Serik Sagitov

28 May 2009, Luminy

Quenched effective population size

(work in progress jointly with P.Jagers and V.Vatutin)
Keywords

- Wright-Fisher model and Kingman's coalescent
- Coalescent effective population size N_{e}
- Geographically structured WFM with fast migration
- Randomly varying migration rates
- Markov chains with random transition matrices
- Random environment, $N_{e}^{[\text {quenched }]}$ and $N_{e}^{[\text {annealed }]}$

This work is supported by The Bank of Sweden Tercentenary Foundation

1 Motivating example

2 Coalescent effective population size

Wright-Fisher model: $\operatorname{Mn}\left(N ; N^{-1}, \ldots, N^{-1}\right)$ reproduction law.
Given $X(0)=n$, the ancestral process $X(t)$ is a Markov chain with a $n \times n$ transition matrix $\Pi=\Pi_{N}$.
Key decomposition: $\Pi=I+N^{-1} Q+O\left(N^{-2}\right)$ with identity matrix I and

$$
Q=\left(\begin{array}{ccccccc}
0 & 0 & 0 & \ldots & 0 & 0 & 0 \\
1 & -1 & 0 & \ldots & 0 & 0 & 0 \\
\cdot & \cdot & \cdot & \ldots & \cdot & \cdot & \cdot \\
0 & 0 & 0 & \ldots & \binom{n-1}{2} & -\binom{n-1}{2} & 0 \\
0 & 0 & 0 & \ldots & 0 & \binom{n}{2} & -\binom{n}{2}
\end{array}\right)
$$

Convergence to the Kingman coalescent: $\Pi^{N t} \rightarrow e^{t Q}$ as $N \rightarrow \infty$.

Kingman's coalescent is a robust approximation for $X(t N / c)$ in various population models. Coalescent $N_{e}=N / c$.

- Nordborg, M. and Krone, S. (2002) Separation of Time Scales and Convergence to the Coalescent in Structured Populations. Modern Developments in Theoretical Population Genetics, pp. 194-232, M. Slatkin and M. Veuille, editors. Oxford University Press.
- Sjödin P, Kaj I, Krone S, Lascoux M, Nordborg M (2005) On the meaning and existence of an effective population size. Genetics 169: 1061-1070.
- Jagers P. and Sagitov S. (2004) Convergence to the coalescent in populations of substantially varying size. J. Appl. Prob. 41, no. 2, 368-378.
- Sagitov S. and Jagers P. (2005) The coalescent effective size of age-structured populations. Ann. Appl. Probab. 15, 1778-1797.

Usually $c \geq 1$. Example of $c \leq 1$: offspring numbers $0,1,2$ with probabilities $(\alpha, 1-2 \alpha, \alpha)$ imply $c=\sigma^{2}=2 \alpha$.

3 Geographically structured WFM

$L \geq 2$ connected islands: migration and WF reproduction.
Subpopulations of constant sizes N_{1}, \ldots, N_{L} with

$$
N_{1}+\ldots+N_{L}=N \text { and } N_{i} / N \rightarrow a_{i}, N \rightarrow \infty
$$

Ancestral process: lineages migrate independently over the islands until they merge according to the WFM rules of the hosting islands.

Configuration process of n lineages:

$$
\mathbf{X}(t)=\left(X_{1}(t), \ldots, X_{L}(t)\right)
$$

$X_{i}(t)$ is the number of lineages located on the i-th island at t-th generation backward in time.
The total number of lineages $X(t)=X_{1}(t)+\ldots+X_{L}(t)$ is not a Markov process except for the "dummy islands" case.
$\mathbf{X}(t)$ is a Markov chain with a finite state space $S_{1} \cup \ldots \cup S_{n}$, where S_{r} is the set of states \mathbf{x} satisfying $x_{1}+\ldots+x_{L}=r$.
The number of elements in S_{r} is $d_{r}=\binom{r+L-1}{r}$. The transition matrix $\boldsymbol{\Pi}$ of $\mathbf{X}(t)$ is of size $\left(d_{1}+\ldots+d_{n}\right) \times\left(d_{1}+\ldots+d_{n}\right)$.

