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1. INTRODUCTION
In this paper, the behaviour of an epidemic of the SIR type in a large closed population
is studied. By generalizing the imbedding representation of epidemics of Sealia-Tomba
(1985}, many of the available results on asymptotic final size distributions of various epi-
demic models can be obtained and generalized to include heterogeneity of susceptibility
to infection.

2. A THRESHOLD MODEL FOR EPIDEMICS

Let the susceptible population consist of n individuals, each one characterized by
(G, &)t =1,... ,n, where @ = “infection threshold” and £ = “infective power in case
of infection”.

Let the epidemic start by introducing an initial amount of infection £y into the pop-
ulation. Individuals with (); < & are then infected. They add their respective £:5 to
the “infective burden™ on the remaining population. Individuals with £ < Q; < £, +
{sum of “first generation” £:s) then become infected, and so on.

The above description can be formalized in the following way: let Xi(f) = 15, <n,
i=1,...,n, and X{¢) = 51_, Xi(t). The development of generations of infectives can
be deseribed by Ty :=0, ap 1= & — 11 1= X(ap), ay =60 + 2y EiXi(ae) = ... —
T 1= X(ag), @pqr 1= o+ S0, &iXi{as). The succesive values {T}} thus denote the
total number of infected individuals up to and ineluding the k:th generation.

Let a{t)} = E?—I fgl{x{@i}:ﬂ} . We can then write Ty = X (& +G{Tk)}|, E=0,1,....
We can interpret a(t) as the sum of {-values for the t individuals with the lowest (J-values
{if these are distinct). Let X(t) = X({y + a(t}). Then we have Ty =0, Ty1q = X(Ti),
k=10,1,... . We see that X{t) is non-decreasing, integer-valied and bounded by n.
a(t) is also a non-decreasing function. Therefore, the sequence {T%} is non-decreasing
and bounded by n. Thus Ty T < n where 7" = min{f rh = E(!}} T iz the final size
of the epidemic in the population.

3. A STOCHASTIC MODEL WITH HETEROGENEOUS SUSCEPTIBILITY

3.1 Definition and interpretation. Let {{);} be independent with d.f.:s {F;} and
{&} be 1ad. with df. H, independent of {Q;}. Let also £ have the same law as
£1 4+ ... + &m and be independent of all other quantities. Because of the assumed
independencies, the previously defined epidemic model will have the same distributional
properties as the following model: let X(t) = 37, 1(g, < and (1) = 2211 i, Iy =0,
1 = I[E{m}}, Tk+l = X{E{m + Tj:}_}‘, E{t] = X{E{t}}. Then TH-;[ = Xl[m. + Tj;],
k=0,1,...,and Ty /T =min{t:t = X(m+1t)}. For future use, define Ts as T -+m.
Thenm < T, <n+mand T, = u::in{t ct—m o= X{t]}- Various considerations now
show that the above epidemic model contains several previously studied models, as well
as generalizations of these:



1) In Scalia-Tomba (1985), it is shown that the classical Reed-Frost epidemic is obtained

by choosing F; = geom(p) and & = 1, ¥i. By choosing F; = F and §; = 1, Vi, where
F is an arbitrary distribution on N, the generalized Reed-Frost process studied in the
same paper is obtained.

2) By the same arguments as in 1), the choice F; = geom(p;) (or equivalently exp(#;)

3)

4)

5)

with p; = 1 —exp(—#8;)) and £; = 1, Vi, yields a Reed-Frost type epidemic where each
individual { has susceptibility p; to infection (prob. of being infected by an infective
individual). It is then convenient to represent the susceptibility “profile ” of the
population by the empirical distribution of, say, #-values, i.e. by G(#) = proportion
of individuals having & < 8.

By interpreting £ as the length of the infectious period of an individual and assuming
a constant rate of infectious contacts between each pair of susceptible and infective
individuals, we will have a generalization of the classical “general stochastic epidemic™
(GSE), for which ¢ has an exponential distribution, cf. Sellke {1983). The case
corresponding to F; = exp(#), H arbitrary, has been studied by Wang (1877 },von Bahr
and Martin-Lof (1980} and Ball (1985).

The choice F; = exp(#;) and H = exp(1) is thus a natural extension of the GSE to the
case of heterogeneous susceptibility. It is worth noting that the classical formulation
of the GSE as a Markev process is no longer practical, since individuals will not be
equivalent in the heterogeneous case. But, as in von Bahr and Martin-Lof (1980),
Markov structure is retained if the actual sets of susceptible and infective individuals
of each generation are considered, instead of only their numbers.

