▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Asymptotic results on the length of coalescent trees

Arno Siri-Jégousse

MAP5 - Université Paris Descartes joint work with J-F Delmas and J-S Dhersin

CIRM - May 26th 2000

ション ふゆ アメリア メリア しょうくの

The Infinite Sites Model, Kimura (1969)

- \blacktriangleright We consider a genealogical tree of n individuals, of total length $L^{(n)}$
- Mutations occur at rate θ
- ► conditional on L⁽ⁿ⁾, the number of mutations is distributed like Poisson with mean θL⁽ⁿ⁾

The Infinite Sites Model, Kimura (1969)

- \blacktriangleright We consider a genealogical tree of n individuals, of total length $L^{(n)}$
- Mutations occur at rate θ
- ► conditional on L⁽ⁿ⁾, the number of mutations is distributed like Poisson with mean θL⁽ⁿ⁾
- ▶ Each mutation appears in a new site, so that we can observe the number of mutations, S⁽ⁿ⁾, as the number of segregating sites in our actual population.

 $S^{(n)} = 3$

The coalescent

• $(\Pi_t^{(n)}, t \ge 0)$ is a continuous time Markov chain with values in \mathcal{P}_n , the set of partitions of $\{1, \ldots, n\}$

▲□▶ ▲課▶ ▲注▶ ★注▶ 注目 - のへで

ション ふゆ く 山 マ チャット しょうくしゃ

The coalescent

- $(\Pi_t^{(n)}, t \ge 0)$ is a continuous time Markov chain with values in \mathcal{P}_n , the set of partitions of $\{1, \ldots, n\}$
- $\Pi_0^{(n)} = \{1\}, \dots, \{n\}.$
- ▶ Each block of $\Pi_t^{(n)} \in \mathcal{P}_n$ indicates individuals living at time 0 which have a common ancestor at time -t

ション ふゆ アメリア メリア しょうくの

Introduction

The Λ -coalescent, Pitman (1999), Sagitov (1999)

If there are b blocks, each k-uplet of them merge to 1 at rate $\lambda_{b,k}$, independent of the current number of blocks :

$$\lambda_{b,k} = \int_0^1 x^{k-2} (1-x)^{b-k} \Lambda(dx)$$

for $2 \leq k \leq b,$ where Λ is a finite measure on [0,1]

The Λ -coalescent, Pitman (1999), Sagitov (1999)

If there are b blocks, each k-uplet of them merge to 1 at rate $\lambda_{b,k}$, independent of the current number of blocks :

$$\lambda_{b,k} = \int_0^1 x^{k-2} (1-x)^{b-k} \Lambda(dx)$$

Definition

The markov process $\Pi^{(n)} = (\Pi_t^{(n)}, t \ge 0)$ with dynamics described above and starting from the trivial partition of \mathcal{P}_n is called the $(n-)\Lambda$ -coalescent

Consistence : $\Pi^{(n)}$ is the restriction of the so-called Λ -coalescent process Π defined on the set of partitions of \mathbb{N}^* .

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Examples of Λ -coalescents

$$\lambda_{b,k} = \int_0^1 x^{k-2} (1-x)^{b-k} \Lambda(dx)$$

•
$$\Lambda = \delta_0$$
:
Kingman's coalescent(1982)
 $\lambda_{b,2} = 1, \ \lambda_{b,k} = 0 \text{ for } k \neq 2$
Only two blocks can merge at a time.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Examples of Λ -coalescents

$$\lambda_{b,k} = \int_0^1 x^{k-2} (1-x)^{b-k} \Lambda(dx)$$

- $\Lambda = \delta_0$: Kingman's coalescent(1982) $\lambda_{b,2} = 1$, $\lambda_{b,k} = 0$ for $k \neq 2$ Only two blocks can merge at a time.
- Λ = Lebesgue on[0,1] : Bolthausen-Szmitman coalescent(1998)

Examples of Λ -coalescents

$$\lambda_{b,k} = \int_0^1 x^{k-2} (1-x)^{b-k} \Lambda(dx)$$

•
$$\Lambda = \delta_0$$
:
Kingman's coalescent(1982)
 $\lambda_{b,2} = 1$, $\lambda_{b,k} = 0$ for $k \neq 2$
Only two blocks can merge at a time.