Key decomposition

$$
\boldsymbol{\Pi}=\mathbf{B}\left(\mathbf{I}+N^{-1} \mathbf{C}\right)+o\left(N^{-1}\right)
$$

Backward migration probabilities $\mathbf{B}=\operatorname{diag}\left(\mathbf{B}_{1}, \ldots, \mathbf{B}_{n}\right)$, where \mathbf{B}_{r} is the $\left(d_{r} \times d_{r}\right)$ transition matrix for non-coalescing r lineages.
Coalescent rates

$$
\mathbf{C}=\left(\begin{array}{ccccccc}
0 & 0 & 0 & \ldots & 0 & 0 & 0 \\
\mathbf{C}_{21} & -\mathbf{C}_{2} & 0 & \ldots & 0 & 0 & 0 \\
\cdot & \cdot & \cdot & \ldots & \cdot & \cdot & \cdot \\
0 & 0 & 0 & \ldots & \mathbf{C}_{n-1, n-2} & -\mathbf{C}_{n-1} & 0 \\
0 & 0 & 0 & \ldots & 0 & \mathbf{C}_{n, n-1} & -\mathbf{C}_{n}
\end{array}\right)
$$

$$
\mathbf{C}_{r}=\operatorname{diag}\left(C(\mathbf{x}), \mathbf{x} \in S_{r}\right), \text { where } C(\mathbf{x})=\sum_{k=1}^{L} \frac{1}{a_{k}}\binom{x_{k}}{2}
$$

$\mathbf{C}_{r, r-1}$ has $\frac{1}{a_{k}}\binom{x_{k}}{2}$ at positions ($\left.\mathbf{x}, \mathbf{x}-\mathbf{e}_{k}\right)$ and zeros elsewhere.

In particular, if $L=2$, then $d_{r}=r+1$ and

$$
\begin{aligned}
& \mathbf{C}_{r}=\left(\begin{array}{cccccccc}
\binom{r}{2} \frac{1}{a_{1}} & 0 & 0 & \ldots & 0 & \ldots & 0 & 0 \\
\cdot & \cdot & \cdot & \ldots & . & \ldots & \cdot & . \\
0 & 0 & 0 & \ldots & \binom{r-k}{2} \frac{1}{a_{1}}+\binom{k}{2} \frac{1}{a_{2}} & \ldots & 0 & 0 \\
\cdot & \cdot & \cdot & \ldots & \cdot & \ldots & \cdot & \cdot \\
0 & 0 & 0 & \ldots & 0 & \ldots & 0 & \binom{r}{2} \frac{1}{a_{2}}
\end{array}\right) \\
& \mathbf{C}_{r, r-1}=\left(\begin{array}{cccccccc}
\binom{r}{2} \frac{1}{a_{1}} & 0 & 0 & \ldots & 0 & 0 & \ldots & 0 \\
0 & \binom{r-1}{2} \frac{1}{a_{1}} & 0 & \ldots & 0 & 0 & \ldots & 0 \\
0 & \frac{1}{a_{2}} & \binom{r-2}{2} \frac{1}{a_{1}} & \ldots & 0 & 0 & \ldots & 0 \\
. & \cdot & . & \ldots & \cdot & . & \ldots & . \\
0 & 0 & 0 & \ldots & \binom{k}{2} \frac{1}{a_{2}} & \binom{r-k}{2} \frac{1}{a_{1}} & \ldots & 0 \\
\cdot & . & . & \ldots & \cdot & . & \ldots & . \\
0 & 0 & 0 & \ldots & 0 & 0 & \ldots & \binom{r}{2} \frac{1}{a_{2}}
\end{array}\right)
\end{aligned}
$$

4 Convergence to coalescent

If $\left(\gamma_{1}, \ldots, \gamma_{L}\right)$ is stationary distr. for the backward migration, then

$$
\mathbf{B}_{r}^{u} \rightarrow \mathbf{P}_{r}, u \rightarrow \infty
$$

where \mathbf{P}_{r} consists of d_{r} equal rows $\left(\pi_{r}(\mathbf{x}), \mathbf{x} \in S_{r}\right)$ with

$$
\pi_{r}(\mathbf{x})=\binom{r}{x_{1}, \ldots, x_{n}} \gamma_{1}^{x_{1}} \ldots \gamma_{L}^{x_{L}} .
$$

