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Abstract

We consider a Poissonian SDE for the lack of fitness of a population
subject to a continuous change of its environment, and an accumulation of
advantageous mutations. We neglect the time of fixation of new mutations,
so that the population is monomorphic at all times. We consider the asymp-
totic of small and frequent mutations. In that limit, we establish a law of
large numbers and a central limit theorem. For small enough mutations,
the original process is Harris recurrent and ergodic. We show in which sense
the limits as t→∞ of the law of large and number and central limit theo-
rem give a good approximation of the invariant probability measure of the
original process.

Keys words: Poissonian SDE, Law of large numbers, Central limit theorem,
Approximation of invariant measure, canonical equation of adaptive dynamics,
moving optimum model.

Introduction

The present work is motivated by the moving optimum model in theoretical bi-
ology, which aims at evaluating the possibility for mutations to rescue a given
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population undergoing a linear change in its environment which deteriorates its
survival conditions. We refer the reader to [6] and [8] for the presentation of this
model. The authors have set in [10] a rigorous mathematical study of the mov-
ing optimum model by introducing a stochastic differential equation driven by a
Poisson point process describing the evolution of a quantitative one–dimensional
phenotypic trait in accordance to the biological description of this evolutionary
rescue model. They studied the large time behavior of its solution, which is Harris
recurrent when the speed of the environment v is smaller than the mean effect of
the beneficial mutations m per unit time, transient if v > m. In the case of equal-
ity between the two parameters, the solution of the stochastic differential equation
can either be transient or Harris recurrent depending upon additional technical
conditions.

One is mainly interested in the positive recurrent case. However, the limitation of
the ability to draw biological conclusions from these result is due to the difficulty
to compute explicitly any quantity related to the invariant probability measure.
This led us to study the small jumps limit, which is obtained by multiplying the
jumps’ sizes by ε, dividing the rates by ε2, and then letting ε→ 0. In this paper,
we study the limit as ε → 0 in the such rescaled multidimensional version of the
SDE from [10]. The solution Xε

t then tends to X̄t, the solution of of an ODE. This
is a law of large number type of result. The limiting ODE can be interpreted as the
canonical equation of adaptive dynamics in the context of a changing environment,
see [2] and [1]. The next step is to establish a Central Limit Theorem. Indeed, we
define U ε

t = ε−1/2(Xε
t − X̄t), and show that U ε

t converges in law to an Ornstein–
Uhlenbeck process Ut. In our framework, it is not hard to show that as t → ∞,
both X̄t → X̄∞ and the law of Ut converges to a Gaussian law N (0, S̄2).

Both X̄∞ and S̄2 can be easily computed with high accuracy, given the parameters
of the model. On the other hand, we show that there exists ε0 > 0 such that, for
any 0 < ε ≤ ε0, the process Xε

t is Harris recurrent and possesses a unique invariant
probability measure µε. Since our motivation for studying the small jumps limit is
to get informations about µε, it is desirable to show that the pair (X̄∞, S̄2) gives a
precise approximation of the invariant measure µε, for small ε. This is a delicate
question, since it amounts in a sense to invert the two limits ε→ 0 and t→∞.

We first show that the collection of probability measures {µε, ε ≤ ε0} is tight. It
is then not too difficult to deduce that µε ⇒ δX̄∞ , as ε → 0. We want to prove
more, namely that µε is close to νε, which is the law of X̄∞+

√
εξ, if ξ ' N (0, S̄2).

This is done by analysing the probability measure

µεt(A) = 1
t

∫ t

0
1A(Xε

s )ds

for large t and small ε.
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We believe that those results are original, and have an interest, not only for the
specific model which we study, but could also be useful in different frameworks,
where a process converges in law to a limiting process, and one wants to compare
large time behaviors. Note also that numerical simulations tend to indicate that
the approximation is valid even for not very small values of ε. This will be reported
upon elsewhere.

The paper is organized as follows: After giving some useful notations, section 1
gives a detailed presentation of the model, from the biological literature. Further-
more we present the stochastic differential equation that describes the evolution of
the vector phenotypic lag between the population and its environment, explaining
the fixation mechanism of mutations.

In section 2, we conduct a small jumps limit based on the above mentioned equa-
tion, prove the law of large numbers and the central limit theorem.

Section 3 is dedicated to the study of the large time behavior of Xε
t which will

turn out to be positive Harris recurrent for ε sufficiently small, admitting thus a
unique invariant measure. Then we proceed to prove that the sequence of invari-
ant measures is tight and converges in law. We finally give a precise statement
which describes in which sense the invariant leasure is well approximated by a
combination of the limit as t→∞ of the LLN and the CLT limits.

Notation

We remind that the quadratic variation of a scalar discontinuous bounded variation
local martingale Mt is the sum of the squares of its jumps and is denoted by :

[Mt] =
∑
s≤t
|∆Ms|2.

