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Abstract

We consider the accumulation of deleterious mutations in asexual popu-
lation, a phenomenom known as Muller’s ratchet, using the continuous time
model proposed by [3]. We show that for any parameter λ > 0 ( the rate at
which mutations occur), for any α > 0 ( the toxicity of the mutations) and
for any N , the ratchet clicks a.s. in finite time. That is to say the minimum
number of deleterious mutation in the population goes to infinity a.s.

1 Introduction

In natural evolution, deleterious mutations occur much more frequently than bene-
ficial ones. Since the last category is always favored by selection, one may wonder
about the advantage of sexual reproduction over the asexual type. The answer is
simple : in an asexually reproducing population, each individual always inherits
all the deleterious mutations of his ancestor (except if another mutation occurs at
the same place; but this event is rare and we will not consider it) whereas in sexual
reproduction, recombinations occur, which allow an individual to take part of a chro-
mosome from each of his parents, therefore permitting him to get rid of deleterious
mutations. Muller’s ratchet can be used as an attempt to translate this phenomenom
in a mathematical model, thus explaining the advantage of sexual reproduction [7] .
If one considers the best class (the group of fittest individuals) in a given population,
Muller’s ratchet is said to click when the best class gets empty. Since beneficial
mutations do not occur in this model, it means that all the children of the best class
(if there are any) have mutated.

The first model for Muller’s ratchet due to Haigh [4] can be described as follow.
Consider a population of fixed sized N which evolves in discrete time. Only dele-
terious mutations happen. Denoting by 0 ≤ α ≤ 1 the deleterious strength of the
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mutations, and λ > 0 the rate at which they occur, each new generation is consti-
tuted as follows : each individual chooses a parent from the previous generation, in
such a way that the probability to choose a father with k deleterious mutations is
(we denote by Nk the number of such individuals in the previous generation) :

(1− α)k∑N
k=0Nk(1− α)k

.

Next each newborn gains K deleterious mutations, where K a Poisson random vari-
able with parameter λ. It is immediate to see that this model clicks a.s. in finite
time, indeed at each generation, with probability (1− exp(−λ

α
))N all the individuals

mutate, which induces the click.
The following Fleming Viot model in continuous time has been proposed by A.

Etheridge, P. Pfaffelhuber and A. Wakolbinger in [3] :
N denotes the size of the population;
Xk(t) the proportion of individuals with k deleterious mutations at time t;
λ is the mutation rate;
α is the fitness decrease due to each mutation;
{Bk,`, k > ` ≥ 0} are independent Brownian motions, and Bk,` = −B`,k;
M1 =

∑
k∈N kXk the mean number of mutation in the population,

M` =
∑

k∈N(k −M1)
`Xk the `–th centered moment, ∀` ≥ 2.

The Fleming–Viot model for Muller’s ratchet in continuous time is given by the
following infinite set of SDEs

dXk = [α(M1 − k)Xk + λ(Xk−1 −Xk)] dt+
∑

`≥0,` 6=0

√
XkX`

N
dBk,`

= [α(M1 − k)Xk + λ(Xk−1 −Xk)[ dt+

√
Xk(1−Xk)

N
dBk

Xk(0) = xk; k ≥ 0.

(1.1)

This system of SDEs is well posed provided the initial condition belongs to

X = {(xk)k∈Z+ ∈ RZ+

+ ,
∑
k≥0

xk = 1, and
∑
k≥0

eNαkxk <∞},

as will be explained in section 2. We equip this set with the distance

d(x, y) =
∑
k≥0

eαNk | xk − yk |,
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which makes it a complete metric space. If X is a X valued solution of (1.1), we can
write the equation for M1 :

dM1(t) = (λ− αM2(t))dt+

√
M2(t)

N
dBt.

We define T0 = inf{t > 0, X0(t) = 0}.

The purpose of the present work is to show that this model of Muller’s ratchet is
bound to click in finite time, that is to say T0 <∞ a.s. . We are going to prove the
following theorem :

Theorem 1 For any choice of initial condition in X , let (Xk(t))k∈Z+ the solution of
(1.1). Then P(T0 <∞) = 1.

We will in fact prove a stronger result, namely

Theorem 2 For any choice of initial condition in X , let (Xk(t))k∈Z+ the solution of
(1.1). Then E(T0) <∞.

There are several difficulties in this model. First, it is an infinite system of SDEs
which cannot be reduced to a finite dimensional system. Only X0 and M1 enter the
coefficients of the equation for X0, but the equation for M1 brings in the second
moment M2. The system of SDEs for the Mk’s is infinite as well, the M` up to order
` = 2k enter the coefficients of the equation for Mk, and there is no known solution
to it (except in the deterministic case N = +∞, which is solved in [3] ). In addition,
one has d 〈X0,M1〉 = −M1X0

N
dt. But there is no easy relation between X0 and M1,

except that X0 + M1 ≥ 1, and (X0 = 1) ⇒ (M1 = 0). But we could have X0 → 0
and M1 →∞. Last but not least, the diffusion coefficient in dXk is not a Lipschitz
function of Xk at 0 and 1, and it vanishes at those two points.

In order to prove the theorem, we will use a three steps proof. First, in section
3 we will show that M1 cannot grow too fast with a good probability, and we will
deduce that for a specific set of initial conditions, the ratchet does click with a strictly
positive probability pfin, in a given interval of time.

Next, we show in section 4 that the product X0M
2
1 is bound to come back under

2(λ+1)
α

after any time, and we use all the previous results to deduce that M1 is also
bound to return under β = λ

α
after any time, as long as the ratchet does not click.

Finally in section 5 we prove that each time M1 gets below β, the ratchet clicks
with a positive probability in a prescribed interval of time. We then conclude with
the help of the strong Markov property.
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In section 6 we show how the proof of Theorem 1 can be turned into a proof of
Theorem 2. The reader may wonder why we do not prove Theorem 2 from the very
beginning, and first prove a weaker result. The reason is that the difference between
the two proofs is essentially that while proving Theorem 1, we prove that as long
as the ratchet has not clicked, M1 is bound to return below the value β, i. e. the
drift of X0 is bound to become non–positive, which is an interesting result in itself,
while the proof of Theorem 2 is based on the same strategy, but with β replaced by
a much less explicit quantity.

