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Abstract

We consider a general class of epidemic models obtained by applying the

random time changes of [8] to a collection of Poisson processes and we show the

large deviation principle (LDP) for such models. We generalize the approach

followed by Dolgoashinnykh [4] in the case of the SIR epidemic model. Thanks

to an additional assumption which is satisfied in many examples, we simplify

the recent work by P.Kratz and E.Pardoux [13].
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Secondary

1. Introduction

In this paper, we are interested in a class of Poisson driven stochastic differential equations which

arise in many fields such as chemical kinetics, ecological and epidemics models. We consider a d

dimensional processes of the type

ZN (t) := ZN,z(t) :=
[Nz]

N
+

1

N

k∑
j=1

hjPj

(∫ t

0

Nβj(Z
N (s))ds

)
, (1)

where (Pj)1≤j≤k are i.i.d. standard Poisson processes and the hj ∈ {−1, 0, 1}d denote the k distinct

jump directions with jump rates βj(z) and z ∈ A, where A is a compact subset of Rd, which will

be assumed to satisfy Assumption 1 below.

In the main application which we have in mind (see our examples at the end of the paper), the

components of the vector ZN (t) are the proportions of the population in the various compartments

∗ Postal address: CMI, 39 rue F. Joliot Curie 13453 Marseille, France

1



2 Etienne Pardoux & Brice Samegni–Kepgnou

corresponding to the various disease status of the individuals (susceptible, infectious, etc..). In most

of those models, the set A is given as

A =
{
z ∈ Rd+ :

d∑
i=1

zi ≤ 1
}
. (2)

We refer the reader to [2] for a presentation of many such epidemics models.

As we shall recall below, it is plain that under mild assumptions, as N → ∞, ZN (t) → Y z(t)

a.s., locally uniformly for t > 0, where Y z(t) solves the ODE

dY (t)

dt
= b(Y (t)), Y (0) = z, (3)

with b(y) =
k∑
j=1

βj(y)hj . In this paper we want to investigate the large deviations from this law of

large numbers.

Let us now be more precise about the initial condition ZN (0) = [Nz]/N . In the models we have

in mind, since each component of ZN (t) is a proportion in a population of total population size

equal to N , we want ZN (t) to take its values in the set A(N) = {z ∈ A, Nz ∈ Zd+}. In particular,

we want the initial condition ZN (0) to belong to this set A(N). If that is not the case, some of

the components of the vector ZN (t) may become negative, while jumping from a/N to (a− 1)/N ,

0 < a < 1, which is not very natural. For that reason, we will use the following convention

concerning the initial condition. For some fixed z ∈ A, for 1 ≤ i ≤ d, N ≥ 1, ZNi (0) = [Nzi]/N .

Consequently the initial condition of the ZN equation depends upon N .

In all what follows, DT,A denotes the set of functions from [0, T ] into A which are right continuous

and have left limits at any t ∈ [0, T ] and let ACT,A be the subspace of absolutely continuous

functions. DT,A will be equipped with Skorohod’s topology, see page 124 in [1].

We denote by B the Borel σ-field on DT,A and PNz the probability measure on paths with the

initial condition ZN (0) = [Nz]/N , defined by

PNz (B) = P(ZN ∈ B) ∀B ∈ B. (4)

Our goal is to show that the probability measures PNz , N > 1, satisfy a large deviation principle

with a good rate function IT that we will define below in subsection 2.2. In other words for any
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G open subset of DT,A and F closed subset of DT,A with G ⊂ F , we want to show the following

inequalities:

− inf
φ∈G

IT (φ) ≤ lim inf
N→∞

1

N
logPNz (G) ≤ lim sup

N→∞

1

N
logPNz (F ) ≤ − inf

φ∈F
IT (φ). (5)

Large deviation principles is the subject of many treatises, see in particular [3], [5], [9], [11] and

[18]. Some of those books study large deviations for Poisson processes, like e.g. [18]. However, in

this treatise it is assumed that the rates of the Poisson processes are bounded away from zero, and

hence their logarithms are bounded. The case of Poisson processes with vanishing rates is studied

in [19]. However their assumptions are not satisfied in our situation, as it is explained in [13]. Our

results have already been established in [13]. However, our argument here is simpler, and the proofs

are shorter. It is based upon an idea from [4] and our assumptions are slightly different from those

in [13]. We also refer to [10] and to [16] for large deviation results concerning specific epidemic

models (the latter one for a population of two types whose individuals move in space by jumps).

Our approach forces us to make the following assumption.

Assumption 1. We suppose that there exists z0 ∈ Rd such that the collection of mappings Φa :

A 7→ Rd defined by Φa(z) = z + a(z0 − z), defined for each 0 < a < 1, is such that za = Φa(z) ∈ A

for all z ∈ A, and moreover for some 0 < c2 < c1 and all z ∈ A,

|z − za| ≤ c1a, dist(za, ∂A) ≥ c2a.

We define for all a > 0

Ba =
{
z ∈ A : dist(z, ∂A) ≥ c2a

}
and Ra =

{
φ ∈ ACT,A : φt ∈ Ba ∀t ∈ [0, T ]

}
.

Remark 1. For any convex set A, the Assumption 1 is satisfied with z0 ∈ Å, the interior of A.