Its predictable quadratic variation 〈M〉t is the unique increasing predictable pro-
cess such that [M ]t − 〈M〉t, and hence also M2

t − 〈M〉t is a martingale.

In the d-dimensional case, we define the quadratic variation of a discontinuous
bounded variation local martingale Mt as :

[[M ]]t =
∑
s≤t

∆Ms ⊗∆Ms.

Its predictable quadratic variation 〈〈M〉〉t is the unique Sd-valued predictable in-
creasing process such that both [[M ]]t−〈〈M〉〉t andMt⊗Mt−〈〈M〉〉t are Sd-valued
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martingales. Here Sd denotes the set of symmetric positive semi–definite d×d ma-
trices. Note that [[M ]]t (resp. 〈〈M〉〉t) is the matrix whose i, j element is [M i,M j]t
(resp. 〈M i,M j〉t).

We shall use the notation
〈M〉t = Tr〈〈M〉〉t,

so that |Mt|2 − 〈M〉t is an R-valued martingale, and the notations in the scalar
and vector case are coherent. See [13] for more details.

1 The model

The model from Matuszewski et al. [8] is set up as follows: a population of constant
size N is subject to Gaussian stabilizing selection with a moving optimum that
increases linearly with speed vector v ∈ Rd. That is, at time t, the phenotypic
lag between an individual with trait value z ∈ Rd and the optimum equals x =
z − vt ∈ Rd, and the corresponding fitness is

W(x) = exp
(
−x′Σ−1x

)
, (1)

where Σ describes the shape of the fitness landscape. For the adaptive-walk ap-
proximation, the population is assumed to be monomorphic at all times (i.e., its
state is completely characterized by x). Mutations arise at rate Θ/2 = Nµ (where
µ is the per-capita mutation rate and Θ = 2Nµ is a standard population-genetic
parameter), and their phenotypic effects α are drawn from a distribution p(α). We
neglect the possibility of fixation for deleterious mutations. Yet even beneficial
mutations have a significant probability of being lost due to the effects of genetic
drift while they are rare. A mutation with effect α that arises in a population with
phenotypic lag x has a probability of fixation

g(x, α) =

1− exp(−2s(x, α)) if s(x, α) > 0,
0 otherwise

(2)

where
s(x, α) = W(x+ α)

W(x) − 1 ≈ −(2x+ α)′Σ−1α (3)

is the selection coefficient. Formula (2) is a good approximation of the fixation
probability derived under a diffusion approximation [5, 7], as long as the popu-
lation size N is not too small. Note that Matuszewski et al. [8] used the even
simpler approximation g(x, α) ≈ 2s(x, α) ([4]; for more exact approximations for
the fixation probability in changing environments, see [14, 12]). Once a mutation
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gets fixed, it is assumed to do so instantaneously (which is of course a simplifica-
tion which is not realistic), and the phenotypic lag x of the population is updated
accordingly.

We make the following assumptions (see [8]):

1. v is a horizontal vector,

2. Σ is isotropic, i.e. Σ = σ2IRd .

It is always possible to reduce the situation to our assumptions, via a change of
variables.

The evolution of the phenotypic lag of the population can be described by the
following equation:

Xt = x0 − vt+
∫

[0,t]×Rd×[0,1]
αΓ(Xs− , α, ξ)N(ds, dα, dξ). (4)

Here, N is a Poisson point process over R+×Rd× [0, 1] with intensity ds ν(dα) dξ
where ν(dα) is the measure of new mutations and

Γ(x, α, ξ) = 1{ξ≤g(x,α)},

where the fixation probability g(x, α) of a mutation of size α that hits the popu-
lation when the lag is x, as defined by (2) and (3), can be expressed as

g(x, α) =
(
1− exp

(
2σ−2 (2x+ α | α)

))
× 1{(2x+α|α)≤0}.

Following the model by [8], we consider that

ν(dα) = Θ
2 p(α)dα, (5)

where p is the density of a centered multidimensional Gaussian distributionN (0,M),
M being a positive definite symmetric matrix. Under the above assumptions
around the speed vector v and the fitness matrix Σ,M is generally not an isotropic
matrix.

Mechanism of Fixation of Mutations : The points of this Poisson Point
Process (Ti, Ai,Ξi) are such that the (Ti, Ai) form a Poisson Point Process over
R+ × Rd of the mutations that hit the population with intensity dsν(dα), and
the Ξi are i.i.d. U [0, 1], globally independent of the Poisson Point Process of the
(Ti, Ai). Ti’s are the times when mutations are proposed and Ai’s are the effect
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sizes of those mutations. The Ξi are auxiliary variables determining fixation: a
mutation gets instantaneously fixed if Ξi ≤ g(XTi , Ai), and is lost otherwise.