We shall essentially work with the two dimensional process {X0(t),M1(t)}, and
we shall use the equation for X1 only in one place, namely in Lemma 5.1 in order to
show that X0 does not get stuck near the value 1. We shall make use of the three
following equations.

dX0 = (αM1 − λ)X0dt+

√
X0(1−X0)

N
dB0

dX1 = (α(M1 − 1)X1 + λ(X0 −X1)) dt+

√
X1(1−X1)

N
dB1

dM1(t) = (λ− αM2(t))dt+

√
M2(t)

N
dBt,

This system is not closed, since M2 enters the coefficients of the last equation. How-
ever, the crucial remark is that it will not be necessary to estimate M2, in order
to estimate M1. This is due to the fact that the M1–equation takes the form
dM1(t) = λdt + dZt, where Zt = W (At) − αNAt, if At :=

∫ t
0
M2(s)/Nds and

{W (t), t ≥ 0} is a standard Brownian motion. The larger M2 is, the more likely
Zt is negative, which produces a smaller M1. This means that we should be able to
estimate M1, without having to estimate M2, which is done below in Lemma 3.2 and
4.3.

Section 2 is devoted to some preliminary results on our system of SDEs.

2 Preliminary results

We first state a minor variant of the weak existence and uniqueness for the solution
of our system, which is due to [2]. Indeed, a slight modification of the arguments in
[2] (see [1] for details) yields the following result.
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Proposition 2.1 The infinite system of SDEs (1.1) has a unique weak solution for
any initial condition in X , in the sense that the associated martingale problem is well
posed.

Proposition 2.1 relies upon the following Lemma, for which we will provide a
proof :

Lemma 2.2 If X(0) ∈ X , then ∀t ≥ 0 X(t) ∈ X a. s.

We first establish :

Lemma 2.3 Let X be a Z+-valued random variable, and write xk = P(X = k),
k ≥ 0. Suppose that Y is another Z+-valued random variable, whose law is given by
P(Y = k) = F (k)xkP

k∈Z+
F (k)xk

, where F : Z+ ⇒ R?
+ is an increasing function, such as

∑
k∈Z+

F (k)xk <∞

Then
E (X) ≤ E (Y ) .

Proof : The case where F is constant is trivial, since in that case yk = xk, ∀k ≥ 0.
Now if F is non-constant, from the hypothesis we have that: F (k)P

j∈Z+
Fxj
− 1 is an

increasing non constant fonction such that

∑
k∈Z+

(
F (k)∑

j∈Z+
F (j)xj

− 1

)
xk = 0

Hence we have : ∃` ∈ Z+ such as ∀n < ` ≤ k , F (k)P
j≥0 F (j)xj

− 1 ≥ 0 ; F (n)P
n≥0 F (n)xn

−
1 ≤ 0 and

k=∞∑
k=`

(
F (k)∑

j≥0 F (j)xj
− 1

)
xk = −

`−1∑
k=0

(
F (k)∑

j≥0 F (j)xj
− 1

)
xk.

Then

∑
k≥0

k

(
F (k)∑

j≥0 F (j)xj
− 1

)
xk =

k=∞∑
k=`

k

(
F (k)∑

j≥0 F (j)xj
− 1

)
xk+

`−1∑
k=0

k

(
F (k)∑

j≥0 F (j)xj
− 1

)
xk.
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the first term in positive and the second negative, so the above right–hand side
is bounded from below by

`

k=∞∑
k=`

(
F (k)∑

j≥0 F (j)xj
− 1

)
xk + (`− 1)

`−1∑
k=0

(
F (k)∑

j≥0 F (j)xj
− 1

)
xk,

which is non–negative. ♦

We deduce the following Corollary, where again (xk, k ≥ 0) is the law of X.

Corollary 2.4 ∀C, ρ > 0 We have the following inequality :(∑
j≥0

jxj

)(∑
k≥0

(
eρk ∧ C

)
xk

)
≤
∑
j≥0

j
(
eρj ∧ C

)
xj.

Proof : We may divide by
(∑

k≥0

(
eρk ∧ C

)
xk
)
, which is strictly positive and finite.

We see that the result is equivalent to∑
j≥0

jxj ≤
∑
j≥0

j
(eρj ∧ C)∑

k≥0 (eρk ∧ C)xk
xj,

which follows from the previous lemma with F (k) =
(
eρk ∧ C

)
.

♦

Now let X = (Xk(t), k ≥ 0, t ≥ 0) be the solution of (1.1). We define

Ψ (t, ρ) = E

(∑
k≥0

Xk (t) eρk

)

and ∀C > 0

ΨC (t, ρ) = E

(∑
k≥0

Xk (t)
(
eρk ∧ C

))
We now have

Lemma 2.5 Let X be a solution of (1.1). Then for all t ≥ 0, ρ ≥ 0,

Ψ (t, ρ) ≤ Ψ (0, ρ) eλ(eρ−1)t.
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Proof : Let

Φ (t, ρ) =
∑
k≥0

Xk (t) eρk,

ΦC (t, ρ) =
∑
k≥0

Xk (t) (eρk ∧ C).

We deduce from Ito’s formula

ΨC (t, ρ) = ΨC (0, ρ)+E
∫ t

0

∑
k∈Z

(
λ (xk−1 (r)− xk (r)) + s

(
−k +

∑
j≥0

jxj (r)

)
xk (r)

)(
eρk ∧ C

)
dr

≤ ΨC (0, ρ)+E
∫ t

0

((
λ (eρΦC (r)− ΦC (r))− s

(∑
k≥0

kxk (r)
(
eρk ∧ C

)
+
∑
j≥0

jxj (r) ΦC (r)

)))
dr

because we work with ρ > 0, so Ce−ρ ≤ C.
Moreover, thanks to the previous Corollary, we have(∑

j≥0

jxj

)(∑
k≥0

(
eρk ∧ C

)
xk

)
≤
∑
j≥0

j
(
eρj ∧ C

)
xj

that is to say ∑
j≥0

jxj (r) ΦC (r)−
∑
j≥0

j
(
eρj ∧ C

)
xj ≤ 0

Since our functions are bounded, we can invert E and
∫

,

ΨC (t, ρ) ≤ ΨC (0, ρ) +

∫ t

0

(λ (eρ − 1)) ΨC (r, ρ) dr

The result is a consequence of the Gromwall inequality, and the monotone con-
vergence Theorem. ♦

Lemma 2.2 now follows.
Our processes are defined on a probability space (Ω,F ,P), equipped with a fil-

tration (Ft, t ≥ 0) which is such that for each k, ` ≥ 0 {Bk,`(t), t ≥ 0} is a Ft–
Brownian motion. We denote by P the corresponding σ-algebra of predictable sub-
sets of R+ × Ω.