The same construction is possible for many non necessarily convex sets, provided A is compact,

and there is a point z0 in its interior which is such that for each z ∈ ∂A, the segment joining z0

and z does not touch any other point of the boundary ∂A. We also note that for A given by (2)
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and z0 ∈ A, the constants c1, c2 can be defined by

c1 = sup
z∈A
|z − z0|, c2 = sin(θ0) inf

z∈∂A
|z − z0| ≤ inf

z∈∂A
|z − z0| × sin(θ(z)).

where θ(z) is the most acute angle between the tangent to the boundary ∂A at z and the vector

z0 − z and θ0 is an angle such that for all z ∈ ∂A, θ0 ≤ θ(z) ≤ π/2.

For all a > 0 we let Ca = inf
j

inf
z∈Ba

βj(z) and we formulate our assumptions on the βj ’s.

Assumption 2. 1. The rate functions βj are Lipschitz continuous with the Lipschitz constant

equal to C.

2. For any 1 ≤ j ≤ k, βj(z) > 0 if z ∈ Å, and βj is bounded by a positive constant σ.

3. There exist two constants λ1 and λ2 such that whenever z ∈ A is such that βj(z) < λ1,

βj(z
a) > βj(z) for all a ∈]0, λ2[ .

4. There exists a constant ν ∈]0, 1/2[ such that lim
a→0

aν logCa = 0.

Note that our assumptions are easily verified in all the classical epidemic models, see below section

5.

Remark 2. We have not made any restriction concerning the set of vectors {h1, . . . , hk}. In all

examples which we have in mind, {
∑k
j=1 αjhj , α ∈ Rk+} = Rd, which insures that the process ZNt

can move in all directions in A. Note that at any rate, there is no restriction as to which βj ’s vanish

at some given point z ∈ ∂A. This is a major difference with the assumptions in [19]. Note also that

in some sense our assumptions are weaker than those in [13], except for our Assumption 1.

For all φ, ψ ∈ DT,A we will define the distance between φ and ψ by

‖φ− ψ‖T = sup
t≤T
|φt − ψt|

where |.| denotes the Euclidean norm in Rd.

The paper is structured as follows. In section 1, we formulate the law of large numbers and the

Girsanov theorem, we define a good rate function for our large deviation principle and we establish

some properties that it satisfies. The proof of the lower bound (first inequality in (5)) is detailed in

section 3. In the third one we state the upper bound (third inequality in (5)), which follows from
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known results. In the fourth section we apply the large deviations principle to the study of the exit

time from a domain, and we give four applications to the time of extinction of an endemic situation

in four distinct epidemic models.

2. Some Important Results

We start with equation (1), whose existence and uniqueness is essentially obvious, the solution

being constant between its jumps, and ZNt has a jump of size hj/N when
∫ t
0
Nβj(Z

N (s))ds hits

a jump time of the Poisson process Pj , 1 ≤ j ≤ k. The fact that the process ZN (t) lives in the

compact set A is due to the fact that βj vanishes on any piece of the boundary ∂A where hj points

towards the exterior of A, see the examples in section 5.

2.1. Law of Large Numbers and Change of Measure

We first recall the law of large numbers, see [15].

Theorem 1. Let ZN,z(t) be the solution of the Poissonian stochastic differential equation (1) with

the initial condition [Nz]/N . Assume that Assumption 2.1 holds. Then

lim
N→∞

‖ZN,z − Y z‖T = 0 a.s.,

where Y z(.) is the unique solution of the ODE (3).

We shall need the following Girsanov theorem. Let Q denote the random number of jumps of

ZN in the interval [0, T ], τp be the time of the pth jump for p = 1, ..., Q and define

δp(j) =

1 if the pth jump is in the direction hj ,

0 otherwise.

We shall denote FNt = σ{ZN (s), 0 ≤ s ≤ t}. Consider another set of rates β̃j(z), 1 ≤ j ≤ k.

Combining Theorem III.5.19 from [12] and Theorem 2.4 from [20], we have (P̃ << P means that P̃

is absolutely continuous with respect to P and ZN (τ−p ) = limt→τp,t<τp Z
N (t)). The rates βj(t, z)

above depend only upon the second variable z. In the next statement, we introduce new rates

β̃j(t, z) which in the next section will depend upon the two variables t and z, and is supposed to
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be a.s. continuous at the jump times of ZN (t).

Theorem 2. Let P̃N denote the law of ZN when the rates are rates β̃j(.). Then provided that

sup0≤t≤T,z∈A
β̃j(t,z)
βj(z)

< ∞, which implies in particular that {z : βj(z) = 0} ⊂ {z : β̃j(t, z) = 0} for

all 0 ≤ t ≤ T , P̃N
∣∣
FNT

<< PN
∣∣
FNT

, and with the convention 0
0 = 1,

ξT =
dP̃N

∣∣
FNT

dPN
∣∣
FNT

=

 Q∏
p=1

k∏
j=1

[
β̃j(τp, Z

N (τ−p ))

βj(ZN (τ−p ))

]δp(j) exp
{
N

k∑
j=1

∫ T

0

(βj(Z
N (t))− β̃j(t, ZN (t)))dt

}
.

(6)

Corollary 1. For any non-negative random variable X,

E(X) ≥ Ẽ(ξ−1T X)

Proof. As X ≥ 0, we write

E(X) ≥ E(X1{ξT 6=0}) = Ẽ(ξ−1T X1{ξT 6=0}) = Ẽ(ξ−1T X).