Note that the limit of the probability of fixation as |x| → ∞, while x
|x| remains a

constant unit vector, is 1{(x|α)≤0}. This means that when the process is sufficiently
far away from 0, the fixation mechanism tends to accept all mutations inside the
half space

(
x
|x| | α

)
≤ 0.

Define the covariance matrix of fixed mutations :

V̄ (x) =
∫

(x|α)≤0
α⊗ α ν(dα). (6)

Proposition 1. Under the definition of ν given by (5), V̄ (x) is independent of
the direction of x and

V̄ = Θ
4 M.

Proof. We assume without loss of generality that we have chosen as orthonormal
basis of Rd a basis made of eigenvectors of M , the covariance matrix of p. In that
case,

M = P ′DP,

where D is a diagonal matrix and P is the matrix representing the change of basis
such that P ′ = P−1 = P ∗. First, we will show that

1
(2π) d2 (detD) 1

2

∫
(x|α)≤0

α⊗ α e−
1
2α
′D−1αdα = D

2 . (7)

This is equivalent to showing that for X1, . . . , Xd being mutually independent zero
mean Gaussian random variables, and for any vector a = (a1, . . . , ad) ∈ Rd, with
the notation (X|a) = ∑d

i=1 aiXi,

E
[
X2
j ; (X|a) ≤ 0

]
= 1

2E
[
X2
j

]
, for any j ∈ {1, . . . , d}

and
E [XjX`; (X|a) ≤ 0] = 0, for any j 6= ` ∈ {1, . . . , d}.

The first of these two identities follows from the fact that if X and Y are two
mutually independent zero mean Gaussian random variables, then

E[X2;Y < X] = 1
2E[X2].
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Indeed, if FY denotes the distribution function of the zero mean Gaussian r.v. Y ,
and σ2 is the variance of X, since FY (x) + FY (−x) = 1 for all x ∈ R,

E[X2;Y ≤ X] = E[X2FY (X)]

= 1
σ
√

2π

∫ ∞
0

x2[FY (x) + FY (−x)]e−x2/2σ2
dx

= 1
2E[X2].

We now establish the second formula. All we have to compute is the following
quantity, where X, Y, Z are mutually independent zero mean Gaussian random
variables, and a, b are arbitary real numbers,

E[XY ;Z ≤ aX + bY ] = E[XY FZ(aX + bY )]

= 1
στ2π

∫
R

∫
R
xyFZ(ax+ by)e−

x2
2σ2−

y2

2τ2 dxdy

= 1
στ2π

∫ ∞
0

∫ ∞
0
xy[FZ(ax+by)+FZ(−ax−by)

−FZ(−ax+by)−FZ(ax−by)]dxdy
= 0,

since clearly FZ(ax+ by + FZ(−ax− by) = FZ(−ax+ by) + FZ(ax− by) = 1.

Now that (7) is established, the change of variables α = P ′α̃ in the integral formula
for V̄ yields

V̄ = Θ
2

(
P ′
D

2 P
)

= Θ
4 M.

�

2 Small Jumps Limit

In the following, we introduce the rescaling

α̃ = εα and s̃ = s

ε2 with ε > 0

of the jumps and the time, respectively. In other words, we rewrite our process
(4) as

Xε
t = x0 − vt+

∫ t

0

∫
Rd

∫ 1

0
εαϕ(Xε

s− , εα, ξ)Mε(ds, dα, dξ),
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where the intensity measure of the Poisson Point Process Mε is( 1
ε2ds

)
× ν(dα)× dξ.

The above SDE can be rewritten as

Xε
t = x0 − vt+

∫ t

0

1
ε2mε(Xε

s )ds+Mε
t , (8)

with

mε(x) =
∫
Rd
εαg(x, εα)ν(dα),

where g(x, εα) ≤ 2σ−2 |(2x+ εα | εα)|1{(2x+εα|εα)≤0}

≤ 4σ−2ε |(x | α)|1{(x|α)≤0},

and
Mε

t =
∫ t

0

∫
Rd

∫ 1

0
εαϕ(Xε

s− , εα, ξ)M̄ε(ds, dα, dξ)

is a martingale.

Lemma 1. The following two properties hold:

1. the collection {Xε, 0 < ε ≤ 1} is tight in D(R+,Rd);

2. we have
〈Mε〉t −−→

ε→0
0 in probability, locally uniformly in t.

Proof. It is plain that

1
ε2 |mε(Xε

t )| ≤ 4|Xε
t |σ−2

∫
Rd
|α|2ν(dα), (9)

and

〈Mε〉t = 1
ε2

∫ t

0

∫
Rd
|εα|2g(Xε

s , εα)ν(dα)ds

≤ 4σ−2ε
∫ t

0

∫
(α|Xε

s )≤0
|α|2 |(α | Xε

s )| ν(dα)ds

≤ 4σ−2ε
(∫

Rd
|α|3ν(dα)

) ∫ t

0
|Xε

s | ds.

