Asymptotic results on the length of coalescent trees

Arno Siri-Jégousse

MAP5 - Université Paris Descartes
joint work with J-F Delmas and J-S Dhersin
CIRM - May 26th 2000

The Infinite Sites Model, Kimura (1969)

- We consider a genealogical tree of n individuals, of total length $L^{(n)}$
- Mutations occur at rate θ
- conditional on $L^{(n)}$, the number of mutations is distributed like Poisson with mean $\theta L^{(n)}$

The Infinite Sites Model, Kimura (1969)

- We consider a genealogical tree of n individuals, of total length $L^{(n)}$
- Mutations occur at rate θ
- conditional on $L^{(n)}$, the number of mutations is distributed like Poisson with mean $\theta L^{(n)}$
- Each mutation appears in a new site, so that we can observe the number of mutations, $S^{(n)}$, as the number of segregating sites in our actual population.

$$
S^{(n)}=3
$$

The coalescent

- $\left(\Pi_{t}^{(n)}, t \geq 0\right)$ is a continuous time Markov chain with values in \mathcal{P}_{n}, the set of partitions of $\{1, \ldots, n\}$

The coalescent

- $\left(\Pi_{t}^{(n)}, t \geq 0\right)$ is a continuous time Markov chain with values in \mathcal{P}_{n}, the set of partitions of $\{1, \ldots, n\}$
- $\Pi_{0}^{(n)}=\{1\}, \ldots,\{n\}$.
- Each block of $\Pi_{t}^{(n)} \in \mathcal{P}_{n}$ indicates individuals living at time 0 which have a common ancestor at time $-t$

The Λ-coalescent, Pitman (1999), Sagitov (1999)

If there are b blocks, each k-uplet of them merge to 1 at rate $\lambda_{b, k}$, independent of the current number of blocks :

$$
\lambda_{b, k}=\int_{0}^{1} x^{k-2}(1-x)^{b-k} \Lambda(d x)
$$

for $2 \leq k \leq b$, where Λ is a finite measure on $[0,1]$

The Λ-coalescent, Pitman (1999), Sagitov (1999)

If there are b blocks, each k-uplet of them merge to 1 at rate $\lambda_{b, k}$, independent of the current number of blocks:

$$
\lambda_{b, k}=\int_{0}^{1} x^{k-2}(1-x)^{b-k} \Lambda(d x)
$$

Definition

The markov process $\Pi^{(n)}=\left(\Pi_{t}^{(n)}, t \geq 0\right)$ with dynamics described above and starting from the trivial partition of \mathcal{P}_{n} is called the (n-) Λ-coalescent

Consistence : $\Pi^{(n)}$ is the restriction of the so-called Λ-coalescent process Π defined on the set of partitions of \mathbb{N}^{*}.

Examples of Λ-coalescents

$$
\lambda_{b, k}=\int_{0}^{1} x^{k-2}(1-x)^{b-k} \Lambda(d x)
$$

- $\Lambda=\delta_{0}$:

Kingman's coalescent(1982)
$\lambda_{b, 2}=1, \lambda_{b, k}=0$ for $k \neq 2$
Only two blocks can merge at a time.

Examples of Λ-coalescents

$$
\lambda_{b, k}=\int_{0}^{1} x^{k-2}(1-x)^{b-k} \Lambda(d x)
$$

- $\Lambda=\delta_{0}$:

Kingman's coalescent(1982)
$\lambda_{b, 2}=1, \lambda_{b, k}=0$ for $k \neq 2$
Only two blocks can merge at a time.

- $\Lambda=$ Lebesgue on $[0,1]$:

Bolthausen-Szmitman coalescent(1998)

Examples of Λ-coalescents

$$
\lambda_{b, k}=\int_{0}^{1} x^{k-2}(1-x)^{b-k} \Lambda(d x)
$$

- $\Lambda=\delta_{0}$:

Kingman's coalescent(1982)
$\lambda_{b, 2}=1, \lambda_{b, k}=0$ for $k \neq 2$
Only two blocks can merge at a time.

- $\Lambda=$ Lebesgue on $[0,1]$:

Bolthausen-Szmitman coalescent(1998)

- Λ is a $\beta(2-\alpha, \alpha)$ distribution, $\alpha \in(1,2)$: $\Lambda(d x)=C_{0} x^{1-\alpha}(1-x)^{\alpha-1} \mathbf{1}_{[0,1]}(x) d x$.
Beta-coalescent

Hypothesis

Let $\rho(t)=\int_{t}^{1} \frac{\Lambda(d x)}{x^{2}}$. We will assume that :

$$
\rho(t)=C_{0} t^{-\alpha}+O\left(t^{-\alpha+\zeta}\right)
$$

with $\alpha \in(1,2)$ and $\zeta>1-\frac{1}{\alpha}$.
This includes the Beta-coalescent case.

$$
L^{(n)}=\sum_{k=0}^{\tau_{n}-1} Y_{k}^{(n)} \frac{E_{k}}{g_{Y_{k}^{(n)}}}
$$

- $g_{b}=\sum_{l=1}^{b-1}\binom{b}{l+1} \lambda_{b, l+1}$: rate of the next jump of the coalescent when there are b blocks. E_{k} are i.i.d rate 1 exponential r.v.

