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cmJ

Crump-Mode-Jagers trees

o Crump—Mode—Jagers (CMJ) branching processes generalize
Galton—Watson process.

@ Individuals live for a random duration and give birth at
random times during their life-time.

@ Each individual is characterized by a random pair

(P,V)e M xR"
@ V is the life-length of the individual
QV>rl>r2...> 7P
[P

P = 0u

i=1



cmJ

Crump-Mode-Jagers forests

@ A CMJ forest is constructed from a sequence of i.i.d.
life-descriptors {(Pp, Vi) }n>0 € M x R

@ The root’s life length is equal to V5. We graft new individuals
at the atoms of Pg.

@ The process is repeated until the population gets extinct,
which happens almost surely in the (sub)critical case
E(P)) < L.

@ At extinction time, generate a new tree according to the same
procedure.

n=0 n=1 n=2 n=3 n=4(2trees)
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Chronological and genealogical structure

@ Genealogy: the Galton Watson forest generated from the
sequence {|Pn|}n>0. This GW forest encodes the genealogical
structure of the CMJ.

@ Chronology: the CMJ itself.

n=4 (2 trees)
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Population dynamics

@ The population size of a finite (but) large CMJ process is not
Markovian.

@ Ex: Bellman-Harris processes. individuals beget their children
at death, independently of their life-time.

@ Need to keep track of the population size and the age
structure in the population. This might be represented by a
measure-valued process (Sagitov ('97)).

@ General case: need to keep track of the age structure and
birth events occurring in the past.

Ar
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The contour process approach

o Different point of view: contour processes.

@ The contour process of a CMJ process encodes not only the
population dynamics, but also the geometry of the underlying
trees (or forests).

@ In the particular case of Poissonian birth events, Lambert
('10) showed that the contour process is a Lévy process.

@ Using this approach, we will be able to show that CMJ forests
fall into three main categories:

@ |If edges are short enough, CMJ forests are obtained by a
deterministic stretching of their underlying genealogy.

@ If the offspring distribution has a finite second finite, a CMJ
forest looks asymptotically like a Bellman-Harris forest.

© For long edges and large number of offspring, our approach
provides an educated guess for a natural scaling limit.



cmJ

Coding discrete planar trees

Cs he(n)

s n
23 T T3 FO-1
Contour function C; Height function h¢(n)

Figure : pictures taken from Le Gall's lecture notes

@ Contour process: distance from the origin of a particle
exploring the tree from left to right by travelling at unit speed
along the edges.

@ Height process: distance from the origin of the ntf vertex
visited in lexicographical order.



Contour process

From tree to contour and vice-versa.

@ To every rooted planar tree corresponds a contour process.

@ The genealogy can be recovered from the sub-excursions
nested in the contour process.

@ Real tree: tree constructed from an arbitrary excursion.

S

T23 {0
Contour function Cj



Contour process

Real trees (Aldous, Evans, Pitman Duquesne, Le Gall, etc

)

T285 5O
Contour function Cs

@ Let f be a non-negative continuous function made of finite
excursions with £(0) = 0.

o x ~ y iffinfiny oy F = F(x) = f(y)

e Tr=R"/~,

o dr(x,y) = f(x)+f(y)—2 inf[X/\y,xVy] f.



Contour process
Real trees

(T¢, df) defines a real forest in the sense that
(i) (Unique geodesics.) There is a unique isometric map ¢
from [0, df(a, b)] into Tr such that ¢?*(0) = a and
Y@b(d¢(a, b)) = b.
(i) (Loop free.) If q is a continuous injective map from [0, 1]
into T¢ , such that q(0) = a and q(1) = b, we have
q([0,1]) = ¥*5([0, d¢(a, b)]).

e Continuous Random Forest (Aldous ('91)): Real forest
encoded by a reflected Brownian motion.



Contour process

Scaling limit of Galton Watson genealogies: finite variance

case

@ Let F be a Galton Watson forest such that

[e.9] [e.9]
Z kp(k) =1 (critical case) and 0 < Z k2p(k)—1 = 0? < o0
k=0 k=0

and C its contour process.

° %(’H(n-),C(n)) converges in the weak topology to

%(\WK), |w|(-/2)), where w is a standard Brownian motion.

@ This indicates that the (rescaled) Galton Watson forest
converges to the real forest encoded by a reflected Brownian
motion.



Contour process

Scaling limit of Galton Watson genealogies: infinite

variance case ( Le Gall Le Jan ('98), Duquesne Le Gall

)

Let F be a Galton Watson forest such that
o
Z kp(k) =1 (critical case)
k=0

The offspring distribution {p(k)} is in the domain of
attraction of the stable law with exponent a € (1, 2).