(10)

Moreover for all x, we have

1
ε2 (mε(x) | x) ≤ 0.
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On the other hand,

|Xε
t |2 = |Xε

0 |2 − 2
∫ t

0
(v | Xε

s ) ds+ 2
ε2

∫ t

0
(mε(Xε

s ) | Xε
s ) ds+ 2

∫ t

0
Xs−dM

ε
s + 〈Mε〉t

Hence, for fixed T , we have for all 0 ≤ t ≤ T

E|Xε
t |2 ≤ E|Xε

0 |2 + 2v1

∫ t

0
E|Xε

s |ds+ E〈Mε〉t

≤ E|Xε
0 |2 + v1

(
t+
∫ t

0
E(Xε

s )2ds

)
+ 2ε

∫
Rd

|α|3ν(dα)
(
t+

∫ t

0
E(Xε

s )2ds

)
≤ E|Xε

0 |2 +
(
v1 + 2ε

∫
Rd

|α|3ν(dα)
)
t+
(
v1 + 2ε

∫
Rd

|α|3ν(dα)
)∫ t

0
E(Xε

s )2ds

≤
(
E|Xε

0 |2 +
(
v1 + 2ε

∫
Rd

|α|3ν(dα)
)
T

)
e

[
v1+2ε

(∫
Rd

|α|3ν(dα)
)]
T
,

(11)

since 2E|X| ≤ 1 + EX2. We deduce from (9), (10) and (11) that the process Xε

is tight in D
(
R+,Rd

)
due to Remark 14, part 2 following Proposition 37 in [11]

and from (10),
〈Mε〉t −−→

ε→0
0 in probability.

This convergence is uniformly in t since t 7→ 〈Mε〉t is increasing. �

Lemma 2. For all x ∈ Rd, we have that

1. mε(x) −−→
ε→0

Lx, where

Lx = 4σ−2
∫

(x|α)≤0
α |(x | α)| ν(dα) = −4σ−2V̄ x = −Θσ−2Mx. (12)

2.
∫
α⊗ α g(x,εα)

ε
ν(dα) −−→

ε→0
Λ(x), where

Λ(x) = 4σ−2
∫

(x|α)≤0
| (x | α) |α⊗ αν(dα), (13)

Remark 1. Note that the two above Lemmas remain true if the measure ν is not
Gaussian, but satisfies the following moment condition :∫

Rd
|α|4ν(dα) <∞. (14)

In this case the limit L(x) is given by the expression

L(x) = 4σ−2
∫

(x|α)≤0
α |(x | α)| ν(dα) = −4σ−2V̄ (x)x,
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where V̄ depends upon the direction of x. The advantage of taking a Gaussian
measure (up to a multiplicative constant) of new mutations is the resulting linear
behavior of the limit Lx, due to the fact that V̄ (x) is a constant matrix. More
generally, V̄ (x) would depend upon x

|x| .

Proof of Lemma 2. Let for all ε > 0 and x, α ∈ Rd

yε = −2σ−2 (2x+ εα | α) and y = −4σ−2 (x | α) .

We have that

1− e−εyε
ε

1yε≥0 − y1y≥0 =
(

1− e−εyε
ε

1yε≥0 − yε1yε≥0

)
+ (yε1yε≥0 − y1y≥0) . (15)

In addition,
−εy

2
ε

2 1yε≥0 ≤
1− e−εyε

ε
1yε≥0 − yε1yε≥0 ≤ 0, (16)

since for all z > 0
z − z2

2 ≤ 1− e−z ≤ z.

Combining (16) with the fact that

y2
ε1yε≥0 ≤ y21y≥0 ≤ 16σ−4|x|2|α|2,

we obtain
−8σ−4ε|x|2|α|2 ≤ 1− e−εyε

ε
1yε≥0 − yε1yε≥0 ≤ 0. (17)

Moreover, {yε ≥ 0} ⊂ {y ≥ 0}. It follows that

yε1yε≥0 − y1y≥0 = (yε − y)1y≥0 − yε1y≥0\yε≥0

= −2σ−2ε|α|21y≥0 − yε1y≥0\yε≥0.
(18)

Furthermore, {y ≥ 0\yε ≥ 0} = {−ε|α|2 < (2x | α) < 0}. Thus,

0 < −yε1y≥0\yε≥0 < 2σ−2ε|α|21y≥0. (19)

Combining (18) and (19), we get

−2σ−2ε|α|2 ≤ yε1yε≥0 − y1y≥0 ≤ 0. (20)

We deduce from (15), (17) and (20) that

−ε
(
8σ−4|x|2 + 2σ−2

)
|α|2 ≤ 1− e−εyε

ε
1yε≥0 − y1y≥0 ≤ 0.
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Hence, ∣∣∣∣∣α
(

1− e−εyε
ε

1yε≥0 − y1y≥0

)∣∣∣∣∣ ≤ ε
(
8σ−4|x|2 + 2σ−2

)
|α|3. (21)

By integrating (21) with respect to ν, we obtain∣∣∣∣ 1
ε2mε(x)− L(x)

∣∣∣∣ ≤ ε
(
8σ−4|x|2 + 2σ−2

) ∫
Rd
|α|3ν(dα). (22)

Hence,
mε(x) −−→

ε→0
Lx.