Note that ξ−1T is well-defined P̃−a.s., since P̃(ξT = 0) = 0. �

It is not hard to see that under P̃, there exist again mutually independent standard Poisson

processes P̃j , 1 ≤ j ≤ k such that

ZN (t) := ZN,z(t) :=
[Nz]

N
+

1

N

k∑
j=1

hjP̃j

(∫ t

0

Nβ̃j(Z
N (s))ds

)
, (7)

2.2. The Rate Function

For all φ ∈ ACT,A, let Ad(φ) be the set of Rk+–valued Borel measurable functions µ which are

such that

φt = φ0 +

k∑
j=1

hj

∫ t

0

µjsds, for all t > 0.
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We define the rate function

IT (φ) :=

infµ∈Ad(φ) IT (φ|µ), if φ ∈ ACT,A;

∞, otherwise, where

IT (φ|µ) =

∫ T

0

k∑
j=1

f(µjt , βj(φt))dt,

with f(ν, ω) = ν log(ν/ω)− ν+ω and the conventions log(ν/0) =∞ for all ν > 0, and 0 log(0/0) =

0 log(0) = 0.

Note that under our standing assumptions the set Ad(φ) can be empty for many φ ∈ ACT,A.

Recall the usual convention that the infimum over an empty set is +∞.

It is shown in [13] that IT (φ) =
∫ T
0
L(φt, φ

′
t)dt, where for all z ∈ A, y ∈ Rd, L(z, y) = sup

θ∈Rd

〈
θ, y
〉
−∑k

j=1 βj(z)(e

〈
θ,hj

〉
− 1).

The following Theorem is Proposition 4.23 from [13].

Theorem 3. IT is a good rate function.

We first establish

Lemma 1. Let s > 0, φ ∈ DT,A and µ ∈ Ad(φ) such that IT (φ|µ) ≤ s. Then for all 0 ≤ t1, t2 ≤ T

such that t2 − t1 ≤ 1/σ,

∫ t2

t1

µjtdt ≤
s+ 1

− log(σ(t2 − t1))
, j = 1, ..., k.

Proof. For all 0 ≤ t1, t2 ≤ T ∫ t2

t1

f(µjt , βj(φt))dt ≤ IT (φ|µ) ≤ s,
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and since, the function h(x) = x log(x/σ)− x is convex in x,

h
( 1

t2 − t1

∫ t2

t1

µjtdt
)
≤ 1

t2 − t1

∫ t2

t1

h(µjt )dt

≤ 1

t2 − t1

∫ t2

t1

(
µjt log

µjt
βj(φt)

− µjt + βj(φt)
)
dt

≤ s

t2 − t1
.

It is easy to show that for all α > 0, h(x) ≥ αx− σ exp{α} and then for all α > 0

∫ t2

t1

µjtdt ≤
1

α
(s+ (t2 − t1)σ exp{α}).

Let t2 − t1 < 1/σ. The result follows by choosing α = − log(σ(t2 − t1)). �

For φ ∈ DT,A let φa be defined by φat := Φa(φt). We note that φa ∈ Ra.

Lemma 2. For all φ ∈ DT,A we have lim supa→0 IT (φa) ≤ IT (φ).

Proof. It clearly suffices to treat the case where IT (φ) <∞. For any η > 0 there exists µ ∈ Ad(φ)

such that IT (φ|µ) ≤ IT (φ) + η. Let µa = (1− a)µ. Then µa ∈ Ad(φa). We will now show that

lim sup
a→0

IT (φa|µa) ≤ IT (φ|µ), (8)

which clearly implies the result since

lim sup
a→0

IT (φa) ≤ lim sup
a→0

IT (φa|µa)

≤ IT (φ|µ)

≤ IT (φ) + η.

We note that

f(µj,at , βj(φ
a
t )) = µj,at log

(
µj,at
βj(φat )

)
− µj,at + βj(φ

a
t )

= f(µjt , β(φt)) +H(a, t, j),
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where

H(a, t, j) = (1− a)µjt log

(
βj(φt)

βj(φat )

)
− aµjt log

(
µjt

βj(φt)

)
+ (1− 2a)µjt log(1− a) + aµjt .

It remains to show that lim supa→0

∫ T
0
H(a, t, j)dt ≤ 0. We first consider the first term in above

right-hand side. It follows from Assumption 2.3 that

∫ T

0

µjt log

(
βj(φt)

βj(φat )

)
dt ≤

∫ T

0

1βj(φt)≥λ1
log

(
βj(φt)

βj(φat )

)
dt,

and the right–hand side tends to 0 as a → 0, since µjt is integrable from our assumption and the

Lemme1. The other terms tend to zero thanks to IT (φ) <∞. �

Lemma 3. Let a > 0 and φ ∈ Ra be such that IT (φ) < ∞. For all η > 0, there exists L > 0,

φL ∈ Ra/2 such that ‖φ − φL‖T < c1
a
2 , and µL ∈ Ad(φL) such that IT (φL|µL) ≤ IT (φ) + η, with

µL,jt < L, j = 1, ..., k.

Proof. Let η > 0 and µ ∈ Ad(φ) be such that IT (φ|µ) < IT (φ)+η/2. For L > 0 let µL,jt = µjt ∧L

and let φL be a solution of the ODE

dφLt
dt

=

k∑
j=1

µL,jt hj .