It follows

$$
\mathbf{B}^{u} \rightarrow \mathbf{P}=\operatorname{diag}\left(\mathbf{P}_{1}, \ldots, \mathbf{P}_{n}\right), u \rightarrow \infty
$$

and according to Möhle's lemma, with $\mathbf{G}=\mathbf{P C P}$

$$
\left(\mathbf{B}\left(\mathbf{I}+N^{-1} \mathbf{C}\right)\right)^{N t} \rightarrow \mathbf{P}-\mathbf{I}+e^{t \mathbf{G}}, N \rightarrow \infty
$$

MöHLe, M. (1998) A convergence theorem for Markov chains arising in population genetics and coalescent with selfing. Adv. Appl. Prob. 30, 493-512.

For any $\mathbf{x} \in S_{i}$

$$
\sum_{\mathbf{y} \in S_{j}} \mathbf{G}(\mathbf{x}, \mathbf{y})=\sum_{\mathbf{y} \in S_{j}}(\mathbf{P C P})(\mathbf{x}, \mathbf{y})=c Q_{i j}, \quad c=\sum_{k=1}^{L} \frac{1}{a_{k}} \gamma_{k}^{2}
$$

Writing this as $\mathbf{G}^{\downarrow}=c Q$ we conclude

$$
\left(\boldsymbol{\Pi}^{N t}\right)^{\downarrow} \rightarrow e^{c t Q}, \quad N \rightarrow \infty
$$

that the total number of lineages with scaled time $X(N t / c)$ is approximated by the number of branches in the Kingman coalescent. Coalescent $N_{e}=N / c$. By Jensen's inequality $c \geq 1$

$$
\sum_{k=1}^{L} \frac{1}{a_{k}} \gamma_{k}^{2}=\sum_{k=1}^{L} a_{k}\left(\frac{\gamma_{k}}{a_{k}}\right)^{2} \geq\left(\sum_{k=1}^{L} a_{k} \frac{\gamma_{k}}{a_{k}}\right)^{2}=1
$$

Test example: WFM with dummy islands. In this case $\gamma_{i}=a_{i}$ and $c=1$.

5 Migration in random environment

Transition matrices of backward migration $\mathbf{B}_{1}^{[1]}, \mathbf{B}_{1}^{[2]}, \ldots$ are iid.
Takahashi, Y. (1969) Markov chains with random transition matrices.
Kodai Math. Sem. Rep. 21, 426-447.
Irreducible case: for each pair $1 \leq i, j \leq L$ there is a u such that

$$
\begin{equation*}
P\left(\mathbf{B}_{1}^{[1]} \ldots \mathbf{B}_{1}^{[u]}(i, j)>0\right)>0 . \tag{1}
\end{equation*}
$$

If furthermore, for some j and u

$$
\begin{equation*}
P\left(\mathbf{B}_{1}^{[1]} \ldots \mathbf{B}_{1}^{[u]}(i, j)>0 \text { for all } i\right)>0 \tag{2}
\end{equation*}
$$

then there exist random stationary probabilities $\left(\gamma_{1}, \ldots, \gamma_{L}\right)$

$$
\mathbf{B}_{1}^{[1]} \ldots \mathbf{B}_{1}^{[u]} \xrightarrow{d}\left(\begin{array}{ccc}
\gamma_{1} & \cdots & \gamma_{L} \\
\dot{\gamma}_{1} & \cdots & \dot{\gamma}_{L}
\end{array}\right), u \rightarrow \infty .
$$