From the weak existence and uniqueness, we deduce that our system has the
strong Markov property, using a very similar proof as in Theorem 6.2.2 from [8].
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In the next sections, we will use the following comparison theorem several times.
This Lemma can be proved exactly as the comparison Theorem 3.7 found in chapter
IX of [6].

Lemma 2.6 Let Bt be a standard Ft–Brownian motion, T a stopping time, σ be a
1/2 Hölder function, b1 : R → R a Lipschitz function and b2 : Ω × R+ × R → R is
P ⊗B(R) measurable function. Consider the two SDEs{

dY1(t) = b1(Y1(t))dt+ σ(Y1(t))dBt,

Y1(0) = y1;
(2.1)

{
dY2(t) = b2(t, Y2(t))dt+ σ(Y2(t))dBt,

Y2(0) = y2.
(2.2)

Let Y1 (resp Y2) be a solution of (2.1) ( resp (2.2)). If y1 ≤ y2 (resp y2 ≤
y1) and outside a measurable subset of Ω of probability zero, ∀t ∈ [0, T ], ∀x ∈ R,
b1(x) ≤ b2(t, x) (resp b1(x) ≥ b2(t, x)). Then a. s. ∀t ∈ [0, T ] , Y1(t) ≤ Y2(t) (resp
Y1(t) ≥ Y2(t)).

3 The result for a specific set

First, we start with a trivial lemma which will be used several times below :

Lemma 3.1 Let E,F ∈ F . Then P(E ∩ F ) ≥ P(E) + P(F )− 1.

Proof : Clearly

1 ≥ P(E ∪ F ) = P(E) + P(F )− P(E ∩ F ).

♦

Now first we will show that M1 cannot grow too fast :

Lemma 3.2 For all c > 0, t > 0,

P
(

sup
0≤r≤t′

M1(r + t)−M1(t) ≤ λt′ + c

)
≥ 1− exp(−2αNc) > 0
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Proof : We define Zt
t+s =

∫ t+s
t

√
M2(r)
N

dBr−α
∫ s+t
t

M2(r)dr,. We note that, for any

t > 0, {exp(2αNZt
t+u)}u≥0 is both a local martingale and a supermartingale. We

also have
sup

0≤s≤t′
M1(s+ t)−M1(t) ≤ sup

0≤s≤t′
Zt
s+t + λt′.

And ∀c > 0

P
(

sup
0≤u≤t′

Zt
t+u ≥ c

)
≤ P

(
sup

0≤u≤t′
exp

(
2αNZt

t+u

)
≥ exp (2αNc)

)
≤ exp (−2αNc) < 1

where we have taken advantage of the fact that exp
(
2αNZt

u+t

)
is a local martingale

and of Doob’s inequality. Then

P
(

sup
0≤r≤t′

M1 (r + t)−M1 (t) ≤ λt′ + c

)
≥ 1− exp (−2αNc) > 0

♦

Note that we have in fact P
(
supu≥0 Z

t
t+u ≥ c

)
≤ exp (−2αNc) < 1

We choose an arbitrary value m > 0 for M1(0), which will remain the same
throughout this document (for example one could choose m = 1), ε = 1

10Nα
, and let

us define

t′3 =
εN

3λ
=

1

30λα
,

mmax = m+ λA(t′3) +
ε

6
,

where A(t) = 1
4N

∫ t
0
(1−X0(s))ds,

p2 = exp(−αN ε

6
) = exp(− 1

60
),

µ =
ε

6mmax

∧ ε
4
∧ 1

10
,

and let δ be a real number, which will be specified below, such that δ ≤ 1
10
∧ ε

m
.

Now let Y0 be the solution of the following SDE :{
dY0(t) = dt+ 2

√
Y0(t)dB0

Y0(0) = δ
(3.1)
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We will show that starting with X0(0) = x0 ≤ δ , M1(0) = m1 ≤ m, and as long
as X0M1 < 2ε, we can compare X0(t) with the solution of (3.1). In this part we will
use three time scales. To help the reading, we will note with a prime all the times
expressed for the simplified system (3.1), that is to say t′3 and T ′µ.

Lemma 3.3 Let Tmin = inf{t > 0, X0(t)M1(t) > 2ε or X0(t) > δ + µ}. Then
provided X0(0) = x0 < δ, ∀t ∈ [0, Tmin], we have X0(t) ≤ Y0(A(t)) where Y0 solves

the SDE (3.1) and A(t) = 1
4

∫ t
0

1−X0(s)
N

ds.

Note that for 0 ≤ t ≤ Tmin, t
5N
≤ A(t) ≤ t

4N
because 4

5
≤ 1−X0 ≤ 1 ( thanks to

the choices of µ and δ, and 1−X0 ≥ 1− δ − µ ≥ 1− 1
10
− 1

10
≥ 4

5
) and t′3 has been

chosen in such way that A(t′3) ≤ ε
12λ

.

Proof : We define σ(t) = inf{u > 0, A(u) ≥ t} and X̃0(t) = X0(σ(t)) ( resp
M̃1(t) = M1(σ(t))). Then there exists a standard Brownian motion Wt such that

dX̃0(t) = (αM̃1(t)− λ)X̃0(t)
4N

1− X̃0(t)
dt+ 2

√
X̃0(t)dWt

Since M̃1(t)X̃0(t) ≤ 2ε and ε = 1
10Nλ

, then ∀ t ≤ A(Tmin), we have

(αM̃1(t)− λ)X̃0(t)
4N

1− X̃0(t)
≤ 1

Then, using Lemma 2.6, we obtain the conclusion. ♦

Next we will prove that Y0 can reach zero. The following Lemma exploits an
argument from [5]

Lemma 3.4 Let Y0(t) be the solution of (3.1) , T ′0 = inf{t > 0, Y0(t) = 0}, T ′µ̃ =
inf{t > 0, Y0(t) = δ + µ̃}. Then ∀p < 1, ∀µ̃ > 0, ∃δ > 0 such that

P(T ′0 ≤ t′3 ∧ T ′µ̃) ≥ p

Proof : Let

Ỹ (t) = δ exp (−t+ 2B0(t)) ,

D(t) =

∫ t

0

Ỹ (s)ds,

ρ(t) = inf{s > 0, D(s) > t}.
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We have
Y0(t) = Ỹ (ρ(t))

T ′0 = D(∞) <∞

Then,

P(T ′0 ≤ t′3 ∧ T ′µ̃)

= P
({∫ ∞

0

exp(−t+ 2B0(t))dt ≤
t′3
δ

}
∩
{

sup
t≥0

exp(−t+ 2B0(t)) ≤
δ + µ̃

δ

})
−→ 1,

as δ → 0, since supt≥0 exp(−t+ 2B0(t)) <∞ a.s.
♦

Then we can obtain the δ we’ll be using from now on. Let δ′ the largest value of
δ such that Lemma 3.4 holds, with p = p2 and µ̃ = µ ( which is a function of mmax)
as given above. We choose

δ = δ′ ∧ 1

10
∧ ε

m
.