It follows from the monotone convergence theorem that ‖φ− φL‖T → 0 as L→∞. Since φ ∈ Ra,

for L large enough, φa ∈ Ra/2. It is easy to show that IT (φL|µL) → IT (φ|µ) as L → ∞. Hence

the result. �

Let ε > 0 be such that T/ε ∈ N and let φε be the polygonal approximation of φ defined for

t ∈ [`ε, (`+ 1)ε) by

φεt = φ`ε
(`+ 1)ε− t

ε
+ φ(`+1)ε

t− `ε
ε

. (9)

Lemma 4. Let η > 0 be arbitrary. Let 0 < a < 1, φ ∈ Ra and µ ∈ Ad(φ) be such that µjt < L,

j = 1, ..., k for some L > 0 and IT (φ|µ) < ∞. Then there exists aη such that for all 0 < a ≤ aη

there exists an εa > 0 and for all ε < εa the polygonal approximation φε belongs to Ra/2 and

‖φ − φε‖T < c2
a
2 < c1

a
2 . Moreover, there exists µε ∈ Ad(φε) such that µε,jt < L, j = 1, ..., k and
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IT (φε|µε) ≤ IT (φ|µ) + η.

Proof. Since φ is uniformly continuous on [0, T ], there exists εa > 0 such that for all ε < εa

sup
|t−t′|<2ε

|φt − φt′ | < c2
ae−a

−ν

4
.

Consequently ‖φ− φε‖T < c2
a
2 and φε ∈ Ra/2 .

For t ∈]`ε, (`+ 1)ε[,

dφεt
dt

=
φ(`+1)ε − φ`ε

ε
=

1

ε

k∑
j=1

hj

∫ (`+1)ε

`ε

µjtdt.

Therefore µεt defined for t ∈ [`ε, (`+ 1)ε[ by

µε,jt =
1

ε

∫ (`+1)ε

`ε

µjrdr, j = 1, ..., k

is constant on [`ε, (` + 1)ε[ and belongs to Ad(φε). We also note that µε,jt ≤ L for all j = 1, ..., k.

Moreover if 0 < ν ≤ L and ω ≥ Ca then

∣∣∣∂f(ν, ω)

∂ω

∣∣∣ = | − ν

ω
+ 1| ≤ L

Ca
+ 1.

By the assumption 2 4, there exists ãη > 0 such that for all a < ãη

L

Ca
+ 1 ≤ Lea

−ν
+ 1

Then for t ∈ [`ε, (`+ 1)ε[ and a < a0

|f(µε,jt , βj(φ
ε
t))− f(µε,jt , βj(φ`ε))| ≤

c2
4
C(L+ 1)a = V a/2,

|f(µjt , βj(φt))− f(µjt , βj(φ`ε))| ≤
c2
4
C(L+ 1)a = V a/2.



LDP for epidemic models 11

The above implies that

∫ (`+1)ε

`ε

f(µε,jt , βj(φ
ε
t))dt ≤

∫ (`+1)ε

`ε

f(µε,jt , βj(φ`ε))dt+ εV a/2

= εf(µε,j`ε , βj(φ`ε)) + εV a/2

≤
∫ (`+1)ε

`ε

f(µjt , βj(φ`ε))dt+ εV a/2

≤
∫ (`+1)ε

`ε

f(µjt , βj(φt))dt+ εV a

where the second inequality follows from Jensen’s inequality. Therefore

IT (φε|µε) ≤ IT (φ|µ) + V Ta.

The result follows by choosing a < min{a0, η/V T}. �

3. The Lower Bound

Our proof of the lower bound relies essentially upon the next Lemma.

Lemma 5. For z ∈ A, φ ∈ ACT,A, φ0 = z, for any 0 < a < 1 and ε > 0 small enough such

that the polygonal approximation φa,ε of φa defined as in (9) satisfies d(φa,ε, ∂A) ≤ c2a/2, and

µa,ε ∈ Ad(φa,ε) being chosen as in Lemma 4, the following holds. For any η > 0 and suitably small

0 < δ ≤ c2a/4, there exist Nη,δ ∈ N such that for all y, |y − z| < δ/2 and any N > Nη,δ

Py(‖ZN − φa,ε‖T < δ) ≥ exp{−N(IT (φa,ε|µa,ε) + η)}.

Proof. We first define new rates β̃j(t, z) = µa,ε,jt κ(z), where κ ∈ C(A; [0, 1]) is such that

κ(z) =

1 , if d(z, ∂A) ≥ c2a/4,

0 , if d(z, ∂A) ≤ c2a/8,

so that on the event {‖ZN −φa,ε‖T < δ}, β̃j(t, ZNt ) = µa,ε,jt for 0 ≤ t ≤ T , while the assumption of

Theorem 2 is satisfied. It is clear that the new probability measure P̃y depends upon both a and ε,

also that dependence will not appear explicitly for the sake of notation simplicity.
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With 8kTLC
Ca

δ, we define the following events Bδj , j = 1, ..., k for controlling the likelihood ratio.

For γ > 0 let

Bδj =
{∣∣∣ Q∑

p=1

δp(j) log
(βj(ZN (τ−p ))

µa,ε,jdτp/εeε

)
−N

T/ε∑
`=1

µa,ε,j`ε log
(βj(φa,ε`ε )

µa,ε,j`ε

)
ε
∣∣∣ ≤ Nγ},

where Q was first introduced just before Theorem 2.

