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The Infinite Sites Model, Kimura (1969)

» We consider a genealogical tree of n individuals, of total
length L™

» Mutations occur at rate 6

» conditional on L"), the number of mutations is distributed
like Poisson with mean 6L (™
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The Infinite Sites Model, Kimura (1969)

» We consider a genealogical tree of n individuals, of total
length L™

» Mutations occur at rate 6

» conditional on L™, the number of mutations is distributed
like Poisson with mean §L(™

» Each mutation appears in a new site, so that we can observe
the number of mutations, S(™), as the number of segregating
sites in our actual population.
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The coalescent

> (H,E"),t > 0) is a continuous time Markov chain with values in
Pp, the set of partitions of {1,...,n}
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The coalescent

> (Hg”),t > 0) is a continuous time Markov chain with values in
Pp, the set of partitions of {1,...,n}
» T00Y = {1},..., {n}.

» Each block of Hg") € P, indicates individuals living at time 0
which have a common ancestor at time —¢
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The A-coalescent, Pitman (1999), Sagitov (1999)

If there are b blocks, each k-uplet of them merge to 1 at rate A\,

independent of the current number of blocks :

1
Mok = / SH2(1 = )b A (da)
0

for 2 < k <b, where A is a finite measure on [0, 1]
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The A-coalescent, Pitman (1999), Sagitov (1999)

If there are b blocks, each k-uplet of them merge to 1 at rate Ay,
independent of the current number of blocks :

1
Xok = / 2*72(1 — 2)P7* A(dx)
0

Definition

The markov process T1(") = (Hgn), t > 0) with dynamics described
above and starting from the trivial partition of Py, is called the
(n-)A-coalescent

Consistence : I1(™ is the restriction of the so-called A-coalescent
process II defined on the set of partitions of N*.
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Examples of A-coalescents

1
Mo = / S2(1 = )P A (da)
0

> A= 50 .
Kingman’s coalescent(1982)
)\5,2 = 1, )‘b,k =0 for k 75 2
Only two blocks can merge at a time.
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Examples of A-coalescents

1
Mo = / 2£-2(1 = 2)PF A (d)
0

> A= 50 :
Kingman's coalescent(1982)
)\5,2 = 1, )‘b,k =0 for k 75 2
Only two blocks can merge at a time.
» A = Lebesgue onl0, 1] :
Bolthausen-Szmitman coalescent(1998)
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Examples of A-coalescents

1
Mo = / 2£-2(1 = 2)PF A (d)
0

> A= 50 :
Kingman's coalescent(1982)
)\5,2 = 1, )‘b,k =0 for k 75 2
Only two blocks can merge at a time.

» A = Lebesgue onl0, 1] :
Bolthausen-Szmitman coalescent(1998)

» Ais a (2 — a, «) distribution, a € (1,2) :
A(dz) = Coz'~(1 — x)a_ll[(),l} (z)dz.
Beta-coalescent
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. We will assume that :

(t) = Cot™™ + O (t—a+<)
with a € (1,2) and ( > 1— =

1
=
This includes the Beta-coalescent case
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Tn—1
(n) _ (n) Ek
L =N ym =k
k=0
b—1
> gy =

1 (l_ﬁl))\b’l_i_l : rate of the next jump of the
exponential r.v.

coalescent when there are b blocks. E}, are i.i.d rate 1
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Tn—1 B
LM — Z Yk(")_k
k=0 Jy
> gy = ;’;11 (l_ﬁl))\b’l_i_l . rate of the next jump of the

coalescent when there are b blocks. E}, are i.i.d rate 1
exponential r.v.
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Hm E
L) — Z v\ el 2
k=0 Iy m

b—1( b :
> 9o =_1—1 (;51)va+1 : rate of the next jump of the

coalescent when there are b blocks. E}, are i.i.d rate 1
exponential r.v.
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Tn—1 B
LM — Z Yk(")_k
k=0 Jy
> gy = ;’;11 (l_ﬁl))\b’l_i_l . rate of the next jump of the

coalescent when there are b blocks. E}, are i.i.d rate 1
exponential r.v.
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Tn—1 B
LM — Z Yk(")_k
k=0 Jy
> gy = ;’;11 (l_ﬁl))\b’l_i_l . rate of the next jump of the

coalescent when there are b blocks. E}, are i.i.d rate 1
exponential r.v.
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Hm E
n k
P P
k=0 Y,

