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Abstract

We consider the accumulation of deleterious mutations in an asexual population, a phenomenon known
as Muller’s ratchet, using the continuous time model proposed by Alison et al. (2009) [4]. We show that
for any parameter λ > 0 (the rate at which mutations occur), for any α > 0 (the toxicity of the mutations)
and for any size N > 0 of the population, the ratchet clicks a.s. in finite time. That is to say the minimum
number of deleterious mutations in the population goes to infinity a.s.
c⃝ 2013 Elsevier B.V. All rights reserved.
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1. Introduction

In natural evolution, deleterious mutations occur much more frequently than beneficial ones.
Since the last category is always favored by selection, one may wonder about the advantage of
sexual reproduction over the asexual type. The answer has been proposed: in an asexually repro-
ducing population, each individual always inherits all the deleterious mutations of his ancestor
(except if another mutation occurs at the same locus on the genome; but this event is rare and
we will not consider it), whereas in sexual reproduction, recombinations occur, which allow an
individual to take part of a chromosome from each of his parents, therefore giving him a chance
to get rid of deleterious mutations. Muller’s ratchet can be used as an attempt to translate this
phenomenon in a mathematical model, thus explaining the advantage of sexual reproduction [7].
If one considers the best class (the group of fittest individuals) in a given asexual population,
Muller’s ratchet is said to click when the best class becomes empty. Since beneficial mutations
do not occur in this model, it means that all the individuals of the best class have mutated.
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The first model for Muller’s ratchet due to Haigh [5] can be described as follows. Consider an
asexual population of fixed sized N which evolves in discrete time, with a multiplicative selection
model. Only deleterious mutations occur. Denoting by 0 ≤ α ≤ 1 the deleterious strength of the
mutations, and by λ > 0 the rate at which they occur, every generation is constituted as follows:
each individual chooses a parent from the previous generation, in such a way that the probability
of choosing a specific father with k deleterious mutations is (we denote by Nk the number of
such individuals in the previous generation):

(1 − α)k

∞
k=0

Nk(1 − α)k
.

Next each newborn gains ξ deleterious mutations, where ξ is a Poisson random variable with
parameter λ. It is immediate to see that this model clicks a.s. in finite time. Indeed at each
generation, with probability (1 − exp(−λ))N all the individuals mutate, which induces the click.

There are three parameters in our model:
N is the size of the population,
λ is the mutation rate,
α is the fitness decrease due to each mutation.
The Fleming–Viot model for Muller’s ratchet proposed by A. Etheridge, P. Pfaffelhuber and

A. Wakolbinger in [4] consists of the following infinite set of SDEs for the Xk(t)’s, k ≥ 0, where
Xk(t) denotes the proportion of individuals in the population who carry exactly k deleterious
mutations at time t (with X−1 ≡ 0):

d Xk(t) =

α(M1(t) − k)Xk(t) + λ(Xk−1(t) − Xk(t))


dt

+


ℓ≥0,ℓ≠k


Xk(t)Xℓ(t)

N
d Bk,ℓ(t),

Xk(0) = xk, k ≥ 0;

(1.1)

where


Bk,ℓ, k > ℓ ≥ 0


are independent Brownian motions, Bk,ℓ = −Bℓ,k ; and M1(t) =
k≥0 k Xk(t).
The first term in the drift models the selective effect of the deleterious mutations. Those

individuals who carry less (resp. more) mutations than the average number of mutations in the
population have a selective advantage (resp. disadvantage). The second term in the drift reflects
the effect of the accumulation of mutations: at rate λ, individuals carrying k − 1 mutations gain
a k-th mutation, they jump into the k-class, and at the same rate individuals carrying k mutation
gain a k + 1-th mutation, they jump out of the k-class. The diffusion term reflects the resampling
effect of the birth events, where the factor N−1/2 can be understood as being equivalent to the
rescaling of time t → t/N , if N is the “effective population size”, which is natural in Kingman’s
coalescent [6]. For the equivalence between the present model and a more intuitive look-down
model à la Donnelly–Kurtz, we refer the reader to [1].

We will show in Section 2 that the infinite dimensional system of SDEs (1.1) is well posed
provided we choose the initial condition x = (xk, k ≥ 0) ∈ Xδ for some δ > 0, where

Xδ :=


x ∈ [0, 1]

∞,

∞
k=0

xk = 1,

∞
k=0

k2+δxk < ∞


. (1.2)
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We define T0 = inf{t > 0, X0(t) = 0}. The purpose of the present work is to show that this
model of Muller’s ratchet is bound to click in finite time, that is to say T0 < ∞ a.s. We are going
to prove the following theorem:

Theorem 1. For any δ > 0, for any choice of initial condition in Xδ , let (Xk(t))k∈Z+
be the

solution of (1.1). Then P(T0 < ∞) = 1.