Thanks to Lemma 3.4, Y0 will not become greater than δ + µ and will reach 0
with probability p2 before the time t′3 ∧ T ′µ. Then X0 will do the same before time
A(t′3) ∧ A(T ′µ), provided that X0(t)M1(t) ≤ 2ε ∀0 ≤ t ≤ A(t′3) ∧ A(T ′µ). Hence the
fact that T0 < A(t′3) with positive probability, provided x0 ≤ δ and M1(0) ≤ m will
follow from the above results and

Lemma 3.5 If X0(0) ≤ δ and M1(0) ≤ m, then we have

P

(
sup

0≤t≤A(t′3∧T ′µ)

X0(t)M1(t) ≤ 2ε

)
= p3 > 1− p2.

Proof : We use Lemma 3.2. Consider the event

Em,t′3,ε̃ =

{
sup

0≤t≤A(t′3)∧A(T ′µ)

M1(t) ≤ m+ λA(t′3) +
ε

6

}
.
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We have

P(Em,t′3,ε̃) ≥ P

(
sup

0≤t≤A(t′3)

M1(t) ≤ m1 + λA(t′3) +
ε

6

)
≥ 1− exp(−αN ε

3
) = 1− exp(− 1

30
).

Since X0(t) ≤ δ + µ for t ≤ A(T ′µ), on the event Em,t′3,ε̃,

sup
0≤t≤A(t′3)∧A(T ′µ)

X0(t)M1(t) ≤ (δ + µ)(m+ λA(t′3) +
ε

6
)

≤ δm+ µm+ λA(t′3) +
ε

6

≤ ε+
ε

6
+

ε

12
+
ε

6
≤ 2ε,

where we have used the fact that λ+ µ ≤ 1 for the second inequality. ♦

Combining Lemma 3.1, Lemma 3.3, Lemma 3.5 and Lemma 3.4, denoting t3 =
A(t′3), we deduce the

Corollary 3.6 ∃pfin ≥ p3 + p2 − 1 > 0 such as,

P(T0 < t+ t3 | X0(t) ≤ δ,M1(t) ≤ m) ≥ pfin > 0

Now we will extend this result to the following larger set of initial conditions. δ
and m being defined above (in particular such that δm ≤ ε), we consider the set

I = {(x,m1) ∈ [0; 1]× R+, x ≤ δ, xm1 ≤ δm}

Thanks to the previous result, we only need to consider the case m1 ≥ m. Let
(x′0,m

′
1) be a point in the set I. First, let us consider the point (δ,m). From the

previous section, starting from (δ,m), the process (X0,M1) has a strictly positive
probability to reach 0 before the time t3 = A(t′3). We will show that the process
starting from (x′0,m

′
1) has a larger probability to reach 0 before time t3, which will

extend the previous result.

Let C =
m′1
m
≥ 1. Then we have x′0 ≤ δ

C
.
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Now we will use the same reasoning as in Lemma 3.4 with a few modifications.
Indeed, since the probability that Y0(t) reaches 0 before a prescribed time is decreas-
ing in δ, we increase this probability by starting from Y0(0) = x′0 = δ′ ≤ δ

C
. since

C ≥ 1. We will use this new value. Moreover, the starting point satisfies x′0m
′
1 ≤ ε.

The only thing which is worse than with the starting point (δ,m) is the fact that m′1
is greater than m, hence a greater mmax. But this only appears in one place : in the
definition of µ.

Note that if we define m′max = m′1 + λt3 + ε
6
, the maximum reached by M ′

1, we
have :

m′max ≤ Cmmax

P( sup
0≤t≤t3

M ′
1(t) ≤M ′

max) ≥ 1− exp(−αN ε

3
)

By the definition of µ, if we define µ′ with m′max instead of mmax (i.e. µ′ =
ε

6m′max
∧ ε

4
∧ 1

10
,) we have µ′ ≥ µ

C
. But if we look at the proof of Lemma 3.4, we have,

since
t′3
δ′
≥ Ct′3

δ
≥ t′3

δ
and δ′+µ′

δ′
= 1 + µ′

δ′
≥ 1 + µ

δ
,

P(T ′0 ≤ t′3 ∧ T ′µ′) ≥ P
({∫ ∞

0

exp(−t+ 2B1(t))dt ≤
t′3
δ′

}
∩
{

sup
t≥0

exp(−t+ 2B1(t)) ≤
δ′ + µ′

δ′

})
≥ P

({∫ ∞
0

exp(−t+ 2B1(t))dt ≤
t′3
δ

}
∩
{

sup
t≥0

exp(−t+ 2B1(t)) ≤
δ + µ

δ

})
Hence we have a larger probability to reach zero starting from (x′,m′1) rather

than from (δ,m), which concludes the proof.
♦

We sum up in the following Proposition the results obtained in this section, with
ε = δm ( note that ε ≤ ε).

Proposition 3.7 Let X(t) = (Xk(t))k∈Z+ be the solution of the initial model, and
M1 its mean as defined in section 1. Then ∃pfin > 0 and t3 such that

P(T0 < t+ t3|X0(t) ≤ δ,X0(t)M1(t) ≤ ε) ≥ pfin > 0.
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4 A recurrence property of M1

With the help of the results proved in the previous section, we will now prove some
results on M1. We will show that as long that as the ratchet has not clicked, M1 is
bound to return under some specified value. This particular point will be important
in the sequel.

We begin with the following lemma, which is true for any probability on Z+. It
will be crucial for establishing one of our first estimates.

Lemma 4.1 Let p be a probability on Z+, and let xk = p(k), m1 =
∑

k≥0 kxk and
m2 =

∑
k≥0(k −m1)

2xk. Then

m2 ≥ (1− x0)m2 ≥ x0m
2
1.

