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e-mail: simenhaus@math.jussieu.fr

Abstract

We study a continuous time random walk on the d-dimensional lattice, subject to
a drift and an attraction to large clusters of a subcritical Bernoulli site percolation.
We find two distinct regimes: a ballistic one, and a subballistic one taking place when
the attraction is strong enough. We identify the speed in the former case, and the
algebraic rate of escape in the latter case. Finally, we discuss the diffusive behavior in
the case of zero drift and weak attraction.
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1 Model and results

Consider the graph of nearest neighbors on Zd, d > 1, and write x ∼ y when ‖x−y‖1 = 1.
Here, ‖ · ‖1 is the `1-norm, though | · | denotes the Euclidean norm.

An environment is an element ω of Ω = {0, 1}Zd . Environments are used to construct
the independent identically distributed (i.i.d.) Bernoulli site percolation on the lattice. We
consider the product σ-field on Ω and for p ∈ (0, 1), the probability P = B(p)⊗Zd , where
B(p) denotes the Bernoulli law with parameter p. A site x in Zd is said open if ωx = 1,
and closed otherwise. Consider the open connected components (so-called clusters) in the
percolation graph. The cluster of an open site x ∈ Zd is the union of {x} with the set of all
y ∈ Zd which are connected to x by a path with all vertices open. The cluster of a closed
site is empty. We denote by Cx the cardinality of the cluster of x.

It is well known that there exists a critical pc = pc(d) such that for p < pc, P-almost
surely, all connected open components (clusters) of ω are finite, though for p > pc, there
a.s. exists an infinite cluster. Moreover, it follows from [1], [10] that, in the first case, the
∗Partially supported by CNRS (UMR 7599 “Probabilités et Modèles Aléatoires”)
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clusters size has an exponential tail: For any p < pc, there exists ξ = ξ(p) > 0 such that
for all x,

lim
n→∞

1
n

ln P(Cx > n) = −ξ .

In this paper, we fix p < pc. Let ` = (`k; 1 6 k 6 d) be a unit vector, λ and β two
non-negative number. For every environment ω, let Pω be the law of the continuous time
Markov chain Y = (Yt)t > 0 on Zd starting at 0 with generator L given for continuous
bounded functions f by

Lf(x) = K
∑
e∼0

eλ`·e−βCx
[
f(x+ e)− f(x)

]
,

where we chose the normalizing constant K as K =
(∑

e∼0 e
λ`·e)−1 for simplicity. Given

ω, define the measure µ on Zd by

µ(x) = e2λ`·x+βCx . (1)

The random measure µ combines a shift in the direction ` together with an attraction
to large clusters. Observe that the process Y admits µ as invariant, reversible measure.
Markov processes having µ as invariant measure are of natural interest in the context of
random walks in random environment. They describe random walks which have a tendency
to live on large clusters, the attraction becoming stronger as β is increased. The isotropic
case, λ = 0, has been considered in [14] with a different, discrete-time dynamics. There,
the authors proved that the walk is diffusive for small β, and subdiffusive for large β.
The investigation of slowdowns in the anisotropic case is then natural. In [16], a random
resistor network is considered with a invariant reversible measure of the form C(x, ω)e2λ`·x

where the random field (C(x, ω);x ∈ Zd) is stationary ergodic and bounded away from 0
and +∞: in this case, the random walks in random environment is ballistic for all positive
λ.

The study of a general dynamics in the presence of a drift contains many difficult
questions, and the advantage of the particular process Y considered here is that we can
push the analysis farther. We could as well handle the discrete time analogous of Y , i.e. the
random walks in random environment with geometric holding times instead of exponential
ones, which falls in the class of marginally nestling walks in the standard classification (e.g.,
[20]). The Markov process Y can also be described with it skeleton and its jump rates. The
skeleton X = (Xn)n∈N is defined as the sequence of distinct consecutive locations visited
by Y . Then, X is a discrete time Markov chain with transition probabilities P̃ , given for
x ∈ Zd and e ∼ 0 by