6 Two examples

Example 1: $\quad \gamma_{1}=\gamma_{2}=0.5$

$$
\gamma_{1} \stackrel{d}{=} \gamma_{2} \sim U(0,1)
$$

Exact distribution of $\mathbf{B}_{1}^{[1]} \ldots \mathbf{B}_{1}^{[u]}$ is uniform over 2^{u} matrices

$$
\left(\begin{array}{ll}
j 2^{-u} & 1-j 2^{-u} \\
(j-1) 2^{-u} & 1-(j-1) 2^{-u}
\end{array}\right), j=1, \ldots 2^{u}
$$

which is verified by induction

$$
\begin{aligned}
& \left(\frac{j}{2^{u}}, 1-\frac{j}{2^{u}}\right)\left(\begin{array}{cc}
1 & 0 \\
1 / 2 & 1 / 2
\end{array}\right)=\left(\frac{j+2^{u}}{2^{u+1}}, 1-\frac{j+2^{u}}{2^{u+1}}\right) \\
& \left(\frac{j}{2^{u}}, 1-\frac{j}{2^{u}}\right)\left(\begin{array}{cc}
1 / 2 & 1 / 2 \\
0 & 1
\end{array}\right)=\left(\frac{j}{2^{u+1}}, 1-\frac{j}{2^{u+1}}\right)
\end{aligned}
$$

Weak convergence against almost sure convergence

$$
\begin{aligned}
& \mathbf{B}_{1}^{[1]} \ldots \mathbf{B}_{1}^{[u]}=\left(\begin{array}{ll}
Z_{u} & 1-Z_{u} \\
Z_{u}-2^{-u} & 1-Z_{u}+2^{-u}
\end{array}\right), Z_{u+1}=Z_{u} / 2+1 / 4 \pm 1 / 4 \\
& \mathbf{B}_{1}^{[u]} \ldots \mathbf{B}_{1}^{[1]}=\left(\begin{array}{ll}
Z_{u}^{*} & 1-Z_{u}^{*} \\
Z_{u}^{*}-2^{-u} & 1-Z_{u}^{*}+2^{-u}
\end{array}\right), Z_{u+1}^{*}=Z_{u}^{*}+2^{-u}(1 / 4 \pm 1 / 4)
\end{aligned}
$$

Example 2: $\quad\left(\gamma_{1}, \ldots, \gamma_{L}\right) \sim \operatorname{Mn}(1,1 / L, \ldots, 1 / L)$

Prob=1/L Prob=1/L Prob=1/L

Conditions (1) and (2) follow from

$$
P\left(\mathbf{B}_{1}(i, j)>0 \text { for all } i\right)>0, \quad \text { for all } j
$$

7 New formula for N_{e}

Our main assertion: if (1) and (2) hold, then

$$
\left(\boldsymbol{\Pi}^{[1]} \cdots \boldsymbol{\Pi}^{[N t]}\right) \stackrel{\text { a.s. }}{\rightarrow} e^{c t Q}, \quad N \rightarrow \infty
$$

so that $N_{e}=N / c$ with

$$
c=c^{[\text {quenched }]}=\sum_{k=1}^{L} \frac{1}{a_{k}} E\left(\gamma_{k}^{2}\right) .
$$

Notice that

$$
c^{[\text {quenched }]}-c^{[\text {annealed }]}=\sum_{k=1}^{L} \frac{1}{a_{k}} \operatorname{Var}\left(\gamma_{k}\right)
$$

and therefore

$$
N_{e}^{[\text {quenched }]} \leq N_{e}^{[\text {annealed }]} \leq N
$$

$\underline{\text { Example 1: }} N_{e}^{[\text {quenched }]}=\frac{3}{4} N_{e}^{[\text {annealed }]}$ since

$$
\begin{aligned}
& c^{[\text {annealed }]}=\frac{1}{4}\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}\right), \\
& c^{[\text {quenched }]}=\frac{1}{3}\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}\right) .
\end{aligned}
$$

$\underline{\text { Example 2: }} N_{e}^{[\text {quenched }]}=\frac{1}{2} N_{e}^{[\text {annealed }]}$ for $L=2$

$$
c^{[\text {quenched }]}=\frac{1}{2}\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}\right)
$$

Constant migration rates

Variable migration rates
$z / L=q 0 \lambda_{d} \quad z / L=q 0$ d $_{d}$

Example 2 with general L gives the harmonic mean formula

$$
\frac{1}{N_{e}^{[\text {quenched }]}}=\frac{1}{L}\left(\frac{1}{N a_{1}}+\ldots+\frac{1}{N a_{L}}\right) .
$$

Viewed backward in time the population undergoes iid fluctuations of generation sizes.