On the event {‖ZN − φa,ε‖T < δ} ∩ (
⋂k
j=1B

δ
j ) = {‖ZN − φa,ε‖T < δ} ∩Bδ, with ξT defined by

(6),

ξ−1T = exp
{ Q∑
p=1

k∑
j=1

δp(j) log
(βj(ZN (τ−p ))

µa,ε,j
τ−p

)
+N

∫ T

0

k∑
j=1

(µa,ε,jt − βj(ZN (t)))dt
}

≥ exp
{
−N

T/ε∑
`=1

k∑
j=1

µa,ε,j`ε log
( µa,ε,j`ε

βj(φ
a,ε
`ε )

)
ε+N

∫ T

0

k∑
j=1

(µa,ε,jt − βj(ZN (t)))dt− kNγ
}

≥ exp
{
−N

T/ε∑
`=1

k∑
j=1

µa,ε,j`ε log
( µa,ε,j`ε

βj(φ
a,ε
`ε )

)
ε+N

∫ T

0

k∑
j=1

(µa,ε,jt − βj(φa,εt ))dt−N(kTCδ + kγ)
}
.

The first inequality is true since the µa,ε,jt ’s are piecewise constant, and the second one follows from

the Lipschitz continuity of the βj ’s. Since the derivative of φa,ε is bounded, we can compare the

sum in the above exponential and an integral, thus

ξ−1T ≥ exp
{
−N

∫ T

0

k∑
j=1

[
µa,ε,jt log

( µa,ε,jt

βj(φ
a,ε
t )

)
− µa,ε,jt + βj(φ

a,ε
t )
]
dt−N [kTC(δ + ε) + kγ]

}
= exp

{
−N

[
IT (φa,ε|µa,ε) + kTC(δ + ε) + kγ

]}
on the event {‖ZN − φa,ε‖T < δ} ∩Bδ.

Then for any η > 0, there exists δ > 0 ε > 0 small enough, we have

ξ−1T ≥ exp{−N(IT (φa,ε|µa,ε) + η/2)}.
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Moreover from Corollary 1

Py(‖ZN − φa,ε‖T < δ) ≥ Ẽy
(
ξ−1T .1{{‖ZN−φa,ε‖T<δ}∩Bδ}

)
≥ exp{−N(IT (φa,ε|µa,ε) + η/2)}P̃y({‖ZN − φa,ε‖T < δ} ∩Bδ).

The result is now a consequence of the next Lemma. �

Lemma 6. For z ∈ A, φ ∈ ACT,A, φ0 = z, for any 0 < a < 1, ε > 0 small enough, 0 < a ≤ c2a/4,

the polygonal approximation φa,ε of φa has the property that for all y, |y − z| < δ/2

lim
N→∞

P̃y({‖ZN − φa,ε‖T < δ} ∩Bδ) = 1.

Proof. It is enough to prove both that limN→∞ P̃y(‖ZN − φa,ε‖T < δ) = 1 and that for all

1 ≤ j ≤ k, limN→∞ P̃y({‖ZN − φa,ε‖T < δ} ∩ (Bδj )c) = 0. We first sketch the proof of the first

limit. With the notation M̃j(t) = P̃j(t)− t, we have that

ZN (t) =
[Ny]

N
+

k∑
j=1

hj

∫ t

0

µa,ε,js ds+
1

N

k∑
j=1

M̃j

(∫ t

0

Nµa,ε,js ds

)

= φa,εt +
[Ny]

N
− z +

1

N

k∑
j=1

M̃j

(∫ t

0

Nµa,ε,js ds

)
,

and it follows from the arguments e.g. from [15] that under P̃y, the last term on the right tends to

0 a.s. as N →∞.

We now establish that P̃y(‖ZN − φa,ε‖T < δ ∩ (Bδj )c)→ 0 as N →∞. We have supp |ZN (τp)−

φa,ετp | < δ on Dδ = {‖ZN − φa,ε‖T < δ} and we can choose ε s.t. supp |φa,ετp − φ
a,ε
dτp/εeε| < δ and thus

supp |ZN (τp)− φa,εdτp/εeε| < 2δ. Hence on Dδ

∣∣∣ Q∑
p=1

δp(j) log
(βj(ZN (τ−p ))

µa,ε,jdτp/εeε

)
−

Q∑
p=1

δp(j) log
(βj(φa,εdτp/εeε)

µa,ε,jdτp/εeε

)∣∣∣ ≤ ∣∣∣ Q∑
p=1

δp(j) log
(βj(ZN (τ−p ))

βj(φ
a,ε
dτp/εeε)

)∣∣∣
≤ 2Cδ

Ca
Q,

since |βj(ZN (τ−p )) − βj(φa,εdτp/εeε)| < 2Cδ. Q` denoting the number of jumps of ZN in the interval
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[(`− 1)ε, `ε), we have (note that on the event τp ∈ ((`− 1)ε, `ε), dτp/εe = `)

∣∣∣ Q∑
p=1

δp(j) log
(βj(ZN (τ−p ))

µa,ε,jdτp/εeε

)
−N

T/ε∑
`=1

µa,ε,j`ε log
(βj(φa,ε`ε )

µa,ε,j`ε

)
ε
∣∣∣

≤
∣∣∣ Q∑
p=1

δp(j) log
(βj(φa,εdτp/εeε)