∀x ∈ Zd, ∀e ∼ 0, P̃ (Xn+1 = x+ e|Xn = x) =
eλ`·e∑
e′∼0 e

λ`·e′ =: p̃e ,

and P̃ (Xn+1 = y|Xn = x) = 0 if y is not a nearest neighbor of x. The jump rate of
Y at site x is equal to exp−βCx, and the holding times are independent, exponentially
distributed with mean expβCx. The Markov chain X is quite simple, it is the random
walk on Zd with drift

d(λ) =
1∑d

k=1 cosh(λ`k)

(
sinh(λ`k)

)
1 6 k 6 d

. (2)
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It is plain that for the random walk,

Xn

n
−→ d(λ) P̃ − a.s., (3)

so directional transience is clear, and the law of large number for Y boils down to studying
the clock process which takes care of the jump times. As can be seen from formula (6),
the process considered here is a generalization of the so-called random walk in a random
scenery, or the random walk subordinated to a renewal process, which are used as effective
models for anomalous diffusions. The difference is essentially that the environment (i.e.,
the field of jump rates) has here some space correlations, which are short-range. It is also
related to the trap model considered in the analysis of the aging phenomenon introduced
in [3]: the aging of this model has been studied in details, see [4] for a recent review.

For a fixed ω, Pω is called the quenched law and we define the annealed law P by

P = P× Pω.

Of course, statements which hold P -a.s., equivalently hold Pω-a.s. for P-a.e. environment.
Finally, we stress that we assume d > 1 in this paper. The case d = 1 is special since the

critical threshold pc(1) = 1. Moreover, specific techniques are available in one dimension,
e.g. [20] for a survey, however we will stick as much as possible to techniques applying for
all d.

Our first result is the law of large numbers.

Theorem 1. (Law of large numbers) For any λ > 0 and any β > 0,

Yt
t
−−−−→
t→+∞

v(λ, β), P − a.s.,

where
v(λ, β) =

(
EeβC0

)−1
d(λ) . (4)

In particular, v(λ, β) = 0 if β > ξ or λ = 0 though v(λ, β) · ` > 0 if β < ξ and λ 6= 0.

As in the case λ = 0 considered in [14], slowdowns occur for large disorder intensity
β, when the walk gets trapped on large percolation clusters. This behavior is reminiscent
of the biased random walk on the supercritical percolation infinite cluster [19], [2] where
ballistic or subballistic regimes take place according to the parameters values. The slow-
downs in our paper have a similar nature to those in some one dimensional random walks
in random environment, see [18], [9] and [17]. Moreover, as in the one dimensional case, we
obtain here explicit values for the rate of escape, a rather unusual fact in larger dimension.
More drastic (logarithmic) slowdowns were also found for an unbiased walker in a moon
craters landscape in [6], [7], or diffusions in random potentials [11], but in these models the
behavior at small disorder is qualitatively different from the behavior without disorder.

The next result contains extra information on the subballistic behavior.

Theorem 2. (Subballistic regime) Let β > ξ.

1. For any d > 1 and λ > 0,

ln |Yt|
ln t

−−−−→
t→+∞

ξ

β
P − a.s.
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2. If λ = 0, for any d > 2 we have

lim sup
t→+∞

ln |Yt|
ln t

=
ξ

2β
P − a.s.

3. If d = 1 and λ = 0 we have

lim sup
t→+∞

ln |Yt|
ln t

=
1
2

( β
2ξ

+
1
2

)−1
P − a.s.

Hence, the spread of the random walks in random environment scales algebraically with
time in all cases. Note that in the isotropic case λ = 0, the slowdown is larger for d = 1
than for d > 2. This will appear in the proof as a consequence of the strong recurrence
of the simple random walk X in the one-dimensional case. Note that our results are only
in the logarithmic scale, though the scaling limit has been obtained for the isotropic trap
model, in dimension d = 1 (e.g., [4]), and d > 2 [5] with limit given, if the disorder is
strong, by the time change of a Brownian motion by the inverse of a stable subordinator
(fractional kinetics). Though we believe that the scaling limit of our model without drift
(λ = 0) is the same, we could not get finer results because of the presence of correlations in
the medium. Moreover, the case of a drift λ 6= 0 has not been considered in the literature,
except for d = 1 with renormalization group arguments [13].