8 About the proof

Key decomposition

$$
\boldsymbol{\Pi}^{[j]}=\mathbf{B}^{[j]}\left(\mathbf{I}+N^{-1} \mathbf{C}\right)+o\left(N^{-1}\right)
$$

where again $\mathbf{B}^{[j]}=\operatorname{diag}\left(\mathbf{B}_{1}^{[j]}, \ldots, \mathbf{B}_{n}^{[j]}\right)$.
We have weak convergence of random matrices

$$
\mathbf{B}^{[1]} \ldots \mathbf{B}^{[u]} \xrightarrow{d} \mathbf{P}, u \rightarrow \infty .
$$

Switching the product order

$$
\boldsymbol{\Pi}^{[1]} \cdots \boldsymbol{\Pi}^{[N t]} \stackrel{d}{=} \boldsymbol{\Pi}^{[N t]} \cdots \boldsymbol{\Pi}^{[1]}
$$

allows using a.s. convergence

$$
\mathbf{B}^{[u]} \ldots \mathbf{B}^{[j]} \xrightarrow{\text { a.s. }} \mathbf{P}^{[j]}, u \rightarrow \infty, j \geq 1 .
$$

Here $\mathbf{P}^{[j]} \stackrel{d}{=} \mathbf{P}$ are defined by $\left(\gamma_{1}^{[j]}, \ldots, \gamma_{L}^{[j]}\right) \stackrel{d}{=}\left(\gamma_{1}, \ldots, \gamma_{L}\right)$ satisfying for $i<j$

$$
\begin{equation*}
\left(\gamma_{1}^{[j]}, \ldots, \gamma_{L}^{[j]}\right) \mathbf{B}_{1}^{[j-1]} \ldots \mathbf{B}_{1}^{[i]}=\left(\gamma_{1}^{[i]}, \ldots, \gamma_{L}^{[i]}\right) \tag{3}
\end{equation*}
$$

An extension of Möhle's lemma implies

$$
\left(\boldsymbol{\Pi}^{[N t]} \cdots \boldsymbol{\Pi}^{[1]}\right)^{\downarrow}=e^{Q \frac{1}{N} \sum_{j=1}^{[N t]} c^{[j]}}+o_{p}(1)
$$

where

$$
c^{[j]}=\sum_{k=1}^{L} \frac{1}{a_{k}}\left(\gamma_{k}^{[j]}\right)^{2}
$$

form a strongly stationary sequence since the defining matrices $\mathbf{B}_{1}^{[1]}, \mathbf{B}_{1}^{[2]}, \ldots$ are iid.
The sequence $c^{[1]}, c^{[2]}, \ldots$ is mixing, because in view of (3), the vectors $\left(\gamma_{1}^{[j]}, \ldots, \gamma_{L}^{[j]}\right)$ and $\left(\gamma_{1}^{[i]}, \ldots, \gamma_{L}^{[i]}\right)$ are asymptotically independent as $j \rightarrow \infty$.

By the ergodic theorem

$$
\frac{1}{N t} \sum_{j=1}^{[N t]} c^{[j]} \xrightarrow{\text { a.s. }} E\left(\sum_{k=1}^{L} \frac{1}{a_{k}} \gamma_{k}^{2}\right)=: c
$$

Durrett,R. (1996) Probability: Theory and Examples. 2nd edition
we obtain convergence in probability

$$
\begin{equation*}
\left(\Pi^{[1]} \cdots \Pi^{[N t]}\right)^{\downarrow} \rightarrow e^{c t Q}, \quad N \rightarrow \infty . \tag{4}
\end{equation*}
$$

Finally, to show that convergence in (4) is a.s. we use a monotonocity property:
for the products of transition matrices P_{k} the discrepancy among rows is monotone $\Delta_{u+1} \leq \Delta_{u}$, where

$$
\Delta_{u}=\sum_{j}\left(\max _{i} P_{1} \cdots P_{u}(i, j)-\min _{i} P_{1} \cdots P_{u}(i, j)\right)
$$

THANK YOU!