As long as the distributions {F}} are exponential, it is possible to interpref the model
on a contact rate basis, possibly with varying infectious periods. This is possible since
the infective action of a number of infective individuals with given infective periods,
acting simultaneously on a given susceptible individual, is equivalent to their acting
sequentially (as expressed by the £(i)-process). If the distributions {F;} are arbitrary,
the contact rate interpretation in real time may not be made with the same ease. Still,
as in Scalia-Tomba (1985), distributions other than exponential may be interpreted
as a tendency to have varying susceptibility to infection, depending on actual total
epidemic size.

3.2 Asymptotic situation and definitions. Let n — 20 and consider a sequence of
processes { X ("} with respective parameters {F'":":'}, {m™} and {EE“} }. Let the d.f.
H be fixed. Then we also have

Iﬂn}{jj = E I{Q?]E!},

i=1

[
€M) =3 ¢,

=1

XO(t) = X (em(t)),

and

T8 = min {t 1t —m(®) = X},



The final size of the epidemic is denoted T® = T — ™), Denote E(£) by a and
Var(£) by K < oo. Define, for future use, the following quantities:

M t) = %E (X (nt)) = %zﬂj F{™ (nt),

=1

C(s,1) = écav (X (ns), X" (nt) ) = % Z (1= FP (e v 9))) F (nle ),

=1

7000 = v (X -

~n),, _ E™(nt)
e = £,

() = 2 () = v (250 - 0 (E‘“’m)) ?

AW = /n ( A (E:nzu {”) _ M{n:{at}) :

= {n}
vy = 200y + AW () = /0 (x_ﬂ[Lﬂ' — M{n}{{!t}) ?
(m)
u ="—,  and, finally,
':n:l ""{“}
T{n} = L = min {ﬁ .t --p':“:' - .."f_{:i‘tt]l}
m n

As 1 — oo, we assume that (™ — p > 0 and that M(t) — M(t) and C1™)(s,4) —
C(s,1). Some further regularity conditions on convergence and on the limit functions
M and C will have to be imposed, but these are explained as the need arises in the
subsequent caleulations.

3.3 Some preliminary convergence results. By combining the Cramér-Wold device
and the Lindeberg CLT, it is easy to show that the finite-dimensional distributions of
Z™) converge to those of a Gaussian process with mean 0 and covariance function
C(s,t), subject to e.g. C(s,t) > 0, ¥s,t > 0. By imposing mild conditions on the
continuity of C(s,) (see e.g. Cramér and Leadbetter (1967), p. 183), such a process
exists on D0, c0) and has continuous trajectories with probability 1.

Let us consider the relevant processes as random elements on D[0, s0), endowed with
the Skorohod topology (see Billingsley (1968), Lindwall (1972)). With a suitable choice
of metric, D[0,00) becomes a complete, separable, metric space and it can be shown
that convergence in distribution of random elements (denoted Z(") = Z) is equivalent to
raZ® = ro 2 Wa € Tz, where rq is the restriction to the interval [0, @], convergence is
considered on D[0), a) and Tz is the set of points at which Z is a.s. continuous (Lindwall
(1972)).



We already know that the finite-dimensional distributions of Z™ on [0, a] converge
to those of & contimuous (Gaussian process with covariance function €. The tightness of
{Ef“}} on {0, @] can be checked by a product moment condition (see Billingsley (1968},
p. 128). It can easily be shown that

B (200~ 200) (29) - 290) ) < 3(Mts) - M)

0<f =t <t

2
i

Letting wy(4) denote the modulus of continuity of f (on [0,a], in this case), tightness
of {ZM} follows if

lim T wiycn) (8) = 0.

This follows if e.g. {M‘*!} converge to a continuous M, uniformly on compacts. Thus,
dencting the above mentioned Gaussian process by Z, we have shown that 2% = Z,
Similarly, by Donsker’s theorem, we have

Fm oy
v (Lﬁ_&,f) = Wi(t),

where W(t) denotes standard Brownian motion on D[0, co) (the array { EE":'}, 1<i<
n+m™ has to be extended to 1 <{ < oc to allow for ¢t > 1+ ,u[“}L Furthermore, we

have (see Serfozo (1975)) B (t) = at, ¢ > 0, wherefore
Z"(4) = Z(at).