There exists €, — 0 such that ¢, (H(n-),C(n-)) converges in
the weak topology to a continuous random process

(Hoo(')’ Hoo(/2))

The limiting process is not Markovian but can be expressed as
a functional of a spectrally positive Lévy process



Contour process

Back to the original question

@ In this talk, we will consider the height process and the
contour process of a CMJ forest.

o Let H (resp., C) be the height (resp., contour) process of the
CMJ.

o Let H (resp., C) be the height (resp., contour) process of the
underlying Galton Watson forest.



Contour process

Back to the original question

@ Question 1: limiting behavior of C at large time.

@ Question 2: joint convergence of (C, C) and (H, #), i.e.,
relation between the CMJ forest and its underlying genealogy.



Results

. Height process in the short edges case

@ Define y to be the random variable such that for every test
function f:

E[f(y Z( > E[f(A Pr)HP\_k]> KP(|P| = k)
k=1 r=1

where A(P, r) is the position of the rt atom on P
@ Assume that E(y) < oo
@ Assume that there exists ¢, — 0 and H, such that

EnH(n') — Hoo

@ Then
en (H(n-), H(n')) — (Hoo, E(y)Hoo) -

in the sense of f.d.d.



Results

. from height to contour processes in the short

edges case.

@ Assume that E(V) < oo.

@ Assume that there exists €, — 0
ent([n]) = Hoo('), €nC([n]) = Coo(’)

@ Assume that there exists €, — 0 such that {€,H(nt)}, is tight
(for every determinstic t) then

, <H (2I[E”(t\]/)> - C([nt])) — 0

in the sense of f.d.d..

@ Generalization of a result by Duquesne & Le Gall in the
discrete setting. Non trivial due to the absence of tightness.



Results
Tightness issue

@ X in the domain of attraction of an a-stable law with

a e (1,2).

P = 01(X — 1)+ dx in such a way that |P| is distributed as
X.

E(y) < oc.
° ﬁ%([n-]) = Heo.

o L H([n]) = E(y)Hw.

T
ntTw

@ maxo.... nH > maxq,... n X; ~ nt/e

o Taking a < 3(1+/5), we have n/® >> nl=a

@ As n goes to oo, one can find infinitely many edges which do
not scale as the height process.



o E(V) < o0,E(y) < oo
e Combining (R1) and (R2)

en(C([n], C([n]) = (Coos E(y)Coo(-/2E(V)))

e Sagitov ('95)

E(V)
enZ([nt]) — EQ) Z(t/2E(y))

where Z is a CSBP starting at 1 and Z the discrete CMJ
branching processes BP starting with [1/e,] individuals.

@ Question: What if E(y) = o0, E(V) = oo ? We distinguish
between two cases (1) E(|P|?) < oo, and (2) E(|P|?) = oo.



Results

: Height process for offspring distribution with

finite variance case

e E(|P|?) < oo but y is the domain of attraction of an a-stable
law with o € (0,1).

@ There exists €, — 0 such that the joint distribution of

(,711/2H(n'), enH(n‘)>

can be asymptotically described in terms of the Poisson snake.



@ Continuum analog of Bellman-Harris forests.
@ Start from the genealogical structure.

@ Mark every edge with an independent random number
according to life-length distribution V.

@ The BH forest can be recovered by a simple (random)
stretching of the underlying genealogy.

@ Informelly, our results indicates that if |P| has a finite second
moment, then CMJ branching processes behave as a Bellman
Harris forest.



Results

Poisson snake (Warren ('02), Abraham Delmas ('02) etc.)

o Let (.7-"2‘W|7 d;|w|) be the real forest induced by a reflected
Brownian motion.
o Let )\g‘wl be the branch length measure, i.e. Va, b

Az, ([aB]) = dz,(a,b).
o Conditioned on (Fz,,, dz|,,), mark the forest with a Poisson
Point process on .7-";|W| x RT with intensity measure

dl
/a+1

X
Azjy




@ H..(t) is the sum of all the atoms along the branch [p, t].
°

(=t enilon); ¢ > o)
=+ (2wt o) e20)

in the sense of f.d.d.
@ The chronological ancestral line is obtained by random
dilatation of the genealogical ancestral line.

T23 [40)
Contour function Cy



Results

: Contour process for offspring distribution with

finite variance case

o E(|P|?) < co. V is in the domain of attraction of a 3-stable
law with 5 € (0, 1).
@ Assume that there exists €¢,,é, — 0
ent([n]) = Hoo("), &H([n]) == Hoo (),
There exists €, — 0,

(enH([n-]), €aC([n])) = (Hoo, Coo),
in the sense of f.d.d. such that H, and C, are independent.
o Let C(t) be the date of birth (height) of the individual visited
at time t. Then
(enH, &,C) — (Hyo,Hoo o T,

(again in the sense of f.d.d.) where I is a 3-stable
subordinator independent of H..