Time of next jump $\sim \mathcal{E}\left(g_{8}\right)$

$$
L^{(n)}=\sum_{k=0}^{\tau_{n}-1} Y_{k}^{(n)} \frac{E_{k}}{g_{Y_{k}^{(n)}}}
$$

- $g_{b}=\sum_{l=1}^{b-1}\binom{b}{l+1} \lambda_{b, l+1}$: rate of the next jump of the coalescent when there are b blocks. E_{k} are i.i.d rate 1 exponential r.v.

Time of next jump $\sim \mathcal{E}\left(g_{7}\right)$

$$
L^{(n)}=\sum_{k=0}^{\tau_{n}-1} Y_{k}^{(n)} \frac{E_{k}}{g_{Y_{k}^{(n)}}}
$$

- $g_{b}=\sum_{l=1}^{b-1}\binom{b}{l+1} \lambda_{b, l+1}$: rate of the next jump of the coalescent when there are b blocks. E_{k} are i.i.d rate 1 exponential r.v.

Time of next jump $\sim \mathcal{E}\left(g_{5}\right)$

$$
L^{(n)}=\sum_{k=0}^{\tau_{n}-1} Y_{k}^{(n)} \frac{E_{k}}{g_{Y_{k}^{(n)}}}
$$

- $g_{b}=\sum_{l=1}^{b-1}\binom{b}{l+1} \lambda_{b, l+1}$: rate of the next jump of the coalescent when there are b blocks. E_{k} are i.i.d rate 1 exponential r.v.

Time of next jump $\sim \mathcal{E}\left(g_{4}\right)$

$$
L^{(n)}=\sum_{k=0}^{\tau_{n}-1} Y_{k}^{(n)} \frac{E_{k}}{g_{Y_{k}^{(n)}}}
$$

- $g_{b}=\sum_{l=1}^{b-1}\binom{b}{l+1} \lambda_{b, l+1}$: rate of the next jump of the coalescent when there are b blocks. E_{k} are i.i.d rate 1 exponential r.v.

Time of next jump $\sim \mathcal{E}\left(g_{2}\right)$

$$
L^{(n)}=\sum_{k=0}^{\tau_{n}-1} Y_{k}^{(n)} \frac{E_{k}}{g_{Y_{k}^{(n)}}}
$$

- $g_{b}=\sum_{l=1}^{b-1}\binom{b}{l+1} \lambda_{b, l+1}$: rate of the next jump of the coalescent when there are b blocks. E_{k} are i.i.d rate 1 exponential r.v.

until we reach the common ancestor

$$
L^{(n)}=\sum_{k=0}^{\tau_{n}-1} Y_{k}^{(n)} \frac{E_{k}}{g_{Y_{k}^{(n)}}}
$$

- $g_{b}=\sum_{l=1}^{b-1}\binom{b}{l+1} \lambda_{b, l+1}$: rate of the next jump of the coalescent when there are b blocks. E_{k} are i.i.d rate 1 exponential r.v.
- $Y_{k}^{(n)}$: number of blocks after k coalescences.

$$
Y_{0}^{(8)}=8, Y_{1}^{(8)}=7, Y_{2}^{(8)}=5, Y_{3}^{(8)}=4, Y_{4}^{(8)}=2, Y_{5}^{(8)}=1
$$

$$
L^{(n)}=\sum_{k=0}^{\tau_{n}-1} Y_{k}^{(n)} \frac{E_{k}}{g_{Y_{k}^{(n)}}}
$$

- $g_{b}=\sum_{l=1}^{b-1}\binom{b}{l+1} \lambda_{b, l+1}$: rate of the next jump of the coalescent when there are b blocks. E_{k} are i.i.d rate 1 exponential r.v.
- $Y_{k}^{(n)}$: number of blocks after k coalescences.
- τ_{n} : total number of coalescences.

$$
\tau_{8}=5
$$

$$
L^{(n)}=\sum_{k=0}^{\tau_{n}-1} Y_{k}^{(n)} \frac{E_{k}}{g_{Y_{k}^{(n)}}}
$$

- $g_{b}=\sum_{l=1}^{b-1}\binom{b}{l+1} \lambda_{b, l+1}$: rate of the next jump of the coalescent when there are b blocks. E_{k} are i.i.d rate 1 exponential r.v.
- $Y_{k}^{(n)}$: number of blocks after k coalescences.
- τ_{n} : total number of coalescences.

Question

What is the asymptotic behavior of $L^{(n)}$?