µa,ε,jdτp/εeε

)
−N

T/ε∑
`=1

µa,ε,j`ε log
(βj(φa,ε`ε )

µa,ε,j`ε

)
ε
∣∣∣

+
∣∣∣ Q∑
p=1

δp(j) log
(βj(ZN (τ−p ))

µa,ε,jdτp/εeε

)
−

Q∑
p=1

δp(j) log
(βj(φa,εdτp/εeε)

µa,ε,jdτp/εeε

)∣∣∣
≤
∣∣∣ T/ε∑
`=1

log
(βj(φa,ε`ε )

µa,ε,j`ε

)( Q∑̀
p=1

δ`,p(j)−Nµa,ε,j`ε ε
)∣∣∣+

2Cδ

Ca
Q,

where

δ`,p(j) =

1, if the p–th jump in the time interval [(`− 1)ε, `ε) is in the direction hj ,

0, otherwise.

As the rates of jumps are constant on the interval [(`−1)ε, `ε) under P̃N ,
∑Q`
p=1 δ`,p(j) is the number

of jumps of a Poisson process Pj on this interval. So it is a Poisson random variable with mean

Nµa,ε,j`ε ε. We deduce from Chebyshev’s inequality that

P̃y
(∣∣∣ log

(βj(φa,ε`ε )

µa,ε,j`ε

)( Q∑̀
p=1

δ`,p(j)−Nµa,ε,j`ε ε
)∣∣∣ > Nγε

2T

)
≤

4T 2 sup`≤T/ε

(
log2

(
βj(φ

a,ε
`ε )

µa,ε,j`ε

)
Nµa,ε,j`ε ε

)
N2γ2ε2

.

As Ca ≤ βj(φa,εt ) ≤ σ, µa,ε,jt ≤ L, we have sup`≤T/ε

(
log2

(
βj(φ

a,ε
`ε )

µa,ε,j`ε

)
µa,ε,j`ε

)
≤ C(L, a). Thus

P̃y(‖ZN − φa,ε‖T < δ} ∩ (Bδj )c) ≤ P̃y
(∣∣∣T/ε∑
`=1

log
(βj(φa,ε`ε )

µa,ε,j`ε

)( Q∑̀
p=1

δ`,p(j)−Nµa,ε,j`ε ε
)∣∣∣+ 2Cδ

Ca
Q>Nγ

)
≤ 4T 2C(L, a)

Nγ2ε
+ P̃y

(2Cδ

Ca
Q ≥ Nγ

2

)
.

Under the probability P̃y, Q, the number of jumps during the time interval [0, T ] is the sum of T/ε
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Poisson random variables, the `−th one having the mean N
∑k
j=1 µ

a,ε,j
`ε ε. Consequently

Ẽ(Q) = Ṽ ar(Q) = N

T/ε∑
j=1

k∑
j=1

µa,ε,j`ε ε ≤ NkTL.

We finally deduce from the formula γ = 8kTLC
Ca

δ that

P̃y
(2Cδ

Ca
Q ≥ Nγ

2

)
≤ P̃y(Q− Ẽ(Q) > NkTL)

≤ 1

NkTL
.

The result follows. �

We now deduce from Lemma 5 the next result, whose proof follows the argument of Lemma 3

in [4]. Note however the local uniform continuity in the initial condition.

Proposition 1. For z ∈ A, φ ∈ ACT,A with φ0 = z and any η > 0, δ > 0 there exists Nη,δ such

that for all N > Nη,δ,

inf
y:|y−z|<δ/2

Py(‖ZN − φ‖T < δ) ≥ exp{−N(IT (φ) + η)}. (10)

Proof. For δ, η > 0 let φ ∈ ACT,A with φ0 = z be such that IT (φ) < ∞. Then from Lemma

2, if aη > 0 is small enough, for all a < aη there exists φa ∈ Ra with ‖φ − φa‖T < c1a and

IT (φa) ≤ IT (φ) + η/4. As IT (φa) <∞, we deduce from Lemma 3 that there exists L > 0 such that

φa,L ∈ Ra/2 satisfies ‖φa−φa,L‖T < c1
a
2 and IT (φa,L|µa,L) ≤ IT (φa) +η/4, where µa,L ∈ Ad(φa,L)

is such that µa,L,jt < L, j = 1, ..., k. Now we can deduce from Lemma 4 that for all ε > 0 the

polygonal approximation φa,L,ε of φa,L satisfies ‖φa,L − φa,L,ε‖T < c1
a
2 and IT (φa,L,ε|µa,L,ε) ≤

IT (φa,L|µa,L) + η/4 where µa,L,ε ∈ Ad(φa,L,ε) is such that µa,L,ε,jt < L, j = 1, ..., k. Choosing
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a < δ/(4c1), we have

inf
y:|y−z|<δ/2

Py
(
‖ZN − φ‖T < δ

)
≥ inf
y:|y−z|<δ/2

Py
(
‖ZN − φa,L,ε‖T <

δ

2

)
≥ exp{−N(IT (φa,L,ε|µa,L,ε) + η/4)}

≥ exp{−N(IT (φa,L|µa,L) + η/2)}

≥ exp{−N(IT (φ) + η)},

where we have used Lemma 5 at the third inequality. �

The following theorem follows rather easily from the previous Proposition.

Theorem 4. For any open subset G of DT,A and z ∈ A,

lim inf
N→∞
y→z

1

N
logPNy (G) ≥ − inf

φ∈G,φ0=z
IT (φ). (11)

The next Corollary follows as in [3], Corollary 5.6.15.