Results

Summary

e E(V),E(y) < oo: the chronology is recovered from the
genealogy by a deterministic space-time change.

e E(V),E(y) = oo by E(|P|?) < oco: the chronology is obtained
by a random dilation of the genealogy and a random time
change.



Results
Fundamental decomposition of the spine

@ #(n): number of ancestors of n

o y(k) = age of the k" ancestor when it begets the (k — 1)
ancestor.

@ The number of ancestors and the length can be computed
from the Lukasiewicz path. $(0) = 0 and

S(n+1)—=S(n) = |Py —1.

Random walk with E(S(n+ 1) — S(n)) = 0 and negative
increments of size 1.




Spine decomposition
Fundamental decomposition of the spine

o Define { T(k)} the sequence of (weak) ascending ladder times:
T(0)=0; andfor k >1
T(k+1) = inf{k > T(k) : S(k) = sup S}.
{0"" »k}
e Define R(k) as the undershoot upon reaching the running
maximum at time T (k) incremented by 1 unit

for k>1, R(k) = S(T(k—1))—S(T(k)—1) + 1




Spine decomposition
The dual walk and the genealogical height process.

o w= (P, Vi)kez
0 V"(w) = (Pn—1—k> Va—1—k)kez
@ Dual walk at n:

Sod¥" = (S(n)—S(n—k); k>0),
@ A(n) indices of the ancestors of n.
A(n) = {n—T(k)o9" : T(k)od9" < n}.

o H(n)=|{k<n: T(k)ov¥" < n}



Spine decomposition

The dual walk and the chronological height process

o A(P, k) : location of the rth atom on P.

o y(k) = A(Pr(x)-1, R(k)) random functional of the ladder
height process.

o y(k) o 9" is the contribution of the k™ ancestor: age of the
kth when it begets the (k — 1)t ancestor.

@ The pair (H(n) , H(n)) is equal to

{k<n: T()<n}, > ylk)|ov"

k<n: T(k)<n




Spine decomposition

(R2) and (R3) from the spine decomposition

@ From standard excursion theory, the process

k
((re0- 059

defines a bivariate renewal process.

@ In general, the difficulty stems from the fact that those two
renewal processes are correlated in a non-trivial way.

o E(y) <oo: Y p_;y(k) ~ nE(y)
o E(|P?]) < oo: the two subordinators become independent.



3th universality class

Long edges and large number of offsprings

e Start from a P.P.P. {(t;,P,)}r.er on R x M with intensity
measure dt x A\(dP).

o Let 7 be the push-forward measure of A by the map
(t,P) — (t,|P]) and assume that [;° x A x*m(dx) < oco.

o {(ti,| P}l is a Poisson Point Process on R x R with
intensity measure dt x 7(dx).

e From the sequence {(t;,|Py]|)}+,ci, one can construct a Lévy
process X; with Laplace exponent

aX + / (™™ — 14 Ax)7m(dx)
0

@ Choose a, 7 such that X is of infinite variation
(Jo" xm(dx) = c0) and does not drift to +oco.



3th universality class

("] St == max[ovt] X
@ Let L be the local at 0 of S — X.

@ Construct a discrete sequence from the ascending ladder
height process corresponding to X and analogously to the
discrete case, we consider

1 _ _
Lui 3 SL,I - XL717 PLfl
u; u; uj tel

where the t;'s correspond to the jump times of S.
@ This defines a P.P.P. with intensity

p(dt dr dP) = 1,¢joppMdP)pr(dt)

where p, is the law of the inf{u: X, = —r}

@ By mimicking the spine decomposition described above, one
can construct a continuum analog of the height process.



3th universality class

Start P.P.P. {(t;,Ps)}ici-

X o9t = X(t) — X(t — -): dual Lévy process
A(P,x) = sup{u : P([u,00)) > x}.

At jump times of S,

e 6 o6 o

y(u) = A(Pu, S = X))

H(t) = (Zugt . AS,>0 y(u)) o ¥t. (Random transformation
of the Lévy process X o 9t.)

H(t) = (Zugt - As,>0 1 ) o9t (Duquesne Le Gall)

(]



3th universality class

Open Questions

@ Convergence in the long edges and large number of offspring
case.
@ Ray-Knight type of theorems.

© Local time for generalized height processes.
@ Can we identify those local times with an underlying
continuum branching processes (measure valued process).



3th universality class

Thank you !
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