To complete the picture, we end by the diffusive case. (Recall that β < ξ is sufficient
for E(eβC0) <∞.)

Theorem 3. (Diffusive case regime) Assume λ = 0, and E(eβC0) <∞. Then, we have
a quenched invariance principle for the rescaled process Zε = (Zεt )t > 0, Zεt = ε1/2Yε−1t:
For almost every ω, as ε ↘ 0, the family of processes Zε converges in law under Pω
in the Skorohod topology to the d-dimensional Brownian motion with diffusion matrix
Σ =

(
d× E(eβC0)

)−1
Id. Moreover,

lim sup
t→+∞

ln |Yt|
ln t

=
1
2

a.s. (5)

For the proof of our results we will take the point of view of the environment seen from
the walker. It turns out that the “static” environmental distribution is invariant for the
dynamics. Hence the environment is always at equilibrium.

The paper is organized as follows. In the next section, we introduce the basic ingredients
for our analysis and we prove the law of large numbers of Theorem 1. The last section is
devoted to the subballistic regime and contains the proofs of Theorem 2 and 3.

2 Preliminaries and the proof of Theorem 1

For x ∈ Zd, T x will denote the space shift with vector x. We will consider also the time
shift θ.

Skeleton and clock process of Y . The sequence (Sn;n > 0) of jump times of the
Markov process Y with right-continuous paths is defined by S0 = 0 < S1 < S2 < . . .,
Yt = YSn for t ∈ [Sn, Sn+1), YSn+1 6= YSn . The skeleton of Y is the sequence X given
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by Xn = YSn , n > 0. As mentioned above, the skeleton X of Y is the simple random
walk with drift. For any x in Zd, the jump rate of (Yt)t > 0 at x is e−βCx . Hence the
time Sn of the n-th jump is the sum of n independent random variables with exponential
distribution with mean eβCXi , i = 1, . . . n. This means that the sequence E = (Ei)i∈N, with
Ei = e−βCXi (Si+1 − Si), is, under the quenched law and then also under the annealed
law, a sequence of i.i.d. exponential variables with mean 1, with E and X independent.
The law of this sequence will be denoted by Q (Q = Exp(1)⊗N, with Exp(1) the mean 1,
exponential law). For any n in N, the time Sn of the n-th jump is given by

Sn =
n−1∑
i=0

EieβCXi . (6)

This sequence can be view as a step function St := S[t], where [·] is the integer part, and
we also define its generalized inverse S−1: for any t > 0,

S−1(t) = n ⇐⇒ Sn 6 t < Sn+1 .

We observe that Sn →∞ as n→∞ Pω-a.s. for all ω, making the function S−1 defined on
the whole of R+. Then, Pω-a.s.,

XS−1(t) = Y (t) , ∀t > 0 . (7)

and therefore, the process S−1 is called the clock process.
Conversely, let E , X and ω be independent, with distribution Q, P̃ and P respectively,

defined on some new probability space. Then, fixing λ and viewing β as a parameter,
by (6) and (7) we construct, on this new probability space, a coupling of the processes
Y = Y (β) for all β ∈ R. The coupling has the properties that the skeleton is the same for
all β, and that the clock processes are such that for β > β′ and t > 0,

S−1(β; t) 6 S−1(β′; t). (8)

The environment seen from the walker. Depending on the time being discrete or
continuous, we consider the processes (ω̃n)n∈N and (ω̂t)t > 0 defined by

ω̃n = TXnω , ω̂t = T Ytω = ω̃S−1(t)

for n > 0, t > 0. We start with the case of discrete time.

Lemma 1. Under P , (ω̃i)i∈N is a stationary ergodic Markov chain. The same holds for
(ω̃i, Ei)i∈N.