Corollary 2. For any open subset G of DT,A and any compact subset K of A,

lim inf
N→∞

1

N
log inf

z∈K
Pz(ZN ∈ G) ≥ − sup

z∈K
inf

φ∈G,φ0=z
IT (φ).

4. The Upper Bound

If we define b(x) =
∑k
j=1 βj(x)hj , a(x) = 0, µx(dv) =

∑k
j=1 βj(x)δhj (dv), where δhj denotes the

Dirac measure on Rd at hj , we see that we are in the framework of [6], and their assumptions are

satisfied. Consequently the following upper bound is a consequence of their Theorem 1.1.

Theorem 5. For any open subset F of DT,A and any compact subset K of A,

lim sup
N→∞

1

N
log sup

z∈K
Pz(ZN ∈ F ) ≤ − inf

z∈K
inf

φ∈F,φ0=z
IT (φ).
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5. Time of exit from a domain

Let O be the domain of attraction of a stable point z∗ of the dynamical system (3) and ∂̃O

be the part of boundary of O that the stochastic system (1) can cross. We need to formulate a

theorem which give us an approximate value for the exit time τNO from O for large N as well as the

exponential asymptotic of its mean Ez(τNO ). For the models of infectious disease, τNO is the time to

extinction of the disease. This is the most important application of our large deviations result. To

this end, for z, y ∈ A where A is defined by (2), we define the following functionals

V (z, y, T ) := inf
φ∈DT,A,φ0=z,φT=y

IT (φ)

V (z, y) := inf
T>0

V (z, y, T )

V := inf
y∈∂̃O

V (z∗, y).

The following theorem is a consequence of the large deviation principle established above, the law

of large numbers and some technical arguments. The proof which can found in Section 7 of [13]

requires the following technical assumptions:

Assumption 3. 1. For all z ∈ O, the solution Y z(.) of the ODE (3) satisfies

Y z(t) ∈ O for all t > 0 and lim
t→∞

Y z(t) = z∗.

2. V <∞.

3. For all ρ > 0 there exist constants T (ρ), ε(ρ) > 0 with T (ρ), ε(ρ) ↓ 0 as ρ ↓ 0 such that for

all x ∈ ∂̃O ∪ {z∗} and all z, y ∈ Bρ(x) ∩ A there exists an φ = φ(ρ, z, y) : [0, T (ρ)]→ A with

φ0 = z, φT (ρ) = y and IT (ρ)(φ) < ε(ρ).

4. For all z ∈ ∂̃O there exists an δ0 > 0 such that for all δ < δ0 there exists zδ ∈ A \ Ō with

|z − zδ| > δ.

5. There exists a collection {Oρ, ρ > 0} which is such that

• Oρ ⊂ O for all ρ > 0.

• d(Oρ, ∂̃O)→ 0 as ρ→ 0.
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• For all ρ > 0, Oρ satisfies the four above assumptions and for all z ∈ ∂Oρ, the solution

Y z(.) of the ODE (3) is such that limt→∞ Y z(t) = z∗.

Note that all these assumptions are satisfied in the infectious disease models which we will

present below. The third assumption is not difficult to verify and the fourth one allows to consider a

trajectory which crosses the characteristic boundary ∂̃O, in such a way that all paths in a sufficiently

small tube around that trajectory do exit O. That fourth condition is not satisfied in the two first

examples below. However, the result applies, thanks to an argument which is detailed in section 7

of [13] for the SIRS model.

Theorem 6. Under the assumptions 1, 2 and 3, given η > 0, for all z ∈ O,

lim
N→∞

Pz
(

exp{N(V − η)} < τNO < exp{N(V + η)}
)

= 1.

Moreover, for all η > 0, z ∈ O and N large enough,

exp{N(V − η)} ≤ Ez(τNO ) ≤ exp{N(V + η)}.

5.1. The SIS model

We consider a population of fixed size N , which is composed of susceptible and infected individ-

uals. The proportion of infected individuals obeys the SDE

IN (t) = IN (0) +
1

N
P1

(
Nβ

∫ t

0

IN (s)(1− IN (s))ds
)
− 1

N
P2

(
Nα

∫ t

0

IN (s)ds
)
,

where β is the rate at which infected individuals infect susceptibles, and α the rate at which an

infected individual recovers. In this case O = Å = (0, 1). We assume that β > α, in which case the

law of large number ODE limit

di

dt
(t) = βi(t)(1− i(t))− αi(t)

has the unique stable equilibrium i∗ = 1−α/β, which is the endemic equilibrium. Our results that

the time taken by the random perturbation to estinguish the disease is of the order of exp(NV ),

where V = inf
T>0

inf
φ0=i∗,φT=0

IT (φ) (our assumption 3 is not satisfied, but the needed extension is easy
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to justify). This is the value function of an optimal control problem, which in this case can be

computed explicitly, and we get V = log(β/α)− 1 + α/β. Note that the optimal T is infinite, and

V depends only upon the ratio R0 = β/α, which is called the ”basic reproduction number”, and it

is an increasing function of that ratio. We refer the reader to [2] for more details.