We will in fact prove a stronger result, namely

Theorem 2. For any δ > 0, for any choice of initial condition in Xδ , let (Xk(t))k∈Z+
be the

solution of (1.1). Then there exists ρ > 0, which depends upon the parameters N , α and λ, such
that E


exp(ρT0)


< ∞, for all 0 < ρ < ρ.

Clearly, a model for Muller’s ratchet must have the property that the ratchet clicks in
finite time. In a sense our result says that the Etheridge–Pfaffelhuber–Wakolbinger model for
Muller’s ratchet is a reasonable model, in the sense that it exhibits a.s. clicking, as the computer
simulations had already shown, see [4]. Note that once the zero class is empty, the 1-class takes
its place, and some time later a second click happens, at which time both the zero class and the
1-class become empty, and so on. Of course, we would like to know more about the time it takes
for the ratchet to click. Here we show that it has an exponential moment of some order. We hope
to get more precise information in some future work.

There are several difficulties in this model. First, it is an infinite system of SDEs which
cannot be reduced to a finite dimensional system. Only X0 and M1 enter the coefficients
of the equation for X0, but the equation for M1(t) brings in the second centered moment
M2(t) =


∞

k=0(k − M1(t))2 Xk(t). The system of SDEs for the centered moments of all orders
is infinite as well, the moments of order up to ℓ = 2k enter the coefficients of the equation for
the k-th centered moment, and there is no known solution to it (except in the deterministic case
N = +∞, which is solved in [4]). In addition, one has d ⟨X0, M1⟩t = −

M1(t)X0(t)
N dt . There is

no simple relation between X0 and M1, except that X0 + M1 ≥ 1, and (X0 = 1) ⇒ (M1 = 0).
But we could have X0 → 0 and M1 → ∞. Last but not least, the diffusion coefficient in d Xk is
not a Lipschitz function of Xk at 0 and 1, and it vanishes at those two points.

In order to prove the theorem, we will use a three-step proof. First, in Section 3 we will show
that M1 cannot grow too fast with a good probability, and we will deduce that for a specific set
of initial conditions, the ratchet does click with a strictly positive probability p f in , in a given
interval of time.

Next, we show in Section 4 that the product X0 M2
1 is bound to come back under 2(λ+1)

α
after

any time, and we use all the previous results to deduce that M1 is also bound to return under
β =

λ
α

after any time, as long as the ratchet does not click.
Finally in Section 5 we prove that each time M1 gets below β, the ratchet clicks with a positive

probability in a prescribed interval of time. We then conclude with the help of the strong Markov
property.

In Section 6 we show how the proof of Theorem 1 can be modified into a proof of Theorem 2.
The reader may wonder why we do not prove Theorem 2 from the very beginning, and first prove
a weaker result. The reason is that the difference between the two proofs is essentially that while
proving Theorem 1, we prove that as long as the ratchet has not clicked, M1 is bound to return
below the value β, i.e. the drift of X0 is bound to become non-positive, which is an interesting
result in itself, while the proof of Theorem 2 is based on the same strategy, but with β replaced
by a much less explicit quantity.
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We shall essentially work with the two dimensional process {X0(t), M1(t)}, and we shall use
the equation for X1 only in one place, namely in Lemma 5.1 in order to show that X0 does not get
stuck near the value 1. This means that we shall make use only of the three following equations.

d X0(t) = (αM1(t) − λ) X0(t)dt +


X0(t)(1 − X0(t))

N
d B0(t),

d X1(t) = (α(M1(t) − 1)X1(t) + λ(X0(t) − X1(t))) dt

+


X1(t)(1 − X1(t))

N
d B1(t),

d M1(t) = (λ − αM2(t))dt +


M2(t)

N
d B(t).

(1.3)

The three Brownian motions B0, B1 and B are standard Brownian motions. They are not
independent, and the three dimensional process (B0(t), B1(t), B(t)) is not a Gaussian process.
But this will play no role in our analysis. This system is not closed, since M2 enters the
coefficients of the last equation. However, the crucial remark is that it will not be necessary to
estimate M2, in order to estimate M1. This is due to the fact that the M1-equation takes the form
d M1(t) = λdt +d Z t , where Z t = W (At )−αN At , if At := N−1  t

0 M2(s)ds and {W (t), t ≥ 0}

is a standard Brownian motion. The larger M2 is, the more likely Z t is negative, which produces
a smaller M1. This means that we should be able to estimate M1, without having to estimate M2,
which is done below in Lemmas 3.2 and 4.3. In particular, we show in Lemma 4.4 below that, as
long as the ratchet has not clicked, M1 is bound to return below the level β = λ/α after any time.
We believe that this is an interesting qualitative property of the model. Note that Theorem 2
is proved by essentially the same argument as Theorem 1, but with that level β replaced by
2β ∨ (ε/δ), where the constants ε and δ, which are defined in the proof of Theorem 1, have no
explicit relation to the constants of the model.