Proof of Lemma 1. As (Ei)i∈N is an i.i.d. sequence of variables independent of ω̃, it is
enough to prove Lemma 1 for the process (ω̃i)i∈N. Under P (resp Pω) (ω̃i)i∈N is markovian
with transition kernel R defined for any bounded function f by

Rf(ω) =
∑
e∼0

p̃ef(T eω) ∀ω ∈ Ω,
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and initial distribution P (resp δω). The transitions of (ω̃i)i∈N does not depend on ω like
those of X and, in this sense, the sequence is itself a random walk. Since P is invariant by
translation,

E[f(ω̃1)] =
∫ ∑

e∼0

p̃ef(T eω)dP =
∑
e∼0

p̃e

∫
f(T eω)dP = E[f(ω)],

showing that P is an invariant measure for (ω̃i)i∈N.
We will use F to denote the product σ-field on ΩN, and for any k > 0, Fk will denote

the σ-field generated by the k first coordinates. Note that θ is measurable and preserves
the law of ω̃ under P . We have to prove that the invariant σ-field Σ := {A ∈ F , 1A(ω̃) =
1A(θω̃), P -a.s.} is trivial. Let Y be a Σ-measurable bounded random variable on ΩN, we
have to show that it is P -a.s. constant.

Define for all ω in Ω, hY (ω) := Eω[Y ]. We will study this function with standard
arguments e.g. chapter 17.1.1 of [12]. Using Markov property and the θ-invariance of Y ,
we can show that,

hY (ω̃k) = E[Y |Fk] ∀k ∈ N, P -a.s. (9)

As a consequence, under P , (hY (ω̃k))k > 0 is both a stationary process and an a.s. conver-
gent martingale, and hence it is a.s. constant. In particular,

Y = hY (ω̃0) P -a.s.,

what means that Y can be consider as a function of the first coordinate alone. The next
step is to show that hY is P-a.s. harmonic, that is

RhY (ω̃0) = hY (ω̃0), P -a.s.

It is a consequence of the following computation,

RhY (ω̃0) = E[hY (ω̃1)|F0] P -a.s.
= E[E[Y |F1]|F0] P -a.s.
= hY (ω̃0) P -a.s.,

where the second equality is true because of (9). We will now show that Y is invariant by
translation in space. By invariance of P and harmonicity of hY , it is true that∑

e∼0

∫
p̃e(Y − Y ◦ T e)2dP = 0.

For every e neighbour of 0, p̃e > 0, and the previous equation implies that, P almost surely
Y = Y ◦ T e for any e ∼ 0. Together with the ergodicity of P, this shows that Y is P -a.s.
constant, and completes the proof.

As a consequence of Lemma 1 and Birkhoff’s ergodic theorem, for any function f in
L1(ΩN) (or f non negative),

1
n

n−1∑
k=0

f(θkω̃) n→+∞−−−−−→ E[f ] P - a.s.
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Now, we turn to the time continuous case, and we consider the empirical distribution
1
t

∫ t
0 δω̂sds of the environment seen from the walker up to time t. Our next result is a law of

large numbers for this random probability measure. For small β, the empirical distribution
converges to some limit P0, which is then an invariant measure for (ω̂t)t > 0.

Corollary 1. If β < ξ then P -almost surely, the empirical distribution of the environment
seen from the walker, 1

t

∫ t
0 δω̂sds, converges weakly to P0 defined by dP0 = eβC

E[eβC ]
dP.

Proof of Corollary 1. We need to show that t−1
∫ t

0 f(ω̂s)ds →
∫
fdP0 as t → ∞, for all

real bounded continuous function f on Ω. Since eβC0 is integrable when β < ξ, this follows
from the convergence along the sequence t = Sn, n→∞. By (6), this is equivalent to

n−1
∑n−1

i=0 Eie
βCXif(ω̃i)

n−1
∑n−1

i=0 Eie
βCXi

−→
∫

Ω
fdP0 , n→∞.

We first study the P -almost sure convergence of the denominator, i.e. of n−1Sn. Define
the real function g on (RN,ΩN)

g : ((Ei)i∈N, (ω̃i)i∈N) 7→ E0e
βC0(eω0)

and note that CXn = C0(ω̃n). Applying Lemma 1 and the ergodic theorem to (ω̃, E) and to
the non negative function g, we obtain that n−1Sn converges P -almost surely to E[eβC0 ].
The numerator can be studied with the same arguments, and we obtain the claim since
for β < ξ both limits are finite.