•
$$\Lambda$$
 is a $\beta(2-\alpha,\alpha)$ distribution, $\alpha \in (1,2)$:
 $\Lambda(dx) = C_0 x^{1-\alpha} (1-x)^{\alpha-1} \mathbf{1}_{[0,1]}(x) dx.$
Beta-coalescent

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Hypothesis

Let
$$\rho(t) = \int_t^1 \frac{\Lambda(dx)}{x^2}$$
. We will assume that :
 $\rho(t) = C_0 t^{-\alpha} + O\left(t^{-\alpha+\zeta}\right)$

with $\alpha \in (1,2)$ and $\zeta > 1 - \frac{1}{\alpha}$. This includes the Beta-coalescent case.

$$L^{(n)} = \sum_{k=0}^{\tau_n - 1} Y_k^{(n)} \frac{E_k}{g_{Y_k^{(n)}}}$$

• $g_b = \sum_{l=1}^{b-1} {b \choose l+1} \lambda_{b,l+1}$: rate of the next jump of the coalescent when there are b blocks. E_k are i.i.d rate 1 exponential r.v.

$$L^{(n)} = \sum_{k=0}^{\tau_n - 1} Y_k^{(n)} \frac{E_k}{g_{Y_k^{(n)}}}$$

$$L^{(n)} = \sum_{k=0}^{\tau_n - 1} Y_k^{(n)} \frac{E_k}{g_{Y_k^{(n)}}}$$

- g_b = ∑^{b-1}_{l=1} (^b_{l+1})λ_{b,l+1} : rate of the next jump of the coalescent when there are b blocks. E_k are i.i.d rate 1 exponential r.v.
- $Y_k^{(n)}$: number of blocks after k coalescences.

$$L^{(n)} = \sum_{k=0}^{\tau_n - 1} Y_k^{(n)} \frac{E_k}{g_{Y_k^{(n)}}}$$

- g_b = ∑^{b-1}_{l=1} (^b_{l+1}) λ_{b,l+1} : rate of the next jump of the coalescent when there are b blocks. E_k are i.i.d rate 1 exponential r.v.
- $Y_k^{(n)}$: number of blocks after k coalescences.
- τ_n : total number of coalescences.

ション ふゆ く 山 マ チャット しょうくしゃ

$L^{(n)} = \sum_{k=0}^{\tau_n - 1} Y_k^{(n)} \frac{E_k}{g_{Y_k^{(n)}}}$

- g_b = ∑_{l=1}^{b-1} (^b_{l+1}) λ_{b,l+1} : rate of the next jump of the coalescent when there are b blocks. E_k are i.i.d rate 1 exponential r.v.
- $Y_k^{(n)}$: number of blocks after k coalescences.
- τ_n : total number of coalescences.

Question

What is the asymptotic behavior of $L^{(n)}$?

The length

Approximations

$$L^{(n)} = \sum_{k=0}^{\tau_n - 1} Y_k^{(n)} \frac{E_k}{g_{Y_k^{(n)}}}$$
$$g_n \stackrel{+\infty}{\sim} C_0 \Gamma(2 - \alpha) n^{\alpha}$$

Replacing E_k 's by their man,1, we approximate $L^{(n)}$ by

$$\hat{L}^{(n)} = \sum_{k=0}^{\tau_n - 1} \left(Y_k^{(n)} \right)^{1 - \alpha}$$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Asymptotics of τ_n

Proposition

$$n^{-\frac{1}{\alpha}}\left(n-\frac{\tau_n}{\alpha-1}\right) \xrightarrow{\mathcal{L}} V_{\alpha-1}$$

where $(V_t, t \ge 0)$ is an α -stable Lévy process with non positive jumps with Laplace exponent $\psi(u) = u^{\alpha}/(\alpha - 1)$.

This result was also obtained by Iksanow and Möhle (2007) and Gnedin and Yakubovich (2008) with quite similar hypothesis.

