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Introduction The length Number of mutations

The Infinite Sites Model, Kimura (1969)
I We consider a genealogical tree of n individuals, of total

length L(n)

I Mutations occur at rate θ
I conditional on L(n), the number of mutations is distributed

like Poisson with mean θL(n)

I Each mutation appears in a new site, so that we can observe
the number of mutations, S(n), as the number of segregating
sites in our actual population.
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The coalescent
I (Π(n)

t , t ≥ 0) is a continuous time Markov chain with values in
Pn, the set of partitions of {1, . . . , n}

I Π(n)
0 = {1}, . . . , {n}.

I Each block of Π(n)
t ∈ Pn indicates individuals living at time 0

which have a common ancestor at time −t
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Introduction The length Number of mutations

The Λ-coalescent, Pitman (1999), Sagitov (1999)

If there are b blocks, each k-uplet of them merge to 1 at rate λb,k,
independent of the current number of blocks :

λb,k =
∫ 1

0
xk−2(1− x)b−kΛ(dx)

for 2 ≤ k ≤ b, where Λ is a finite measure on [0, 1]
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The Λ-coalescent, Pitman (1999), Sagitov (1999)

If there are b blocks, each k-uplet of them merge to 1 at rate λb,k,
independent of the current number of blocks :

λb,k =
∫ 1

0
xk−2(1− x)b−kΛ(dx)

Definition

The markov process Π(n) = (Π(n)
t , t ≥ 0) with dynamics described

above and starting from the trivial partition of Pn is called the
(n-)Λ-coalescent

Consistence : Π(n) is the restriction of the so-called Λ-coalescent
process Π defined on the set of partitions of N∗.
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Examples of Λ-coalescents

λb,k =
∫ 1

0
xk−2(1− x)b−kΛ(dx)

I Λ = δ0 :
Kingman’s coalescent(1982)
λb,2 = 1, λb,k = 0 for k 6= 2
Only two blocks can merge at a time.

I Λ = Lebesgue on[0, 1] :
Bolthausen-Szmitman coalescent(1998)

I Λ is a β(2− α, α) distribution, α ∈ (1, 2) :
Λ(dx) = C0x

1−α(1− x)α−11[0,1](x)dx.
Beta-coalescent
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Hypothesis

Let ρ(t) =
∫ 1
t

Λ(dx)
x2 . We will assume that :

ρ(t) = C0t
−α +O

(
t−α+ζ

)
with α ∈ (1, 2) and ζ > 1− 1

α .
This includes the Beta-coalescent case.
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L(n) =
τn−1∑
k=0

Y
(n)
k

Ek
g
Y

(n)
k

I gb =
∑b−1

l=1

(
b
l+1

)
λb,l+1 : rate of the next jump of the

coalescent when there are b blocks. Ek are i.i.d rate 1
exponential r.v.

I Y
(n)
k : number of blocks after k coalescences.

I τn : total number of coalescences.

1 2 3 4 50 S S S S S Backward in time

Time of next jump ∼ E(g8)
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Question
What is the asymptotic behavior of L(n) ?
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Approximations

L(n) =
τn−1∑
k=0

Y
(n)
k

Ek
g
Y

(n)
k

gn
+∞∼ C0Γ(2− α)nα

Replacing Ek’s by their man,1, we approximate L(n) by

L̂(n) =
τn−1∑
k=0

(
Y

(n)
k

)1−α
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Asymptotics of τn

Proposition

n−
1
α

(
n− τn

α− 1

)
L→ Vα−1

where (Vt, t ≥ 0) is an α-stable Lévy process with non positive
jumps with Laplace exponent ψ(u) = uα/(α− 1).

This result was also obtained by Iksanow and Möhle (2007) and
Gnedin and Yakubovich (2008) with quite similar hypothesis.
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Asymptotics of the length

Let γ = α− 1.
We establish a first step to convergence and asymptotics of L(n) by
giving results for L(n)

t , the length of the coalescent tree up to the
bntc-th coalescence, for t ∈ (0, γ).

L
(n)
t =

bntc∧τn−1∑
k=0

Y
(n)
k

Ek
g
Y

(n)
k

As τn ∼ γn, intuitively we have L(n)
γ close to L(n). This gives an

idea of the results we should obtain for L(n).
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Main result

Theorem
Let v(t) =

∫ t
0 (1− r

γ )−γdr and V ∗t =
∫ t

0 (1− r
γ )−γVrdr Under our

conditions, for all t ∈ (0, γ),

1. n−2+αL
(n)
t

P→ v(t)
C0Γ(2−α)

2. For α ∈ (1, 1+
√

5
2 )

n−1+α− 1
α (L(n)

t −
v(t)

C0Γ(2− α)
n2−α) L→ V ∗t

3. For α ∈ [1+
√

5
2 , 2), if ε > 0

n−ε(L(n)
t −

v(t)
C0Γ(2− α)

n2−α) P→ 0
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Remarks

1. In the Beta-coalescent case, Berestycki et al. (2007) have
already shown that

n−2+αL(n) P→ Γ(α)α(α− 1)
2− α

2. Moreover in this case, we have C0 = 1
αΓ(2−α)Γ(α) , and so

v(γ)
C0Γ(2− α)

=
Γ(α)α(α− 1)

2− α

which means that the (coarse) approximation of L(n) by L(n)
γ

leads to the good limit.
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Let’s go back to the infinite sites model.
S(n) is closely related to L(n) so we can obtain an asymptotic result
for S(n)

t , the number of mutations in the tree up to bntcth
coalescence.
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Asymptotics of S(n)
t

Let a(t) = v(t)/CoΓ(2− α).

Corollary
Under our hypothesis, let t ∈ (0, γ) and G be a standard gaussian
r.v. independant of V

1. For α ∈ (1,
√

2)

n−1+α− 1
α (S(n)

t − θa(t)n2−α) L→ θV ∗t

2. For α ∈ (
√

2, 2)

n−1+α/2(S(n)
t − θa(t)n2−α) L→

√
θa(t)G

3. For α =
√

2

n−1+α/2(S(n)
t − θa(t)n2−α) L→ θV ∗t +

√
θa(t)G
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Outlooks

I we now have an idea of the behavior of the total length
I Parametric estimation (of θ, of α)
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