Proof : If x0 = 1, m1 = m2 = 0 and the result is true. So it suffices to study the
case x0 < 1. By Jensen’s inequalities we have(∑

k≥1

xk
1− x0

k

)2

≤
∑
k≥1

xk
1− x0

k2

with equality if and only if there exists only one k ≥ 1 such as xk > 0. Then :(∑
k≥1

xkk

)2

≤ (1− x0)
∑
k≥1

xkk
2,

that is
m2

1 ≤ (1− x0)
∑
k≥1

xkk
2,

hence

x0m
2
1 ≤ (1− x0)

∑
k≥1

xkk
2 − (1− x0)m

2
1

x0m
2
1 ≤ (1− x0)

(∑
k≥1

xkk
2 −m2

1

)
x0m

2
1 ≤ (1− x0)m2.

♦
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Now, on our current model, we introduce the stopping time

H t
λ := inf{s ≥ t, X0(s)M1(s)

2 ≤ 2
λ+ 1

α
},

and we note Hλ = H0
λ.

Our next claim is

Proposition 4.2 For any stopping time T , we have HT
λ < +∞ a.s.

The Proposition follows from the strong Markov property and

Lemma 4.3 Suppose that X0(0)M1(0)2 > 2λ+1
s

. Then Hλ <∞ a. s.

Proof : On the interval [0, Hλ],we have from Lemma 4.1

−α
2
M2 ≤ −

α

2
X0M

2
1 ≤ −(λ+ 1),

and M1 is bounded from above by

M1(t) ≤M1(0)−
∫ t

0

(
1 +

α

2
M2(t)

)
dt+

∫ t

0

√
M2(t)

N
dBt,

≤M1(0)− t−
∫ t

0

(α
2
M2(t)

)
dt+

∫ t

0

√
M2(t)

N
dBt.

(4.1)

Since M1 cannot become negative, it now suffice to show that

Zt :=

∫ t

0

√
M2(r)

N
dBr −

α

2

∫ t

0

M2(r)dr

is bounded from above a.s. If we define C(t) = 1
N

∫ t
0
M2(s)ds, we have Zt =

W (C(t))− N
2
αC(t) where W is a standard Brownian motion.

Now, if C(∞) =∞ then limt→∞ Zt = −∞, hence Zt is bounded from above. Or
else C(∞) <∞, and we have supt>0 ‖Zt‖ = sup0<s<C(∞) ‖W (s)− N

2
αs‖ <∞ a.s. ♦

Now we will finally be able to prove that M1 always return below β := λ/α, as
long as the ratchet does not click. Let

Stβ = inf{s > t,M1(s) ≤ β}.

Then we will prove the following lemma :
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Lemma 4.4 ∀t > 0, we have P(T0 ∧ Stβ <∞) = 1

Proof : In order to simplify the notations, we treat the case t=0. First, we let
δinf = δ ∧ ε2α

4(λ+1)
( recall that ε = δm ).

Now we introduce the process Y s
t , defined ∀s ≥ 0, ∀t ≥ s which is the solution of

the following system :  dY s
t =

√
Y s
t (1− Y s

t )

N
dB0(t), t ≥ s

Y s
s = δinf .

(4.2)

We define for any 0 ≤ u ≤ 1

Rs
u = inf{t ≥ s, Y s

t = u},

We have Rs
0 ∧ Rs

1 < +∞ a.s. and P(Rs
1 < Rs

0) > 0. Indeed; ∀a ∈ (0, δinf ), by the
non–degeneracy Y s

t gets out of [a, 1− a] in finite time. Then if we choose a small
enough (using the same reasoning as in Lemma 3.4), we have a chance p′fin to reach
0 before a time V > 0 as soon as we start below a (the same with 1 and starting
above ≥ 1− a by symetry). Hence the result, using the strong Markov property, as
this situation happens infinitely many time as long as the process doesn’t reach 0 or
1. Note that using the Green function, one can in fact prove that E(Rs

0 ∧Rs
1) +∞).

From this we deduce that ∃K > 0, p > 0 such as P(Rs
1 ≤ K ∧ Rs

0) ≥ p > 0. In
particular P(Rs

1 ≤ K) ≥ p > 0.
We use L = K ∨ t3. ( t3 from Proposition 3.7 ). We define the following sequence

of stopping times :

U0 = inf

{
s > t,X0(s)M

2
1 (s) ≤ 2

λ+ 1

α

}
,

and ∀n ≥ 1,

Un = inf

{
s > Un−1 + L,X0(s)M

2
1 (s) ≤ 2

λ+ 1

α

}
.

For all n ≥ 0, Un is a.s. finite, thanks to Proposition 4.2.
Now, at U0 : Either X0(U0) ≤ δinf (≤ δ), then

X0M1 =
√
X0M2

1 ×X0

≤

√
2
λ+ 1

α

ε2α

4(λ+ 1)

< ε
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Then we can use Proposition 3.7, and we have P(T0 ≤ U0 + L) = pfin > 0.
Or else X0(U0) > δinf . And in that case there are two possibilities : Either

infU0≤s≤U0+LM1(t) ≥ β. In that case we have (αM1 − λ)X0 ≥ 0, and then we can
deduce from Lemma 2.6 that X0(s) ≥ Y U0

s . Then P(T1 ≤ U0 + L) ≥ p > 0. But
if X0(s) = 1, then M1(s) = 0. Hence P(Sβ ≤ U0 + L) ≥ p > 0. In the other case
infU0≤s≤U0+LM1(t) < β, hence Sβ ≤ U0 + L.

To conclude, we have

P(T0 ∧ Stβ = +∞) ≤ P(T0 ∧ Stβ ≥ U0 + L) ≤ 1− q,

with q = p ∧ pfin.
It follows from the Markov property of the process X = (Xk) and a repetition of

the above argument with U0 replaced by U1 that

P(T0 ∧ Stβ = +∞) ≤ P(T0 ∧ Stβ ≥ U1 + L) ≤ (1− q)2

.
Indeed, ∀` ≥ 0, P(T0 ∧ Stβ > U` + L) ≤ 1− q. If we define

A =

{
(xk)k ∈ X , x0(

∑
k≥0

kxk)
2 ≤ 2

λ+ 1

α

}
,

then

P(T0 ∧ Stβ > U1 + L) = P(T0 ∧ Stβ > U0 + L, T0 ∧ Stβ > U1 + L)

≤ P(T0 ∧ Stβ > U0 + L) sup
x∈A

P(T0 ∧ Stβ > U1 + L | X(U1) = x)

≤ (1− q)2

Iterating tyhis argument, we deduce that

P(T0 ∧ Stβ = +∞) = 0.