Let us now study the distribution of A, A condition of the type 7 (M) — M) —
0, uniformly on compacts, allows us to equivalently study the process defined as
(M [E{ﬂ}{t}} — M{at)). By using the mean value theorem trajectorywise, the fact
that multiplication and addition of random elements are continuous operations and that
. convergence in probability to a constant funetion entails convergence in distribution, we
may conclude that A™ = A where A is a Gaussian process with mean 0 and covariance
function KM (as)M (et ){s A1), Again, some mild further condition on the continuity
of Af* implies that A is a.s. continuous. The same result can be achieved by assuming
that M) itself iz sufficiently differentiable,¥n, with derivatives converging uniformly
to those of M. The condition /i (M'™ — M) — 0, uniformly on compacts, is not
necessary, then,

Since Z™ and 4™ are independent, ¥n, and Ew converges fo a constant function,
we can state the above results as

(2, 40,F) (7,4, )

on D3*[0, 00), with the natural product metric. Since all functions in the RHS are a.s.
continuous and composition and addition are confinuous operations, we finally have

yin = gin) o

a continuous Gaussian process with mean (0 and covariance function
Clos, at) + KM (as)M (at)(s At).

+ A =V,



3.4 Convergence in distribution of 7™ in the case u > 0. Let us define
) = min {1‘ st — pl™ — M o) =ﬂ} . Wn,

and
T=min{t:{—p— Mat) =0} ,
and assume that r is a true crossing point, ie. that aM'{ar) < 1. Then, we have
() _ 7. Furthermore, since sup |V % sup [V1, which is bounded with probability
1, we will also have T % r,
Thus, on D?[0,00), we have (VT ‘_MIJ = (V,7) and consequently V(™ o T™ 4,
V(7). which means

(n)
v (w ~ M (aT‘“J)) 4 N (0,C(ar,ar) + KM'(ar)r).

Rewriting the LHS as

N (Tliﬂ]' — ) pgtm) ( Tﬁﬂ]))
(300 (67)) (40 - ).

we finally get
VA (T = 70} 4 N (0, (Clam am) + K M(ar ) (1 — ad'(ar) 7).

3.5 Convergence in distribution of 7" in the case m!™ =m,Vn. Let us firstly

require that two conditions be fulfilled:

1) ¥ {an} : anfn — 0, we have (n/t}M ™ (t/n) — A 2 0, uniformly on 0 < ¢ < a,. A
will typically be M'(0).

2) For any sequence of sets {5,} with cardinalities |S,| fulfilling |S.|/n — 0 and {a,}
such that a,/n — 0, we have

1 .
T 2 F_}“}{t} — 0, uniformly for 0 <t < a,,.
JESn

Under these conditions, it is easily verified that the distribution of {TE"]}, 0=<k<=N,
for any fived N = 0, converges to that of the succesive cumulated generation sizes
in a Galton-Watson process, started by m ancestors, with progeny distribution with
generating function g(s) = [exp(—A£(1 — s)) dH(¢) and mean A (see Ball (1983) for
a similar result). Thus we will have

Pr (T“J =£:) —plk), keN,



where p(-) is the total size distribution in the above mentioned G-W process. For this
distribution, it is known that the total probability mass equals 4™, where v = 1 if
Ae <1, but o < 1 if Aee > 1 ( is the solution closest to 0 of g(s) = s).

In the case Aa > 1, there thus remains the probability mass 1 — ™ > 0 to account
for. We will follow the strategy in Sealia-Tomba (1985), in order to prove that

T — nr m
PI‘( -v,,l"ﬁ EH)—"{I i }deN{ﬂaﬂ}:
K bounded,N{0,v) denoting a normal distribution with mean 0 and variance v equal
to that obtained in the previous section for the case g > 0. Finally, 7 is defined as
min{t > 0:¢— M({at) = 0}.

Before continuing the demonstration, let us study the meaning of the eonditions
imposed on M (=} near 0 in a special but interesting case. Assume that

(1) F() =1—exp(—8t/n), 1< <n,with GU(6) = #{6]" <8}/n.

Then M")(1) = 1-G)(3), G} being the Laplace transform of G\, The requirement

that M) _ M is then equivalent to G(™ = @, @ being a distribution with Laplace

transform 1 — M. The further assumptions on M") can easily be seen to mean the

uniform integrability of {G'™}, with the parameter A being the expectation of G. The

condition that A (®) — M, uniformly on compacts, can be verified by combining the

equicontinuity of {{M (™, M}} with the pointwise convergence, on bounded intervals.
First, we prove, for any sequence {a,} such that a,/n — 0 and a, = cg, that

lm lim Pr (;; < Tl < a,.) = 0.