With this in hand, we can easily complete the

Proof of Theorem 1. Write

Yt
t

=
XS−1(t)

S−1(t))
S−1(t)

S(S−1(t))
S(S−1(t))

t
.

Recall from (3) that the first factor in the right-hand side converge almost surely to d(λ)
as t → ∞. In the proof of Corollary 1 we have shown that S(S−1(t))/S−1(t) → E[eβC0 ]
a.s. for β < ξ, but clearly the result remains true for all β (the limit is infinite for β > ξ).
For the last factor in the right-hand side we simply observe that

S(S−1(t))
S(S−1(t) + 1)

6
S(S−1(t))

t
6 1 , (10)

yielding that S(S−1(t))/t converges P -almost surely to 1 if E[eβC0 ] <∞: in this case, we
then conclude that Yt/t converges P -almost surely to v(λ, β) given by (4).

In the case E[eβC0 ] =∞, we just use the right inequality in (10) to obtain the P -almost
surely convergence of Yt/t to v(λ, β) = 0.
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3 Subballistic regime, and the proofs of Theorem 2 and 3

We start with a few auxiliary results.

Lemma 2. Assume d > 2 or λ > 0. Then, for any ε > 0, there exists α > 0 such that
P -almost surely, we eventually have

]
{
i 6 n, CXi > (

1
ξ
− ε) lnn

}
> nα

with the notation ]A for the cardinality of a set A.

Proof of Lemma 2. Define the range Rn as the number of points visited by (Xi)i∈N during
the first n steps. For λ > 0, there exists a constant c1 > 0 such that P̃ -almost surely
eventually Rn > c1n. For λ = 0 and d > 2, it is well known (see chapter 21 of [15]) that
there exists a constant c2 such that P̃ -almost surely eventually Rn > c2

n
lnn (when d > 3,

the walk is transient and the correct order of Rn is n). In all cases, there exists a constant
c3 > 0 such that under the assumptions of Lemma 2, we have P̃ -almost surely, eventually,
Rn > c3

n
lnn . For a fixed n in N, we define recursively the time Tni by

Tn0 = 0,

Tni = inf{Tni−1 < k 6 n, |Xk −XTnj
| > 2(

1
ξ
− ε) lnn, ∀j < i} ∀i > 1,

inf ∅ = +∞.

Note that the balls with center XTnj
and radius (ξ−1 − ε) lnn are pairwise disjoint, and

define Kn the number of such balls, i.e.

Kn = max{i > 0 : Tni < +∞}

As the cardinality of those ball is c4 lnd n (for some c4 > 0), it follows from the previous
discussion on the range that P̃ -almost surely, eventually, Kn > c n

lnd+1 n
, where c denotes a

positive constant. From now on we fix a path (Xi)i > 0 such that Kn > c n
lnd+1 n

eventually.
In the rest of the proof, we take n large enough so that the inequality holds. Then,

P
(
]
{
i 6 Kn, CXTn

i
6 (

1
ξ
− ε) lnn

}
> Kn − nα

)
= P

(
∃I ⊂ {1, . . .Kn}, ]I = Kn − [nα] : ∀i ∈ I, CXTn

i
6 (

1
ξ
− ε) lnn

)
6

∑
I⊂{1,...Kn},]I=Kn−[nα]

P
(
∀i ∈ I, CXTn

i
6 (

1
ξ
− ε) lnn

)
For all j such that 0 6 j 6 Kn − nα, Bn

i denotes the ball with center XTni
and radius

(1
ξ − ε) lnn. The event {CXTn

i
6 (1

ξ − ε) lnn)} is σ{ωx, x ∈ Bn
i } measurable. As the balls

Bn
i are disjoint and the environment is i.i.d.,

P
(
]
{
i 6 Kn, CXTn

i
6 (

1
ξ
− ε) lnn

}
> Kn − nα

)
6

(
Kn

[nα]

)(
1− P(C0 > (

1
ξ
− ε) lnn)

)Kn−[nα]

6 c5n
nα
(
1− n−(1−εξ)+o(1)

)c n

lnd+1 n
−nα

,
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for some suitable constant c5 > 0. We now choose α < min(1, εξ), so that∑
n

P
(
]
{
i 6 Kn, CXTi 6 (

1
ξ
− ε) lnn

}
> Kn − nα

)
<∞

We conclude using Borel-Cantelli’s lemma.

