λ2−2∆m−1)|T |d−dλ2−2d∆m−1 . (2.77)

Proof. By (2.76), it is easy to see that

Mm(T ) =
∑

1≤`≤Mm−1
Jm−1,`⊆T

Mm(Jm−1,`).

Hence,

Mm(T )
Mm

=
∑

1≤`≤Mm−1
Jm−1,`⊆T

Mm(Jm−1,`)
Mm

≤ Mm−1(T )× max
1≤`≤Mm−1
Jm−1,`⊆T

(
Mm(Jm−1,`)

Mm

)
. (2.78)

Moreover, by (3ii), we know that vol(Jm−1,`) = Ld
m−1 ≥ h1−λ2−δm

km
. Then, Jm−1,` satisfies the assumptions of

Case 1a. Therefore, we apply (2.67) with the formal replacement of J by Jm−1,` and vol(J) by Lm−1 and using
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(3iii),

Mm(Jm−1,`)
Mm

≤ 1 + σm

(1− σm)2
Ld

m−1

1
Mm−1(L∗m−1)d

≤ 1 + σm

(1− σm)2
× (1 + (1/2)σm)× 1

Mm−1
.

(2.79)

Therefore, H(m− 1), (2.78), and (2.79) jointly imply that

Mm(T )
Mm

≤ Mm−1(T )
Mm−1

×
(

1 + σm

1− σm

)2

× 1 + (1/2)σm

1 + σm

≤ 1 + (1/2)σm

1 + σm

m∏

i=1

(
1 + σi

1− σi

)2

d−
d
2 (1−λ2−2∆m−1)|T |d−dλ2−2d∆m−1 .

This achieves the proof of (2.77). ¤

Let J ′ denote the smallest hypercube which contains the sets Jm−1,` verifying Jm−1,` ∩ J 6= ∅, where 1 ≤ ` ≤
Mm−1, and J ′′ = J ∩ J ′. Then, we have

Mm(J) = Mm(J ′′) ≤ Mm(J ′). (2.80)

In the following, we use an inductive argument to prove (2.77) for J verifying the assumptions of Case 2b. It
is easy to see that H(1) holds (see Remark 2.11). Assume that H(m− 1) holds for any m ≥ 2. We see that

∂J ′ ∩
Mm−1⋃

`=1

◦
J m−1,` = ∅.

Apply Lemma 2.12 when T = J ′.

Mm(J ′)
Mm

≤ 1 + (1/2)σm

1 + σm

m∏

i=1

(
1 + σi

1− σi

)2

d−
d
2 (1−λ2−2∆m−1)|J ′|d−dλ2−2d∆m−1

≤ 1 + (1/2)σm

1 + σm

m∏

i=1

(
1 + σi

1− σi

)2 (
vol(J)

vol(J ′)
vol(J)

)1−λ2−2∆m−1

. (2.81)

But

vol(J ′) ≤
[
(vol(J))1/d + 2Lm−1

]d

≤
d∑

k=0

(
d

k

)
2d−kvol(J)k/dLd−k

m−1. (2.82)

Assume first that vol(J) ≥ hkm−1 . (2.82) and (2.49) jointly imply that

vol(J ′)
vol(J)

≤
d∑

k=0

(
d

k

)
2d−k Ld−k

m−1

vol(J)(d−k)/d

≤
d∑

k=0

(
d

k

)
2d−kθd−k

m−1 ≤ (1 + 2θm−1)
d
.
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This last inequality, combined with (2.80), (2.81) and (2iii), imply that

Mm(J)
Mm

≤ Mm(J ′)
Mm

≤
m∏

i=1

(
1 + σi

1− σi

)2

d−
d
2 (1−λ2−2∆m−1)|J |d−dλ2−2d∆m−1 . (2.83)

Now assume that vol(J) < hkm−1 . Remembering that vol(J) > Ld
m−1, (2.82) implies that

vol(J ′)
vol(J)

≤
d∑

k=0

(
d

k

)
2d−k Ld−k

m−1

vol(J)
d−k

d

≤
d∑

k=0

(
d

k

)
2d−k ≤ 3d. (2.84)

Combining (2.80), (2.81), (2.84), and (2iv), we get

Mm(J)
Mm

≤ Mm(J ′)
Mm

≤
m∏

i=1

(
1 + σi

1− σi

)2

d−
d
2 (1−λ2−2∆m−1)|J |d−dλ2−2d∆m−1 . (2.85)

Hence, (2.77) is verified for J verifying the assumptions of the Case 2b.

Case 3. We now consider the case where J ∩ Jm−1,` = ∅ for any ` ∈ {1, . . . , Mm−1}. Observe that

Mm(J)
Mm

= 0. (2.86)

This last statement implies (2.77) for any m ≥ 1.

Step 3 : The Hausdorff dimension of LΛ. Assertions (2.83) (2.85) and (2.86), combined with Remark
2.11 entail that H(m) is true for any m ≥ 1. By (1ii), we conclude that for any hypercube J ⊆ Id, for any
m ≥ 1,

Mm(J) ≤ 2d−d/2(1−λ2−2∆m−1)|J |d(1−λ2)−2d∆m−1Mm. (2.87)

Making use of Fact 2.2, with A as previously described, ∆ = 1, d = 2 and c = d(1 − λ2) − 2d∆m−1, we get
dim A ≥ d(1− λ2)− 2d∆m−1. All that remains is to show that

A =
∞⋂

m=1

Em ⊆ L(Θϕ).

Observe that Lm = θmh
1/d
km

< h
1/d
km

. The fact that km > k2(εm, σm, δm) > k0(εm) implies by Lemma 2.7 that
for any m ≥ 1, N(Lm,Wkm,ϕ(εm)) ⊆ Ukm,ϕ(2εm). But, (2.50), (2.28) and (2.29) allow us to say that for any
m ≥ 1, Em ⊆ N(Lm,Wkm,ϕ(εm)). This means that for any m ≥ 1, for any t ∈ Em,

‖Θhkm ,t −Θϕ‖F ≤ 2εm.

Since A =
⋂∞

m=1 Em, this last inequality is verified for any t ∈ A and any m ≥ 1. Finally, since εm → 0 when
m → ∞, we obtain that A ⊆ L(Θϕ). Hence, for all Λ ∈ (0, 1), we have dim LΛ ≥ d(1 − Λ2). This combined
with (2.1) leads to (1.11). The proof of Theorem 1.1 is therefore achieved.
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