5.2. The SIRS model

In this model the individuals who recover are ”retired”: they cannot be infected, until they lose

their immunity. The model becomes

IN (t) = IN (0) +
1

N
P1

(
Nβ

∫ t

0

IN (s)(1− IN (s)−RN (s))ds
)
− 1

N
P2

(
Nα

∫ t

0

IN (s)ds
)
,

RN (t) = RN (0) +
1

N
P1

(
Nα

∫ t

0

IN (s)ds
)
− 1

N
P3

(
Nγ

∫ t

0

RN (s)ds
)
.

Again, if the basic reproduction number R0 = β/α > 1, the law of large numbers ODE

di

dt
(t) = βi(t)(1− i(t)− r(t))− αi(t),

dr

dt
(t) = αi(t)− γr(t).

has a unique stable endemic equilibrium (i∗, r∗) = β−α
β(α+γ) (γ, α). Here A = {i ≥ 0, r ≥ 0 : i+ r ≤ 1}

and O = Å. As shown in [13], although again the assumption 3 is not quite satisfied, Theorem 6

applies. Here unfortunately it does not seem possible to compute explicitly the quantity V .

5.3. The SIV model

Consider a model with vaccination for a population of fixed size N , composed of susceptible,

infected and vaccinated individuals. We assume that the vaccinated individuals are not fully pro-

tected, and can be infected, but this happen at a smaller rate than the infection of susceptibles. They

can also loose their partial immunity, and become susceptible again. In each class of individuals,

there is the same death rate. The proportions of infected and vaccinated individuals follow the
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Figure 1: Attraction region O of the equilibrium z∗ in SIV model

following SDE

IN (t) = IN (0) +
1

N
P1

(
Nβ

∫ t

0

IN (s)(1− IN (s)− V N (s))ds
)

+
1

N
P2

(
Nχβ

∫ t

0

IN (s)V N (s)ds
)

− 1

N
P3

(
Nγ

∫ t

0

IN (s)ds
)
− 1

N
P6

(
Nµ

∫ t

0

IN (s)ds
)
,

V N (t) = V N (0)− 1

N
P2

(
Nχβ

∫ t

0

IN (s)V N (s)ds
)
− 1

N
P4

(
Nθ

∫ t

0

IN (s)V N (s)ds
)

+
1

N
P5

(
Nη

∫ t

0

(1− IN (s)− V N (s))ds
)
− 1

N
P7

(
Nµ

∫ t

0

V N (s)ds
)
.

Under appropriate assumptions on the parameters of the model (see [14]), its law of large numbers

ODE limit


di
dt (t) = (β − µ− γ)i(t)− β(1− χ)i(t)v(t)− βi2(t)

dv
dt (t) = η − ηi(t)− (η + µ+ θ)v(t)− χβi(t)v(t).

has two endemic equilibria z∗ = (z∗1 , z
∗
2), z̃ = (z̃1, z̃2). z∗ is locally stable while z̃ is unstable. These

two equilibria are completed with the disease free equilibrium z̄
(
z̄1 = 0, z̄2 = η

µ+θ+η

)
which is locally

stable. Figure 1 shows the basin of attraction O of the equilibrium z∗ delimited by the characteristic
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Figure 2: Attraction region O of the equilibrium in S0IS1 model

boundary and containing the point z∗. Here A = {i ≥ 0, v ≥ 0 : i + v ≤ 1}. The assumptions

1, 2 and 3 are satisfied and Theorem 6 applies. Again it is not possible to compute explicitly the

quantity V but its numerical computation will be the object of a forthcoming publication.

5.4. The S0IS1 model

We consider here a model with two levels of susceptibility in which the population has a fixed

size N composed of susceptibles S0 who are individuals who have never been infected and may

contract the infection, the infected I and the susceptibles S1 with at least one past infection. We

assume that the infected individuals can recover and become again susceptible (of type S1), and

be infected with a rate which is different from that of the type S0 individuals. The death rate is

the same in all classes. The proportions of infected and vaccinated individuals follow the following
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SDE

IN (t) = IN (0) +
1

N
P1

(
Nβ

∫ t

0

IN (s)(1− IN (s)− SN1 (s))ds
)
− 1

N
P2

(
Nα

∫ t

0

IN (s)ds
)

− 1

N
P3

(
Nµ

∫ t

0

IN (s)ds
)

+
1

N
P4

(
Nrβµ

∫ t

0

IN (s)SN1 (s)ds
)
,

SN1 (t) = SN1 (0) +
1

N
P2

(
Nα

∫ t

0

IN (s)ds
)
− 1

N
P4

(
Nrβµ

∫ t

0

IN (s)SN1 (s)ds
)

− 1

N
P5

(
Nµ

∫ t

0

SN1 (s)ds
)
.

If the parameters of this model are chosen in an appropriate way (see [17]), its law of large number

ODE limit 
di
dt (t) = −(α+ µ− β)i(t) + (r − 1)βi(t)s1(t)− βi2(t)

ds1
dt (t) = αi(t)− µs1(t)− rβi(t)s1(t).

has two positive endemic equilibria exist; the first one z∗ is locally asymptotically stable and the

second one z̃ is unstable, in addition to the disease free equilibrium z̄ = (0, 0) which is again locally

asymptotically stable. Figure 2 shows the basin of attraction O of the equilibrium z∗ delimited by

the characteristic boundary and containing the point z∗. Here A = {i ≥ 0, s1 ≥ 0 : i + s1 ≤ 1}.

The assumptions 1, 2 and 3 are satisfied and Theorem 6 applies.
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