By a similar argument, we have that∣∣∣∣∣
∫
α⊗ αg(x, εα)

ε
ν(dα)− Λ(x)

∣∣∣∣∣ ≤ ε
(
8σ−4|x|2 + 2σ−2

) ∫
Rd
|α|4ν(dα), (23)

and we deduce the second result of the Lemma. �

It follows from Lemma 1 that we can extract a subsequence which we still denote
Xε by an abuse of notation such that Xε ⇒ X̄, and we have the following result:

Proposition 2. We have that

1
ε2mε(Xε

· )⇒ LX̄· in D(R+,Rd),

and
1
ε
〈〈Mε〉〉· ⇒ Λ(X̄·) in D(R+,Rd),

Proof. It follows from (22), that for all δ, C > 0, there exists εδ,C such that if
ε < εδ,C and for all |x| ≤ C, ∣∣∣∣ 1

ε2mε(x)− Lx
∣∣∣∣ ≤ δ,

thus, for an arbitrary T > 0 and for ε < εδ,C ,

P
(

sup
t≤T

∣∣∣∣ 1
ε2mε(Xε

t )− L(Xε
t )
∣∣∣∣ > δ

)
≤ P

(
sup
t≤T
|Xε

t | > C

)
.

It follows that for all δ, C > 0,

lim sup
ε→0

P
(

sup
t≤T

∣∣∣∣ 1
ε2mε(Xε

t )− L(Xε
t )
∣∣∣∣ > δ

)
≤ sup

ε
P
(

sup
t≤T
|Xε

t | > C

)
.
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From the tightness of Xε, for all η > 0, we can choose C > 0 such that

sup
ε

P
(

sup
t≤T
|Xε

t | > C

)
≤ η.

Hence for all δ, η > 0

lim sup
ε→0

P
(

sup
t

∣∣∣∣ 1
ε2mε(Xε

t )− L(Xε
t )
∣∣∣∣ > δ

)
≤ η.

Moreover L(Xε) ⇒ L(X̄) in D(R+,Rd) since L is continuous function. Conse-
quently,

1
ε2mε(Xε) = 1

ε2mε(Xε)− L(Xε) + L(Xε)⇒ L(X̄).

By a similar argument using (23), we can prove the second part of this Lemma
since ∫

|α|4ν(dα) <∞.

�

It follows
Theorem 1. Xε

t −−→ε→0
X̄t in probability, locally uniformly in t, where

dX̄t

dt
= −v + LX̄t, Xε

0 = X̄0 = x0. (24)

Proof. The result for a subsequence is an immediate consequence of (8), Lemma
1 and Proposition 2. Since the limit X̄t is uniquely determined, the whole process
Xε
t converges in probability towards X̄t.

�

The differential equation (24) represents a deterministic approximation for the
stochastic process X̄ε in the limit of small jumps. We note that

X̄t −−−→
t→∞

X̄∞ = −M
−1v

Θσ−2 . (25)

To estimate the fluctuations of the process in the small-jumps limit, we now con-
sider the following process

U ε
t = Xε

t − X̄t√
ε

.
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Theorem 2. U ε ⇒ U , where U is an Ornstein-Uhlenbeck process:

dUt = LUtdt+ Λ 1
2 (X̄t)dBt,

U0 = 0,
(26)

with B being a d-dimensional standard Brownian motion. In other words,

Ut =
∫ t

0
eL(t−s)Λ 1

2 (X̄s)dBs.

Proof. We have that

U ε
t =

∫ t

0

ε−2mε(Xε
s )− LX̄s√
ε

ds+ 1√
ε
Mε

t ,

= L
∫ t

0

Xε
s − X̄s√
ε

ds+ 1√
ε

∫ t

0

( 1
ε2mε(Xε

s )− LXε
s

)
ds+ 1√

ε
Mε

t

= L
∫ t

0
U ε
sds+ 1√

ε

∫ t

0

( 1
ε2mε(Xε

s )− LXε
s

)
ds+ 1√

ε
Mε

t

= L
∫ t

0
U ε
sds+Gε(t),

where
Gε(t) = 1√

ε

∫ t

0

( 1
ε2mε(Xε

s )− LXε
s

)
ds+ 1√

ε
Mε

t .

Thus
U ε
t =

∫ t

0
eL(t−s)dGε(s).