Lemma 3. Assume β > ξ. For d > 2 or λ > 0, we have lim infn lnSn
lnn > β

ξ , P -almost
surely.

Proof of Lemma 3. Let η be a positive real number. With ε := η/β, from Lemma 2, there
exists α > 0 such that P̃ ⊗ P-almost surely, there exists a natural number N = N(X,ω)
such that for n > N , the set I = {i 6 n, CXi > (1

ξ − ε) lnn} has cardinality ]I > nα. For
n > N ,

Q(Sn < nβ/ξ−η) 6 Q(EieβCXi < nβ/ξ−η, i ∈ I)

6 Q(E1e
βCX1 < nβ/ξ−η)n

α

6 Q(E1 < nβε−η)n
α

= (1− e−1)n
α
.

From previous inequality, we obtain that Q(Sn < nβ/ξ−η) is the general term of a conver-
gent series and we can use Borel-Cantelli’s Lemma to conclude.

Lemma 4. Assume β > ξ. For d > 1 and λ > 0, we have P -almost surely, lim supn
lnSn
lnn 6 β

ξ .

Proof of Lemma 4. For any α in (0, 1), by subadditivity we have (u + v)α 6 uα + vα for
all positive u, v, and then

Sαn 6
n∑
i=1

Eαi eαβCXi .

Now, define the function fα

fα : (RN,ΩN) → R
((Ei)i∈N, (ω̃i)i∈N) → Eα0 eαβC0(eω0).

Applying Lemma 1 and the ergodic theorem to (ω̃, E) with the non negative function fα,
we obtain that for any α such that αβ < ξ,

lim sup
n→+∞

Sαn
n

6 lim
n→+∞

∑n
i=1 Eαi e

αβCXi

n
= EQ(Eα1 )× E(eαβC0) <∞

almost surely. Therefore,

lim sup
n→+∞

lnSn
lnn

<
1
α
.

Since α is arbitrary in (0, ξ/β), the proof is complete.
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The two following lemmas deal with the one dimensional case. Notice that when d = 1,
for all n > 0,

P(C > n) = p
n−1∑
k=0

pkpn−1−k = npn,

and as a consequence ξ = − ln p.

Lemma 5. Assume β > ξ. For d = 1 and λ = 0, we have P -almost surely, lim supn
lnSn
lnn 6 β

2ξ+
1
2 .

Proof of Lemma 5. Here we need to relabel our sequence of exponential variables (Ei; i > 0).
For y ∈ Z, k ∈ N, define Ey,k by

Ey,k = Ei with i such that Xi = y, ]{j : 0 6 j 6 i,Xj = y} = k ,

i.e. the exponential corresponding to the k-th passage at y. These new variables are a.s. well
defined when d = 1 and λ = 0, and it is not difficult to see that the sequence (Ey,k)y∈Z,k∈N
is i.i.d. with mean 1 exponential distribution, and independent of X and of ω. The number
of visits of the walk to a site y at time n will be denoted by θ(n, y). We can rewrite Sn in
the following way,

Sn =
n−1∑
i=0

eβCXiEi =
∑
y∈Z

eβCy

θ(n,y)−1∑
k=0

Ey,k

 . (11)

Notice that for any η > 0,

P̃ − a.s. for n large enough, θ(n, y) = 0 ∀y > n
1
2

+η (12)

(see for example Theorem 5.7 p.44 in [15]). As a consequence, we obtain that for any
positive α < 1, P̃ -almost surely for n large enough,

Sαn 6
n

1
2+η∑

y=−n−
1
2+η

eαβCy

θ(n,y)−1∑
k=0

Ey,k

α

.