> g, = E;’;ll (l_’lil)Ab’l_i_l : rate of the next jump of the
coalescent when there are b blocks. Ej, are i.i.d rate 1
exponential r.v.
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Tn—1
S B
=S (lil)Ab,l_i_l : rate of the next jump of the

coalescent when there are b blocks. E}, are i.i.d rate 1
exponential r.v.

> Yk(n) : number of blocks after k coalescences.
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Tn—1 (n) B
k
L) — Z v R
k=0 Iy
> gy = 5’;11 (ljl))\b,lﬂ : rate of the next jump of the

coalescent when there are b blocks. E}, are i.i.d rate 1
exponential r.v.

n
> Yk( ). number of blocks after k coalescences.
» 7, : total number of coalescences.
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Tn—1 E
L™ — Z y () _Ek
k
k=0 ng(")
_b—1b _ -
> 9o =y—1 (151)Abi+1 : rate of the next jump of the
coalescent when there are b blocks. E}, are i.i.d rate 1
exponential r.v.
> Yk(n) : number of blocks after k coalescences.

» 7, : total number of coalescences.

What is the asymptotic behavior of L") ?

Question J
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Approximations
Tn—1
n _ (n)_Er
) — Z v
k=0

—+00 o
gn ~ CoI'(2 —a)n
Replacing E}'s by their man,1, we approximate L(™ by

Tn—1
(n) _ i (n) 11—«
L kZ:O <Yk )
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Asymptotics of 7,

Proposition

_1 Tn L
n o n—a_l — Va—1

where (Vi,t > 0) is an a-stable Lévy process with non positive
Jjumps with Laplace exponent ¢(u) = u®/(a — 1).

This result was also obtained by lksanow and M&hle (2007) and
Gnedin and Yakubovich (2008) with quite similar hypothesis.
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Asymptotics of the length

Lety=a—1.

We establish a first step to convergence and asymptotics of L(™) by
giving results for LE"), the length of the coalescent tree up to the
|nt]-th coalescence, for t € (0,7).

[nt]ATh—1

FE
k=0 Iy

As T, ~ n, intuitively we have L(Wn) close to L™ This gives an

idea of the results we should obtain for L™
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Main result
Theorem
Let v(t fo (1—-L)"Ydr and V;* = fo
condltlons for all ¢ 6 (0 ),
1. n_2+aL§ ) B

)~ "V,.dr Under our
v(t)
Col'(2—a)

2. Fora € (1,%5)

—1+a—§(L§n) _

Col'(2 —
3. Fora e [HT\/E 2), ife >0

=@ (Lgn) _ v (t)

Col'(2
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Remarks

1. In the Beta-coalescent case, Berestycki et al. (2007) have
already shown that

P IMNa)a(a—1)

72+aL(n)
" 22—«

2. Moreover in this case, we have Cy = and so

1
al(2—a)T'(a)’

v(y)  _ (aafa—1)
C()F(Q — Oé) 2—«

which means that the (coarse) approximation of L(™ by LS")
leads to the good limit.
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Let's go back to the infinite sites model.

S is closely related to L(™ so we can obtain an asymptotic result
for an), the number of mutations in the tree up to |nt]th
coalescence.
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Asymptotics of St(n)
Let a(t) = v(t)/CoT'(2 — ).

Corollary

Under our hypothesis, let t € (0,7) and G be a standard gaussian
r.v. independant of V/

1. Fora € (1,V/2)
n—l-l—a—é(sgn) o 0a(t)n2_o‘) £> QVt*
2. Fora e (\/5, 2)
n*1+°‘/2(5’t(") = 9a(t)n27°‘) £, V0a(t)G

3. Fora =+/2

n71+a/2(5t(n) _ Ha(t)n%o‘) ) OV + v/ 0a(t)G
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» we now have an idea of the behavior of the total length
» Parametric estimation (of 6, of &)
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