We deduce from (22) that

1√
ε

∫ t

0
eL(t−s)

( 1
ε2mε(Xε

s )− LXε
s

)
ds −−→

ε→0
0.

Furthermore, 1√
ε
Mε are tight martingales by a similar argument as before since

sup
{t>0, ε}

∫
R2
|α|2g(Xε

t , εα)ν(dα) ≤
∫
R2
|α|2ν(dα) <∞.

Moreover for any arbitrary T > 0,

sup
t≤T

∣∣∣∣∣ 1√
ε

(Mε
t −Mε

t−)
∣∣∣∣∣ −−→ε→0

0,
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since the jumps are multiplied by ε. Hence every converging subsequence of 1√
ε
Mε

converges to a continuous martingaleM as ε goes to 0, and using Lemma 2

〈〈 1√
ε
Mε〉〉t =

∫ t

0
α⊗ αg(Xε

s , εα)
ε

ν(dα)ds −−→
ε→0

∫ t

0
Λ(X̄s)ds,

it follows that
〈〈M〉〉t =

∫ t

0
Λ(X̄s)ds.

We deduce thanks to the representation theorem of continuous martingales that
there exists a d-dimensional Brownian motion (Bt) such that

Mt =
∫ t

0
Λ 1

2 (X̄s)dBs, t ≥ 0.

This being true for any subsequence of 1√
ε
Mε, the limit is unique (in law). Finally

U ε
t ⇒

∫ t

0
eL(t−s)Λ 1

2 (X̄s)dBs.

�

It follows that

E(Ut ⊗ Ut) =
∫ t

0
e−Θσ−2M(t−s)Λ(X̄s)e−Θσ−2M ′(t−s)ds.

Consequently

E(Ut ⊗ Ut) −−−→
t→∞

S̄2 =
∫ ∞

0
e−Θσ−2M(t−s)Λ(X̄∞)e−Θσ−2M ′(t−s)ds. (27)

3 Large time behavior of Xε
t for small ε > 0

3.1 Large time behavior of the process Xε
t

Theorem 3. There exists ε0 > 0 such that for any 0 < ε ≤ ε0, the process Xε
t is

positive Harris recurrent, with a unique invariant probability measure.

Let us first establish:

Lemma 3. There exists three constants c, C, a > 0 such that for all 0 < ε < 1/4,

|Xε
t | ≤ |Xε

0 |+ C × t− c
∫ t

0

(
|Xε

s | ∧
a

ε

)
ds+Mε(t),

whereMε(t) is a martingale, for each ε > 0.

14



Proof. We have

|Xε
t | = |Xε

0 | −
∫ t

0

(
v | X

ε
s

|Xε
s |

)
ds+

∑
s≤t

(|Xε
s− + ∆Xε

s | − |Xε
s− |) .

Recall that
|Xε

s− + ∆Xε
s | − |Xε

s−| ≤ 0,
and moreover we shall restrict ourselves to the jumps such that

|Xε
s− + ∆Xε

s | − |Xε
s− | ≤ −

1
2 |∆X

ε
s |

Let C(x) denote the set of vectors α such that

|x+ α| − |x| ≤ −1
2 |α|.

Let us first define

γ = angle between the two directions − x and α.

From the identity

|x+ α| =
√
|x|2 + |α|2 − 2|x| |α| cos γ,

we deduce that α ∈ C(x) iff both

|γ| < π

3 , and |α| ≤
4
3(2 cos γ − 1)|x|.

We note in particular that whenever α ∈ C(x) and ε ≤ 1, then εα ∈ C(x). Now
∑
s≤t

(
|Xε

s− + ∆Xε
s | − |Xε

s−|
)

=
∫

[0,t]×Rd×[0,1]

(
|Xε

s− + εα| − |Xε
s−|
)

1u≤g(Xε
s−,εα)Mε(ds, dα, du)

=
∫

[0,t]×Rd

|Xε
s− + εα| − |Xε

s−|
ε

×
g(Xε

s−, εα)
ε

ν(dα)ds+Mε(t)

≤ −1
2

∫
[0,t]

∫
C(Xε

s−)/ε
|α|

g(Xε
s−, εα)
ε

ν(dα)ds+Mε(t)

≤ − b2

∫
[0,t]

∫
C(Xε

s−)/ε
|α|

(
(2Xε

s− + εα, α)−
σ2 ∧ 1

ε

)
ν(dα)ds+Mε(t),

whereMε(t) is a martingale, b = 1 − e−1, and we have exploited the elementary
inequality

1− e−u ≥ (1− e−1)(u ∧ 1), for all u ≥ 0.

15



We now need to lower bound the factor of −b/2 in the last right hand side. For
that sake, we consider the expression

∫
α∈C(x)/ε

|α|
(

(2x+ εα, α)−
σ2 ∧ 1

ε

)
ν(dα).