Here and below, the sum
∑b

y=a with real numbers a < b, ranges over all y ∈ Z with
a 6 y 6 b. Notice now that for any ν > 0,

P̃ − a.s. for n large enough, sup{θ(n, y), y ∈ Z} < n
1
2

+ν (13)

(see for example Theorem 11.3 p118 in [15]), and we obtain for such n,

1

2n
1
2

+ηn( 1
2

+ν)α
Sαn 6

1

2n
1
2

+η

n
1
2+η∑

y=−n−
1
2+η

eαβCy(
1

n
1
2

+ν

n
1
2+ν∑
k=0

Ey,k)α. (14)
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For any y in Z and n in N, we define uy,n =
1

n
1
2

+ν

n
1
2+ν∑
k=0

Ey,k. Fix µ > 0, according to the

large deviation principle for i.i.d. sequences, there exists Iµ > 0 such that, for any y in Z
and any n in N,

Q(|uy,n − 1| > µ) 6 e−Iµn
1
2+ν

.

Using the independence of the (Ey,k)y∈Z,k∈N, it is easy to check thatQ(∃y ∈ [−n
1
2

+η, n
1
2

+η], |uy,n−
1| > µ) is the general term of a convergent series and using Borel-Cantelli’s lemma we
obtain that Q-almost surely, for n large enough and for any −n

1
2

+η < y < n
1
2

+η,

|uy,n − 1| < µ. (15)

From the ergodicity of the environment, it is true that P-almost surely,

1

2n
1
2

+η

n
1
2+η∑

y=−n−
1
2+η

eαβCy
n→+∞−−−−−→ E[eαβC ]. (16)

Using now (14),(15) and (16), we obtain that for any α < ξ/β, there exists M < +∞ such
that, P -almost surely for n large enough,

Sn < Mn
1
2α

+ η
α

+ 1
2

+ν .

Since the last inequality is true for η and µ arbitrary small and α arbitrary close to ξ/β,
the proof is complete.

Lemma 6. Assume β > ξ. For d = 1 and λ = 0, we have P -almost surely, lim infn→∞ lnSn
lnn > β

2ξ+
1
2 .

Proof of Lemma 6. Let η and ν be two positive real numbers. As a consequence of (12)
and (13), P̃ -almost surely, for n large enough, at least n

1
2
− νξ

4 sites are visited more than
n

1
2
−η times, we will denote the set of those sites by On. Fix now a path (Xi)i > 0 such

that for all n > 0, ]On > n
1
2
− νξ

4 . As in the proof of Lemma 3, we can choose a family

of αn := n
1
2−

νξ
4

1
2

( 1
ξ
−ν) lnn

points (yi)i 6 αn in On such that the intervals (Ii)i 6 αn centered in

(yi)i 6 αn and of length 1
2(1
ξ − ν) are disjoint. If all sites of an interval are open, it will be

said open, otherwise it will be said closed. Using the fact that the (Ii)i 6 αn are disjoint,
we obtain that,

P(Ii is closed, for all i 6 αn) 6 (1− n−
1
2

(1−νξ)+o(1))αn

6 e−n
νξ
4 +o(1)

.

As a consequence of Borel-Cantelli’s lemma we obtain that P -almost surely, for n large
enough, there exists at least one site visited more than n

1
2
−η times and that belongs to a

cluster of size greater than 1
2(1
ξ − ν) lnn, we will note this site ỹn, and therefore,

Sn >
n

1
2−η∑
i=0

n
β
2ξ
−νβEeyn,i.

11



Using the large deviation upper bound similarly to the lines below (14), we obtain from
the last inequality that P -almost surely, for n large enough,

Sn >
1
2
n

1
2

+ β
2ξ
−νβ−η

.

Since ν and η can be chosen arbitrary small, this last inequality ends the proof.

Proof of Theorem 2. We first assume that β > ξ. From Lemma 3 and Lemma 4, we know
that under assumptions of parts 1 or 2 of Theorem 2,

lim
n→+∞

lnSn
lnn

=
β

ξ
P − a.s.

From the inequalities

lnS(S−1(t))
lnS−1(t)

6
ln t

lnS−1(t)
<

lnS(S−1(t) + 1)
lnS−1(t)

,

we deduced that P -almost surely,

lim
t→+∞

ln t
lnS−1(t)

=
β

ξ
.