ション ふゆ く 山 マ チャット しょうくしゃ

Asymptotics of the length

Let $\gamma = \alpha - 1$. We establish a first step to convergence and asymptotics of $L^{(n)}$ by giving results for $L_t^{(n)}$, the length of the coalescent tree up to the $\lfloor nt \rfloor$ -th coalescence, for $t \in (0, \gamma)$.

$$L_t^{(n)} = \sum_{k=0}^{\lfloor nt \rfloor \wedge \tau_n - 1} Y_k^{(n)} \frac{E_k}{g_{Y_k^{(n)}}}$$

As $\tau_n \sim \gamma n$, intuitively we have $L_{\gamma}^{(n)}$ close to $L^{(n)}$. This gives an idea of the results we should obtain for $L^{(n)}$.

Main result

Theorem

Let
$$v(t) = \int_0^t (1 - \frac{r}{\gamma})^{-\gamma} dr$$
 and $V_t^* = \int_0^t (1 - \frac{r}{\gamma})^{-\gamma} V_r dr$ Under our
conditions, for all $t \in (0, \gamma)$,
1. $n^{-2+\alpha} L_t^{(n)} \xrightarrow{P} \frac{v(t)}{C_0 \Gamma(2-\alpha)}$
2. For $\alpha \in (1, \frac{1+\sqrt{5}}{2})$
 $n^{-1+\alpha-\frac{1}{\alpha}} (L_t^{(n)} - \frac{v(t)}{C_0 \Gamma(2-\alpha)} n^{2-\alpha}) \xrightarrow{\mathcal{L}} V_t^*$
3. For $\alpha \in [\frac{1+\sqrt{5}}{2}, 2)$, if $\varepsilon > 0$

$$n^{-\varepsilon}(L_t^{(n)} - \frac{v(t)}{C_0 \Gamma(2-\alpha)} n^{2-\alpha}) \xrightarrow{P} 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Remarks

1. In the Beta-coalescent case, Berestycki et al. (2007) have already shown that

$$n^{-2+\alpha}L^{(n)} \xrightarrow{P} \frac{\Gamma(\alpha)\alpha(\alpha-1)}{2-\alpha}$$

2. Moreover in this case, we have $C_0=\frac{1}{\alpha\Gamma(2-\alpha)\Gamma(\alpha)},$ and so

$$\frac{v(\gamma)}{C_0\Gamma(2-\alpha)} = \frac{\Gamma(\alpha)\alpha(\alpha-1)}{2-\alpha}$$

which means that the (coarse) approximation of $L^{(n)}$ by $L^{(n)}_{\gamma}$ leads to the good limit.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲□▶

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Let's go back to the infinite sites model. $S^{(n)}$ is closely related to $L^{(n)}$ so we can obtain an asymptotic result for $S^{(n)}_t$, the number of mutations in the tree up to $\lfloor nt \rfloor$ th coalescence.

The length

Asymptotics of $S_t^{(n)}$

Let
$$a(t) = v(t)/C_o\Gamma(2-\alpha)$$
.

Corollary

Under our hypothesis, let $t \in (0,\gamma)$ and G be a standard gaussian r.v. independant of V

1. For $\alpha \in (1,\sqrt{2})$

$$n^{-1+\alpha-\frac{1}{\alpha}}(S_t^{(n)}-\theta a(t)n^{2-\alpha}) \xrightarrow{\mathcal{L}} \theta V_t^*$$

2. For $\alpha \in (\sqrt{2}, 2)$

$$n^{-1+\alpha/2}(S_t^{(n)} - \theta a(t)n^{2-\alpha}) \xrightarrow{\mathcal{L}} \sqrt{\theta a(t)}G$$

3. For $\alpha = \sqrt{2}$

$$n^{-1+\alpha/2}(S_t^{(n)} - \theta a(t)n^{2-\alpha}) \xrightarrow{\mathcal{L}} \theta V_t^* + \sqrt{\theta a(t)}G$$

- ◆母 ▶ ◆ 母 ▶ ◆ 母 ◆ ℃ ●

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Outlooks

- > we now have an idea of the behavior of the total length
- Parametric estimation (of θ , of α)