For |x| ≤ 2, we lower bound this integral by 0. We now consider the case |x| > 2.
We lower bound the integral by reducing the integration to the set

Aε(x) = C(x)
ε
∩ {1 ≤ |α| ≤ 2}.

It is not hard to see that whenever α ∈ Aε(x), −2 ≤
(
α, x|x|

)
< −1/2. Moreover,

since |x| > 2, if α ∈ Aε(x),

−2|x| < (x, α) < −|x|2 < −1, while ε|α|2 ≤ 1,

provided ε ≤ 1/4. Consequently (x, α) + ε|α|2 ≤ 0 and

(2x+ εα, α)− ≥ |(x, α)| ≥ |x|2 ,

so that∫
Aε(x)

|α|
(

(2x+ εα, α)−
σ2 ∧ 1

ε

)
ν(dα) ≥ 1

2σ2

(
|x| ∧ 2σ2

ε

)∫
Aε(x)

|α|ν(dα)

≥ β

2σ2

(
|x| ∧ 2σ2

ε

)
,

where β = inf |x|>2,ε≤1
∫
Aε(x) |α|ν(dα) > 0. We have proved that, with a = 2σ2 and

c = bβ/(4σ2),

|Xε
t | ≤ |Xε

0 |+ |v| × t− c
∫ t

0
1|Xε

s |>2

(
|Xε

s | ∧
a

ε

)
ds+Mε(t).

The result follows with C = |v|+ 2c. �

Corollary 1. There exists ε0 > 0, b, d > 0 and B a compact subset of Rd such
that for any 0 < ε ≤ ε0,

|Xε
t | ≤ |Xε

0 | − bt+ d
∫ t

0
1B(Xε

s )ds+Mε(t). (28)
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Proof. We choose B = {x; |x| ≤ 2C/c} and ε0 = ca
2C . (28) with b = C, d = 2C

now follows from Lemma 3. �

We finally turn to the

Proof of Theorem 3. The process Xε
t satisfies (28) which is exactly condition

(CD2) from [9]. In order to deduce positive Harris recurrence from Theorem 4.2
in [9], it remains to show that B = {x; |x| ≤ K} is a closed petite set, with
K = 2C/c.

Note that K > 2. We choose 0 < η < 1 and define the event

AεK,η =

 Xε
t does not jump on the time interval

[
0, 2K−η

v

]
, and

Xε
t jumps exactly once on the time interval

(
2K−η
v
, 2K
v

]
.


It is plain that P(AεK,η) > 0. Let T ε denote the first jump time of Xε

t . We note
that, provided thatXε

0 = x satisfies |x| ≤ K, on the event AεK,η, −3K ≤ (Xε
T ε−)1 ≤

−K + η, while −K ≤ (Xε
T ε−)2 ≤ K. Let Λε denote a random vector which is such

that the law of ε−1Λε has the density p. Denote by fε(y) = εp(εy) the density of
the law of Λε. We define

Σε = Λε1{|Xε
T−+Λε|≤1+η}.

Since K > 1 + η,
cε,K,η := inf

Σε 6=0
g(Xε

T−,Σε) > 0.

We denote by ξ the random variable with the uniform distribution on the inter-
val [0, 1], which is such that whenever ξ ≤ g(Xε

T−,Σε), the “proposed” jump Σε

happens at time T ε. Recall that 0 ≤ 2K
v
−T ε < η

v
. On the event AεK,η∩{ξ ≤ cε,K,η},

X 2K
v

= Xε
T ε + Σε + v

(2K
v
− T ε

)
,

and for any h ∈ C(Rd,R+),

Eh
(
Xε

2K
v

)
≥ P(AεK,η)cε,K,ηaε,K,η

∫
|y|≤1

h(y)dy,

with
aε,K,η = inf

−3K<x1<−3K+η,−K<x2<K,|x+y|≤1+η
fε(y).

Hence the law of Xε
2K/v is lower-bounded by

P(AεK,η)cε,K,ηaε,K,η1|y|≤1dy,

for any Xε
0 = x belonging to B, hence B is a petite set. �
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3.2 Tightness of the invariant probability measure of Xε
t

It follows from Theorem 3 that for any ε ≤ ε0, Xε
t possesses a unique invariant

probability measure µε. The aim of this subsection is to prove

Theorem 4. For any sequence εn ↓ 0, the sequence of invariant measures {µεn , n ≥
1} is tight.

The result will follow from the following statement

Proposition 3. There exist two constants c, C > 0 such that for any M > 0, if
ε ≤ c/M ,

lim sup
t→∞

E (|Xε
t | ∧M ] ≤ C.

Let us first show how Theorem 4 follows from Proposition 3.

Proof of Theorem 4. We deduce from the above Proposition that provided
ε ≤ c/M , ∫

Rd
(|x| ∧M)µε(dx) ≤ C,

and then also
µε(|x| > M) ≤ C

M
.