Applying the same arguments as above, we deduce from Lemma 5 and Lemma 6 that
under assumptions of part 3 of Theorem 2,

lim
t→+∞

ln t
lnS−1(t)

=
β

2ξ
+

1
2
, P − a.s.

Write now,
ln |Yt|
ln t

=
ln |XS−1(t)|
lnS−1(t)

lnS−1(t)
ln t

.

To conclude in the case β > ξ, note that under assumptions of part 1, ln |Xn|
lnn con-

verges P̃ -almost surely to 1 and under assumption of part 2 and 3, P̃ -almost surely,
lim supn→+∞

ln |Xn|
lnn = 1

2 by the law of iterated logarithm.
To extend the results to the border case β = ξ, we use the property (8) of the coupling,

which implies that the long-time limit of ln |Yt|
ln t is non-increasing in β. This completes the

proof of part 1 with β = ξ. For the other parts, we use the property (5), that we will prove
independently below. Again, the results claimed for β = ξ in parts 2 and 3 follow from
the monotonicity of the coupling.

Proof of Theorem 3. First observe that when λ = 0,

f(Yt)−
∫ t

0
(2d)−1e−βCYs

∑
e∼0

[
f(Ys + e)− f(Ys)

]
ds

is a Pω-martingale for f continuous and bounded. Then, for all ω, the process Y is a
square integrable martingale under the quenched law Pω. Its bracket is the unique process

12



〈Y 〉 taking its values in the space of nonnegative symmetric d × d matrices such that
YtY

∗
t − 〈Y 〉t is a martingale and 〈Y 〉0 = 0. We easily compute

〈Y 〉t =
∫ t

0
e−βCYsds× d−1Id

By Corollary 1, we see that the bracket Zε is such that, for all t > 0,

〈Zε〉t = ε〈Y 〉ε−1t

= ε

∫ ε−1t

0
e−βCYsds× d−1Id

−→ tΣ as ε↘ 0

P -a.s., and then in Pω-probability for a.e. ω. Let us fix such an ω, and use the law Pω.
Since the martingale Zε has jumps of size ε−1/2 tending to 0 and since its bracket converges
to a deterministic limit, it is well known (e.g. Theorem VIII-3.11 in [8]) that the sequence
(Zε, ε > 0) converges to the centered Gaussian process with variance tΣ, yielding the
desired invariance principle under Pω.

We now prove (5). Since λ = 0 we have lim supn ln |Xn|/ lnn = 1/2, P̃ -a.s., and since
EeβC0 <∞ it holds a.s. limt lnS−1(t)/ ln t = 1. This implies the claim.

Concluding remarks: (i) Part 2 of Theorem 2 deals with the upper limit in the
subdiffusive case λ = 0, β > ξ. We comment here on the lower limit. In dimension d > 3,
n−1/2|X[ns]| converges to a transient Bessel process, and it is not difficult to see that

lim sup
t→∞

ln |Yt|
ln t

= lim
t→∞

ln |Yt|
ln t

= ξ/(2β)

In dimension d 6 2, X is recurrent, and then lim inft |Yt| = 0 and

lim inf
t→∞

ln |Yt|
ln t

= −∞

(ii) A natural question is: What does the environment seen from the walker look like in
the subballistic case? In fact, the prominent feature is that the size of surrounding cluster
is essentially the largest one which was visited so far. Consider for instance the case of
positive λ. One can prove that, for β > ξ and ε > 0,

1
t

∣∣∣ {s ∈ [0, t] : (ln t)−1CYs ∈ [β−1 − ε, β−1 + ε]
} ∣∣∣ −→ 1

P -a.s. as t↗∞.
(iii) We end the paper with a short comment on the case when the environment is a

general random field, not necessarily coming from site percolation. It is easy to check that
Theorems 1 and 3, together with their proofs, remain valid for a stationary, ergodic random
field (Cx, x ∈ Zd). On the contrary, our proof of Theorem 2 uses some independence
property specific to the percolation model.

Acknowledgement: We thank Marina Vachkovskaia for stimulating discussions on the
model.
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