♦
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5 Reaching the special set from any initial condi-

tion

Now we will show that starting from an initial condition ((xk)k∈Z+ ,m1) with m1 ≤ β
the process has a probability bounded below by pfinal to click before a given time.
Since the process is Markovian and this situation occurs infinitely many times as
long as the ratchet has not clicked, we will conclude that P(T0 < +∞) = 1.

In this part we note (xk)k≥0 the initial condition of our system, and we suppose
that m1 =

∑
k≥0 kxk ≤ β.

One of the difficulties we have to face is that the quadratic variation of X0 is
X0(1−X0)

N
, which is not bounded from below near 1 and 0. We need to study three

separate cases.

5.1 x0 ∈ (xmax; 1]

The following lemma will show that if X0 starts too close to 1, it will quickly go
under xmax :

Lemma 5.1 Let t1 = 8
λ2 and

xmax = max

{
9

10
,

3λ+ 5α

5(λ+ α)
, 1− 2

λ

}
.

Then if X0(0) > xmax , then

P( inf
s<t1

X0(s) ≤ xmax) ≥ 1− exp(−N) > 0

Proof : Let Txmax = inf{s ≥ 0, X0(s) ≤ xmax}. On the time interval [0, Txmax ], we
have

X0(s) > xmax ≥
3λ+ 5α

5(λ+ α)
.

Since X1 ≤ 1−X0, on the same interval we have X1(s) ≤ 2λ
5(λ+α)

,

αM1X1 + λX0 − (λ+ α)X1 ≥λX0 − (λ+ α)
2λ

5(λ+ α)

≥λX0 −
2λ

5

≥λ
2
,
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since also X0(s) > 0, 9 ∀s ∈ [0, Tδ1 ]
Hence X1(s) ≥ Y1(s) when s ∈ [0, Txmax ], where Y1 is the solution of the SDE dY1(s) =

λ

2
ds+

√
Y1(1− Y1)

N
dB1(s),

Y1(0) = 0,

(5.1)

where we stop Y1 as soon as it reaches 1.
Since Y1(1− Y1) ≤ 1

4
, we have ( with C = 2

λ
, and γ > 0 to be chosen below)

P

(∫ t1

0

√
Y1(1− Y1)

N
dB1 < −C

)

= P

(
−
∫ t1

0

√
Y1(1− Y1)

N
dB1 > C

)

= P

(
exp

(
−γ
∫ t1

0

√
Y1(1− Y1)

N
dB1 −

∫ t1

0

γ2Y1(s)(1− Y1(s))

2N
ds

)

> exp

(
γC −

∫ t1

0

γ2Y1(s)(1− Y1(s))

2N
ds

))
≤ P

(
exp

(
−γ
∫ t1

0

√
Y1(1− Y1)

N
dB1 −

∫ t1

0

γ2Y1(s)(1− Y1(s))

2N
ds

)
> exp

(
γC − γ2

8N
t1

))

≤ exp

(
−γC +

γ2

8N
t1

)
≤ exp

(
−2NC2

t1

)
= exp (−N)

where the last line is obtained by choosing γ = 4CN
t1

which minimizes the previous
quantity, and the one before is Chebychev’s inequality. Hence

P

(∫ t1

0

√
Y1(1− Y1)

N
dB1 ≥ −C

)
≥ 1− exp (−N) > 0

Now, since ∫ t1

0

λ

2
ds =

4

λ
= 2C
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we have {∫ t1

0

√
Y1(1− Y1)

N
dB1 ≥ −C

}
⊂ {Txmax < t1},

which implies that

P (Txmax ≤ t1) ≥ 1− exp(−N)

Hence the conclusion. ♦

We need to control M1 on the same time interval of length t1. Using Lemma 3.2
we will deduce the following Proposition :

Proposition 5.2 Let xmax = max{ 9
10
, 3λ+5α

5(λ+α)
, 1− 2

λ
}, t1 = 8

λ2 , ε0 = 1
2αN

ln
(

2
1−exp(−N)

)
and β′ = β + λt1 + ε0. If X0(0) > xmax and M1(0) < β , then

P ({Txmax ≤ t1} ∩ {M1(Txmax) ≤ β′}) = pinit > 0

Proof : From Lemma 5.1,

P(Txmax ≤ t1) ≥ 1− exp(−N)

,
P(M1(Txmax) ≤ β′) ≥ 1− exp(−2αNε0)

due to Lemma 3.2. Those two inequalities together with Lemma 3.1 imply

P ({Txmax ≤ t1} ∩ {M1(Txmax) ≤ β′}) ≥ 1− exp(−N)− exp(−α2Nε0)

≥ 1− exp(−N)

2
:= pinit

♦

So even if we started with (X0(0),M1(0)) such as X0(0) ≥ xmax and M1(0) ≤ β,
we obtain before time t1 with probability at least pinit > 0 a new initial condition
X0 ≤ xmax and M1 ≤ β′, so we can resume with the next case.
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5.2 X0 ≤ xmax but either X0 > δ or X0M1 > ε

The idea of this subsection is to show that X0 can go from xmax to a δ′ < δ, using
small steps of size δ1, δ2, . . . in finite time, and during this evolution, M1 stays small
enough to have at the end X0M1 ≤ ε, with a strictly positive probability ptrans.

We start by showing some inequalities

Lemma 5.3 Let {Vt, t ≥ 0} be a standard Brownian motion, and c > 0 a constant.
Then for any t > 0, δ̃ > 0, µ̃ > 0,

P
(

inf
0≤s≤t

{cs+ Vs} ≤ −δ̃, sup
0≤s≤t

{cs+ Vs} ≤ µ̃

)
≥ 1−

√
2

π

(
δ̃√
t

+ c
√
t

)
− 2 exp

[
−1

2

(
µ̃√
t
− c
√
t

)2
]
.

Proof : Using Lemma 3.1, the result follows from the two following computations.
We have, with Z denoting a N(0, 1) random variable,

P
(

inf
0≤s≤t

{cs+ Vs} ≤ −δ̃
)
≥ P

(
inf

0≤s≤t
Vs ≤ −δ̃ − ct

)
= P

(
sup

0≤s≤t
Vs ≥ δ̃ + ct

)
= 2P(Vt ≥ δ̃ + ct)

= 1− P

(
|Z| ≤ δ̃√

t
+ c
√
t

)
.