Fix δ > 0 arbitrarily small. Let us from now on fix M ≥ C/δ. Let n0 be such that
εn0 ≤ c/M . It follows from the above that for any n ≥ n0,

µεn(|x| > M) ≤ δ.

It is finally easy to find M ′ ≥M such that

µεn(|x| > M ′) ≤ δ

fro any 1 ≤ n ≤ n0, hence the result. �

Now return to the

Proof of Proposition 3. It follows readily from Lemma 3 that whenever
M < a/ε,

E [|Xε
t | ∧M ] ≤ E(|Xε

t |)

≤ |Xε
0 |+ Ct− c

∫ t

0
E [|Xε

s | ∧ (a/ε)] ds

≤ |Xε
0 |+ Ct− c

∫ t

0
E [|Xε

s | ∧M ] ds.
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Thanks to a classical comparison theorem for ODEs, this implies that

E [|Xε
t | ∧M ] ≤ |Xε

0 |e−ct + C
∫ t

0
e−c(t−s)ds

=
(
|Xε

0 | −
C

c

)
e−ct + C

c
,

which implies the result.

�

3.3 Asymptotic analysis of the large time behavior of Xε
t

We now want to analyze the large time behavior of Xε
t , for small ε. We first show

Theorem 5. As ε→ 0, µε ⇒ δX̄∞.

Proof We consider the Xε
t equation started with Xε

0 ' µε. Since the collection
{µεn}n≥1 is tight, along a subsequence still denoted the same way, µεn ⇒ µ0. It
follows from Theorem 1 that Xε

t → X t in probability in D([0, T ]), where X t solves
the ODE

dX t

dt
= L(X t)− v, X0 ' µ0.

But for any f ∈ Cb(Rd), t → Ef(Xε
t ) is a constant, so this is true in the limit,

which implies that µ0 = δX∞ . This shows that the whole collection µε ⇒ δX∞ as
ε→ 0. �
Remark 2. We expect from the above results that for small enough ε, the invariant
measure µε is close to νε, which is the law of X̄∞ +

√
εξ, where ξ ∼ N (0, S̄2). If

we interpret µε as the mass of Xε
t for large t, this is not really correct, since for

some large t, Xε
t will make a large deviation from X̄t, see [3].

Therefore, we prefer to interpret µε(A) as

lim
t→∞

1
t

∫ t

0
1A(Xε

s )ds.

We now want to give a precise description of µε for small ε > 0. For that sake, let us
introduce some notation. For any Borel set A and for all ε > 0, let Aε := X̄∞+

√
εA

and denote by λ∞ = N (0, S̄2) the invariant Gaussian distribution of the Ornstein-
Uhlenbeck process Ut.
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Theorem 6. Consider the process Xε
t , starting at time t = 0 from Xε

0 = X̄∞. For
any δ > 0 there exist tδ > 0 large enough such that for any t ≥ tδ, there exists
εt,δ > 0 such that for all ε ≤ εt,δ, with a probability larger than 1− δ, the fraction
of the time in the interval [0, t] which Xε

s spends in the set X̄∞ +
√
εA belongs to

the interval [λ∞(A)− δ, λ∞(A) + δ].

Proof. We assume w.l.o.g. that ∂A has zero d–dimensional Lebesgue measure.
Then, as ε→ 0, for any fixed t > 0,

1
t

∫ t

0
1Aε(Xε

s )ds = 1
t

∫ t

0
1A(U ε

s )ds⇒ 1
t

∫ t

0
1A(Us)ds,

and
1
t

∫ t

0
1A(Us)ds→ λ∞(A) in probability, as t→∞.

Hence for all δ > 0, there exists tδ > 0 such that for any t ≥ tδ,

P
(∣∣∣∣1t

∫ t

0
1A(Us)ds− λ∞(A)

∣∣∣∣ > δ
)
≤ δ.

Define a test function ϕδ ∈ Cb(Rd; [0, 1]) such that

ϕδ(x) =
{

1 if |x− λ∞(A)| ≤ δ
2 ,

0 if |x− λ∞(A)| > δ.

Let us now fix an arbitrary t ≥ tδ/2. We have

E
[
ϕδ

(1
t

∫ t

0
1A(Us)ds

)]
≥ 1− δ

2 .

Now there exists εt,δ such that if ε < εt,δ,

E
[
ϕδ

(1
t

∫ t

0
1A(U ε

s )ds
)]
≥ 1− δ,

yielding
P
(∣∣∣∣1t

∫ t

0
1A(U ε

s )ds− λ∞(A)
∣∣∣∣ > δ

)
≤ δ,

where we remind that

1A(U ε
s ) =

1, if Xε
s ∈ X̄∞ +

√
εA,

0, otherwise,

implying the result. �
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