f—mo M—+00

We have
(2) Pr(k <7 < a.,) < iPr (J’Eiﬂf'{ﬁj =i —'m)
t=k
- j:éfﬁ Pr (X™(t) =i-m) dH™(1).
We also have

Pr (Ji'.'{“]'{t}=.1.:) =5 [IF”® 11 (1—1:;!“?{11)

ISI=k FES jESe

. {n)
t* (o ¢ Liese Fi (1)
5H(¢M (E)) exp (—t ; .

where S, is a set describing those j for which Fy™(¢) is as large as possible, with
|§,| = k. Thus we have

k
Pr (X(t) = &) < {(l+;t!11)}f) exp(—(A+ o(1))H) ,



with o(1) denoting quantities converging uniformly to 0 for ¢ € [0, a,], k € [0, by}, with
dn/n and b, /n — 0. Each integral in eq. (2) can be partitioned as follows:

fm Pr(X"(t) =i - m) dH™(1)

iy
- f (o..) dH™ (1) + f (...)dH™(t)= I + .
|t=ei| et [E—wi] >

Choosing € > 0 so small that Ma —¢) > 1, we have
(A +o{1))t)im B
BT oy oAl =

(A + G[{lg”—{i; . V™ exep(~(A + o(1))(a — i) <

exp(~i((A + o(1))(e + €) — Ia((A + o(1))(a — €)) — 1)) = z.

Thus [} < z; and furthermore 0%, z; ~ e™ % with ¢ = 0. By further assuming e.g. that
H has a finite fourth moment (fhis is probably not necessary, however), Tchebyschev's
inequality yields that Iy < ¢/i%, since

|

The remsining range of TA™ can be studied exactly as in Scalia-Tomba (1985}, yielding

lim lim Pr (\fﬁ (T("} - *r) < c) =1— 4™,

Ll Ll [ R =

ead

chid ctit

ﬁ'“:"i .

Yt —ai

i=1

N m.) < E(E;=1 (€ —a}r im® + 6K2(})

Thus
lim Pr (k< T < a.,i) = e~ 4 o(k™).

ft—sx

The final part of the proof amounts to showing that the limit law of V(™ iz unchanged
by conditioning on the event {T™ > a,}, for some suitable sequence {a,} such that
an, — o0 and ap/n — (. The conditioning event involves a, variables of f-type and
O{a,) members of the family {F‘I{“}[t}}.- considered up to time ¢ ~ O{a, fn). The proof
will thus procede exactly as in Scalia-Tomba (1985), by showing that the effect of O{a,)
variables on sums with O(n) terms will be vanishingly small and that thus the limit law
of V(" will be unchanged. The limit law of /a(T, — ), conditional on {T™ > a,},
will then be normal with mean 0 and variance as in the previous section.

3.6 Some comments on heterogeneous susceptibility., In the studied model,
the law of the ¢}-variable of an individual can be seen as chosen without replacement
from the family {F'™}. H it were chosen with replacement, the Q-variables would be
iid. with law M instead. It is then interesting to note that the branching process
approximation is unchanged, the values of v and 7 also, and that the only difference is



found in the asymptotic variance v of the limit distribution in case of a “large” outbreak.
The variance in the ii.d. case will be larger, since

O, = MO) - 23 FO i) < MO0 - MO

=1

Consider now the situation outlined earlier, in eq. (1), where F* = exp(#;)} and
{8;} have the distribution G. The corresponding model with i.id. {@;} would then
have M(#) = [1— ™% dG(#). In Scalia-Tomba (1985), the risk funetion r(t)} =
M(£)/ (1 — M(t)) was considered as a model of the behaviour of susceptibles at a given
epidemic size corresponding to the fraction ¢ of the population (assuming that @ = 1).
However, considering G as a susceptibility distribution, we see that r(t) = Eg, (8), where
G, is the law described by {e~%dG(6)/(1 — M ())}. Thus r(t) also has the interpre-
tation of average susceptibility among survivors, after a given epidemic size that has
modified the susceptibility profile of the population as described by G¢. By applying the
Cauchy-Schwartz inequality to (1), we see that r(t) is nonincreasing, whatever G, cor-
responding to the intuitive result that average susceptibility decreases as the epidernic
progresses, the most susceptible individuals succumbing first In the epidemic, leaving &
progressively less susceptible population to face the continued spread. In this notation,
the susceptibility profile of the population, after the epidemic has ended, is described by
.. It is also worth noting that variation in susceptibility also results in a smaller total
epidemic size (smaller 7) than the corresponding epidemic with constant susceptibility
A = text Eg(#), as seen by applying Jensen’s inequality to M(t) and the definition of 7.
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