On the other hand,

P
(

sup
0≤s≤t

(cs+ Vs) ≤ µ̃

)
≥ P

(
sup

0≤s≤t
Vs ≤ µ̃− ct

)
= 1− P

(
sup

0≤s≤t
Vs ≥ µ̃− ct

)
= 1− 2P(Vt ≥ µ̃− ct).
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P(Vt ≥ µ̃− ct) = P
(
Z ≥ µ̃√

t
− c
√
t

)
= P

(
exp(γZ − γ2/2) ≥ exp

(
γ

[
µ̃√
t
− c
√
t

]
− γ2

2

))
≤ exp

(
−γ
[
µ̃√
t
− c
√
t

]
+
γ2

2

)
Choosing γ = µ̃/

√
t− c
√
t, we conclude from the above computations that

P
(

sup
0≤s≤t

(cs+ Vs) ≤ µ̃

)
≥ 1− 2 exp

[
−1

2

(
µ̃√
t
− c
√
t

)2
]
.

♦

We will choose from now on

ε̃ =
log(4)

2αN
, so that e−2Nαε̃ =

1

4
. (5.2)

We are going to argue like in section 3. We will use the same notations A
and σ again for the time change (but they are not the same) . We start from
(X0,M1) = (x, β′), where 0 < x ≤ xmax < 1 and β < β′. We choose 0 < µ̃ = 1−xmax

2

and aim at proving that X0 will go down to δ′ in a finite number of steps, while
staying below x+ µ̃ (so that 1−X0(t) ≥ a := 1−xmax

2
), and while M1 does not go too

far on the right, all that with positive probability.
We start with the SDE

dX0(t) = (αM1(t)− λ)X0(t)dt+

√
X0(t)[1−X0(t)]

N
dB0.

Let

A(t) :=

∫ t

0

X0(s)[1−X0(s)]

N
ds, and

σ(t) := inf{s > 0, A(s) > t}.

Since ∫ σ(t)

0

X0(s)(1−X0(s))

N
ds = t,
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we deduce that

dσ(t)

dt
=

N

X̃0(t)(1− X̃0(t))
, provided we let

X̃0(t) := X0(σ(t)).

Finally

σ(t) =

∫ t

0

N

X̃0(s)(1− X̃0(s))
ds,

and if we let
M̃1(t) := M1(σt),

we deduce from the above SDE for the process X0 that

X̃0(t) = x+N

∫ t

0

αM̃1(s)− λ
1− X̃0(s)

ds+Bt,

where Bt is a new standard Brownian motion (we use the same notation as above,
which is an abuse).

At the k–th step of our iterative procedure, we let X̃0 start from x −
∑k−1

j=1 δj,

and we stop the process X̃0 at the first time that it reaches the level x −
∑k

j=1 δj.
We will choose not only the sequence δk, but also the sequence sk in such a way that
we can deduce from Lemma 5.3 that for each 1 ≤ k ≤ K (K to be defined below),

P
(

inf
0≤s≤sk

{Θks+Bs} ≤ −δk, sup
0≤s≤sk

{Θks+Bs} ≤ µ̃

)
>

1

3
, (5.3)

where, with s′k := σ(sk),

Θk =
Nα

a

(
β′ + kε̃+ λ

k∑
j=1

s′j

)
,

so that we have from Lemma 3.2 and our choice of ε̃ that

P( sup
0≤s≤s′k

M1(s) ≤ Θk

∣∣∣M1(0) ≤ Θk−1) ≥ 3/4. (5.4)

Our result will follow from a combination of (5.3) and (5.4), provided we show that
we can choose the two sequences δk and sk for k ≥ 1 in such a way that not only
(5.3) holds, but also that there exists K <∞ such that

x−
K∑
k=1

δk ≤ δ′.
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Since during the k–th step we are considering the event that X0(t) ≤ x+ µ̃ i. e.
1−X0(t) ≥ a, and also X0(t) ≥ x−

∑k
j=1 δj, we have that

s′k ≤
N

a(x−
∑k

j=1 δj)
sk,

so that a bona fide choice of Θk in terms of {δj, sj, 1 ≤ j ≤ k} is

Θk := N
α

a

[
β′ + kε̃+N

λ

a

k∑
j=1

sj

x−
∑j

i=1 δi

]
.

We first want to insure that (the reason for 0.4 will be made clear below)

δk√
sk

+ Θk

√
sk ≤ 0.4,

which we achieve by requesting both that

δk = 0.2
√
sk (5.5)

and

Θk

√
sk ≤ 0.2⇔ sk ≤

(
0.2

Θk

)2

. (5.6)

On the other hand, we shall also request that for each k ≥ 1,

δk

x−
∑k

1 δj
≤ 1⇔ δk ≤

1

2
(x−

k−1∑
j=1

δj).

It follows from (5.5) and Θk ≥ N αβ′

a
combined with (5.6) that with

CN = N
αβ′

a
and DN =

N

a

(
αε̃+

λ

β′

)
,

CN ≤ Θk ≤ CN + 25
N2λα

a2

(
sup

1≤j≤k
δj

)
k + kε̃

Nα

a

≤ CN +DNk,

since we have ∀j ≥ 0

δj = 0.2
√
sj ≤

(0.2)2

Θj

≤ 1

25

a

Nαβ′
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Finally this leads to choosing, with κ ≤ 1
25

to be chosen below

δk = inf

(
κ

(CN +DNk)
,
1

2
(x−

k−1∑
j=1

δj)

)
(5.7)

sk = 25δ2
k.

Then we have

Lemma 5.4 ∃K > 0, ∀k > K,

δk =
1

2
(x−

k−1∑
j=1

δj).

Proof : Since
∑

k≥0
κ

(CN+DNk)
= +∞, ∃K ′ > 0 such as

∑K′

k=2
κ

(CN+DNk)
> 1. Then

∃2 ≤ K ≤ K ′ such as inf
(

κ
(CN+DNK)

, 1
2
(x−

∑K−1
j=1 δj)

)
= 1

2
(x−

∑K−1
j=1 δj). Then by

recurrence, if we have the previous equality at rank k, for the rank k + 1 we have

κ
(CN+DN (k+1))

δk
≥

κ
(CN+DN (k+1))

κ
(CN+DNk)

>
1

2
since k ≥ 2

That is to say

κ

(CN +DN(k + 1))
>

1

2
δk =

1

4
(x−

k−1∑
j=1

δj)

>
1

2
(x−

k∑
j=1

δj)

Hence δk+1 = inf
(

κ
(CN+DN (k+1))

, 1
2
(x−

∑k
j=1 δj)

)
= 1

2
(x−

∑k
j=1 δj). ♦

This means that at each k > K, X̃0 progresses by a step equal to half the
remaining distance to zero. Consequently ∃c > 0 xk = x−

∑k
j=1 δj ≤ c2−k. We are

looking for the smallest integer k such that c2−k ≤ δ′, which implies that

k − 1 ≤
[

log(c)− log(δ′)

log(2)

]
.
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Since moreover Θk ≤ (25δk)
−1, there exists a constant c′ such that δ′ × Θk ≤

c′δ′ log( 1
δ′

). Hence there exists a δ′ ≤ δ (which depends only upon CN , DN , c
′ which

are constants) such that at the end of the k–th step, both X0 ≤ δ and X0M1 ≤ ε.
We just need to check that the probability of the previous path is bounded below by
a positive constant.