Approximations

$$
\begin{aligned}
& L^{(n)}=\sum_{k=0}^{\tau_{n}-1} Y_{k}^{(n)} \frac{E_{k}}{g_{Y_{k}^{(n)}}} \\
& g_{n} \stackrel{+\infty}{\sim} C_{0} \Gamma(2-\alpha) n^{\alpha}
\end{aligned}
$$

Replacing E_{k} 's by their man,1, we approximate $L^{(n)}$ by

$$
\hat{L}^{(n)}=\sum_{k=0}^{\tau_{n}-1}\left(Y_{k}^{(n)}\right)^{1-\alpha}
$$

Asymptotics of τ_{n}

Proposition

$$
n^{-\frac{1}{\alpha}}\left(n-\frac{\tau_{n}}{\alpha-1}\right) \stackrel{\mathcal{L}}{\rightarrow} V_{\alpha-1}
$$

where $\left(V_{t}, t \geq 0\right)$ is an α-stable Lévy process with non positive jumps with Laplace exponent $\psi(u)=u^{\alpha} /(\alpha-1)$.

This result was also obtained by Iksanow and Möhle (2007) and Gnedin and Yakubovich (2008) with quite similar hypothesis.

Asymptotics of the length

Let $\gamma=\alpha-1$.
We establish a first step to convergence and asymptotics of $L^{(n)}$ by giving results for $L_{t}^{(n)}$, the length of the coalescent tree up to the $\lfloor n t\rfloor$-th coalescence, for $t \in(0, \gamma)$.

$$
L_{t}^{(n)}=\sum_{k=0}^{\lfloor n t\rfloor \wedge \tau_{n}-1} Y_{k}^{(n)} \frac{E_{k}}{g_{Y_{k}^{(n)}}}
$$

As $\tau_{n} \sim \gamma n$, intuitively we have $L_{\gamma}^{(n)}$ close to $L^{(n)}$. This gives an idea of the results we should obtain for $L^{(n)}$.

Main result

Theorem

Let $v(t)=\int_{0}^{t}\left(1-\frac{r}{\gamma}\right)^{-\gamma} d r$ and $V_{t}^{*}=\int_{0}^{t}\left(1-\frac{r}{\gamma}\right)^{-\gamma} V_{r} d r$ Under our conditions, for all $t \in(0, \gamma)$,

1. $n^{-2+\alpha} L_{t}^{(n)} \xrightarrow{P} \frac{v(t)}{C_{0} \Gamma(2-\alpha)}$
2. For $\alpha \in\left(1, \frac{1+\sqrt{5}}{2}\right)$

$$
n^{-1+\alpha-\frac{1}{\alpha}}\left(L_{t}^{(n)}-\frac{v(t)}{C_{0} \Gamma(2-\alpha)} n^{2-\alpha}\right) \xrightarrow{\mathcal{L}} V_{t}^{*}
$$

3. For $\alpha \in\left[\frac{1+\sqrt{5}}{2}, 2\right)$, if $\varepsilon>0$

$$
n^{-\varepsilon}\left(L_{t}^{(n)}-\frac{v(t)}{C_{0} \Gamma(2-\alpha)} n^{2-\alpha}\right) \xrightarrow{P} 0
$$

Remarks

1. In the Beta-coalescent case, Berestycki et al. (2007) have already shown that

$$
n^{-2+\alpha} L^{(n)} \xrightarrow{P} \frac{\Gamma(\alpha) \alpha(\alpha-1)}{2-\alpha}
$$

2. Moreover in this case, we have $C_{0}=\frac{1}{\alpha \Gamma(2-\alpha) \Gamma(\alpha)}$, and so

$$
\frac{v(\gamma)}{C_{0} \Gamma(2-\alpha)}=\frac{\Gamma(\alpha) \alpha(\alpha-1)}{2-\alpha}
$$

which means that the (coarse) approximation of $L^{(n)}$ by $L_{\gamma}^{(n)}$ leads to the good limit.

Let's go back to the infinite sites model. $S^{(n)}$ is closely related to $L^{(n)}$ so we can obtain an asymptotic result for $S_{t}^{(n)}$, the number of mutations in the tree up to $\lfloor n t\rfloor$ th coalescence.

Asymptotics of $S_{t}^{(n)}$
Let $a(t)=v(t) / C_{o} \Gamma(2-\alpha)$.

Corollary

Under our hypothesis, let $t \in(0, \gamma)$ and G be a standard gaussian r.v. independant of V

1. For $\alpha \in(1, \sqrt{2})$

$$
n^{-1+\alpha-\frac{1}{\alpha}}\left(S_{t}^{(n)}-\theta a(t) n^{2-\alpha}\right) \stackrel{\mathcal{L}}{\rightarrow} \theta V_{t}^{*}
$$

2. For $\alpha \in(\sqrt{2}, 2)$

$$
n^{-1+\alpha / 2}\left(S_{t}^{(n)}-\theta a(t) n^{2-\alpha}\right) \stackrel{\mathcal{L}}{\rightarrow} \sqrt{\theta a(t)} G
$$

3. For $\alpha=\sqrt{2}$

$$
n^{-1+\alpha / 2}\left(S_{t}^{(n)}-\theta a(t) n^{2-\alpha}\right) \xrightarrow{\mathcal{L}} \theta V_{t}^{*}+\sqrt{\theta a(t)} G
$$

Outlooks

- we now have an idea of the behavior of the total length
- Parametric estimation (of θ, of α)