Given the choice that we have made for ε̃, it suffices to make sure that√
2

π

(
δk√
sk

+ Θk

√
sk

)
< 1/3, ∀k ≥ 1, (5.8)

as well as

2 exp

[
−1

2

(
µ̃
√
sk
−Θk

√
sk

)2
]
< 1/3, ∀k ≥ 1. (5.9)

Since 3−1
√
π/2 > 0.4, (5.5)+(5.6) implies (5.8).

On the other hand, (5.9) is equivalent to(
µ̃
√
sk
−Θk

√
sk

)2

> 2 log 6,

which follows from κ ≤
√

2 log 6+4CN µ̃−
√

2 log 6
10

(where κ is the constant which appears
in :eqrefkappa). We therefore choose

κ =
1

25
∧
√

2 log 6 + 4CN µ̃−
√

2 log 6

10
.

We can now conclude that

Proposition 5.5 Supose that X0(0) ≤ xmax and M1(0) ≤ β′. Let

Tδ′ = inf{s > 0, X0(s) ≤ δ′}.

Then

P (Tδ′ ≤ t2, X0(Tδ′)×M1(Tδ′) ≤ ε) ≥
(

1

12

)k̃max
:= ptrans,

with t2 = 25kmax.

In this statement, kmax is the number of steps needed to reach δ′ in the above
procedure, while starting from xmax.
Proof : It follows from (5.4), (5.8), (5.9), Lemma 5.3 and again Lemma 3.1 that the
k–th step in the above procedure happens with probability at least 1/12. It remains
to exploit the Markov property, like at the end of the proof of Lemma 4.4. ♦
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5.3 Conclusion

From Proposition 3.7, starting at the end of the previous path, we have a probability
pfin to reach 0 during an interval of time of length t3.

So to sump up, using again the Markovian properties of the system, we have

Proposition 5.6 For any finite stopping time T , if M1(T ) ≤ β, then

P(T0 < T + t1 + t2 + t3) ≥ pfinptranspini > 0

Moreover Lemma 4.4 implies that this situation will happen infinitely many times
as long as the ratchet does not click, hence the proof of Theorem 1, exploiting again
the Markov property of the solution of (1.1).

6 E(T0) < +∞
This final section is devoted to the proof of Theorem 2.

We first note that the reasoning of section 5 can be done with any initial value ρ
for M1, instead of β. That is to say, with Stρ = inf {s > t,M1(s) ≤ ρ} (and Sρ = S0

ρ),

Lemma 6.1 ∃ tρ1, t
ρ
2, t

ρ
3 <∞, and pρini, p

ρ
trans, p

ρ
fin > 0 such that

P(T0 < Stρ + tρ1 + tρ2 + tρ3) ≥ pρinip
ρ
transp

ρ
fin

Now let us choose ρ = ε
δ
∨ 2λ

α
. We have :

Lemma 6.2 Let K = L + t3 ( L to be defined below). Then ∃p̃ > 0, such that for
any initial condition in the set X ,

P(T0 ∧ Sρ ≤ K) ≥ p̃

Proof : We are going to argue like in the proof of Lemma 4.4. We introduce the
process {Ys, s ≥ 0}, which is the solution of the following system : dYs =

αε

2
ds+

√
Ys(1− Ys)

N
dB0(s)

Y0 = 0

(6.1)

Let for any 0 ≤ u ≤ 1

Ru = inf{s ≥ 0, Ys = u}.



6 E(T0) < +∞ 28

Since αε
2
> 0 we deduce that ∃L > 0, p > 0 such as P(R1 ≤ L) ≥ p > 0. We use

K = L+ t3. ( t3 from Proposition 3.7 ).
Now there are several possibilities :
Either inf0≤s≤LM1(s) ≤ ρ, then Sρ < L < K.
Or else inf0≤s≤LM1(s) ≥ ρ. Then either inf0≤s≤LX0(s)M1(s) ≤ ε, then ∃t < L

such as X0(t)M1(t) ≤ ε (which implies X0(t) ≤ δ, because M1(t) ≥ ρ ≥ ε
δ
). In that

case we can use Proposition 3.7, and we have P(T0 ≤ K) = pfin > 0, which implies
P(T0 ∧ Sρ ≤ K) = pfin > 0,

Or else we have both inf0≤s≤LM1(s) ≥ ρ and inf0≤s≤LX0(s)M1(s) ≥ ε. In that
last sub–case we have (since X0 ≥ ε

M1
, and αM1 − λ ≥ λ > 0)

inf
0≤s≤L

(αM1(s)− λ)X0(s) ≥ inf
0≤s≤L

ε(α− λ

M1(s)
)

≥ αε

2
,

and consequently we can use the comparison theorem (Lemma 2.6), which implies
that ∀s ∈ [0, L], X0(s) ≥ Ys. Then P(T1 ≤ L) ≥ p > 0. But when X0 hits 1, M1 hits
0. Hence P(Sρ ≤ L) ≥ p > 0.

We may now conclude that there exists p̃ > 0 such that

P(T0 ∧ Sρ ≤ K) ≥ p̃

♦

We deduce from the two above Lemma :

Corollary 6.3 There exists K < ∞, and p > 0 such that, for any initial condition
in X ,

P(T0 ≤ K) ≥ p.

We can now conclude.
Proof of Theorem 2 We deduce from Corollary 6.3 and the strong Markov prop-
erty that for all n ≥ 0, P(T0 > nK) ≤ (1− p)n. Consequently

E(T0) =
∞∑
n=0

∫ (n+1)K

nK

P(T > t)dt

≤
∞∑
n=0

KP(T > nK)

=
K

p
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