2. Preliminary results

The aim of this section is to establish a weak existence and uniqueness result for the infinite
system of SDEs (1.1), under the condition that the initial condition {Xk(0), k ≥ 0} belongs to
the set Xδ for some δ > 0 (see (1.2) for the definition of this set).

We equip this set with the topology under which a probability xn
= (xn

k , k ≥ 0) on Z+

converges to x = (xk, k ≥ 0) if both it converges weakly, and supn


k≥0 k2+δxn
k < ∞. More

precisely, we will prove in this section

Theorem 3. If the initial condition x belongs to Xδ , for some δ > 0, then (1.1) has a unique
weak solution X (t) = {Xk(t), k ≥ 0} which is a. s. continuous with values in Xδ .

Remark 2.1. Previous results on this system of SDEs assume that the probability x on Z+

possesses exponential moments of arbitrary order, see [3], or of some order, see [8]. This
assumption is naturally requested if one wants to be able to write equations for arbitrary moments
of the random measure X (t) on Z+. However, we will need only to make sure that M1(t) and
M2(t) have finite expectation, and for that purpose our weaker condition will be sufficient.

We start with the case α = 0.
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2.1. The case α = 0

Proposition 2.2. Suppose that α = 0. Then, for any initial condition x ∈ Xδ , (1.1) has a unique
weak solution X (t) = {Xk(t), k ≥ 0} which is a. s. continuous with values in Xδ , and is such
that for each λ, δ > 0, there exists a locally bounded function Cλ,δ(t) such that

E
∞

k=0

k2+δ Xk(t) ≤ Cλ,δ(t). (2.1)

Proof. Let us rewrite our system of SDEs in the particular case α = 0 (again it is written with
the convention that X−1(t) ≡ 0) in the form

d Xk(t) = λ(Xk−1(t) − Xk(t))dt + dMk(t), k ≥ 0;

⟨Mk,Mℓ⟩t = N−1
 t

0
Xk(s)(δk,ℓ − Xℓ(s))ds, k, ℓ ≥ 0;

Xk(0) = xk, k ≥ 0;

(2.2)

where the Mk(t)’s are continuous martingales, and ⟨Mk,Mℓ⟩ stands for the joint quadratic
variation of the two martingales Mk and Mℓ. We can apply the result of Theorem 2.1 in [10],
which ensures that (2.2) has a unique weak solution. The facts that Xk(t) ≥ 0, for all k ≥ 0, t ≥

0, a.s. and


k≥0 Xk(t) = 1 for all t ≥ 0 a.s. follow from the results in [10].
We now have

E


K

k=0

k Xk(t)


=

K
k=0

kxk + λE
 t

0

K
k=0

(k Xk−1(s) − k Xk(s)) ds,

E


∞

k=0

k Xk(t)


≤

∞
k=0

kxk + λt,

since
K−1

j=0 X j (s) ≤ 1. Furthermore, using this last inequality in the last step below,

E


K

k=0

k2 Xk(t)


=

K
k=0

k2xk + λE
 t

0

K
k=0


k2 Xk−1(s) − k2 Xk(s)


ds

≤

K
k=0

k2xk + λE
 t

0

K−1
j=0

(2 j + 1)X j (s)ds,

E


∞

k=0

k2 Xk(t)


≤

∞
k=0

k2xk + λt + λ2t2
+ 2λt

∞
k=0

kxk .

Let us now suppose that 0 < δ ≤ 1, and we exploit the fact that 2 + δk1+δ
≤ 3k2. We then

deduce that

E


K

k=0

k2+δ Xk(t)


=

K
k=0

k2+δxk + λE
 t

0

K
k=1


k2+δ Xk−1(s) − k2+δ Xk(s)


ds

≤

K
k=0

k2+δxk + 3λE
 t

0

k+1
k=1

j2 Xk(s)ds,

E


∞

k=0

k2+δ Xk(t)


≤ C2(λ, t),
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from the last estimate. If δ > 1, we need to estimate the third moment in terms of the second,
then the fourth in terms of the third, . . . , and finally the 2 + δ-th in terms of the 2 + ⌊δ⌋-th.

So far we have proved that X (t) ∈ Xδ a. s. for all t ≥ 0. We now prove that in fact a. s.,
X (t) ∈ Xδ for all t ≥ 0. Our next argument will be very similar to an argument in [8]. For any
m ≥ 1, t ≥ 0, let

Nm,δ(t) :=

∞
k=0

inf(k, m)2+δ Xk(t).

It is easy to check that {Nm,δ(t), t ≥ 0} is a positive submartingale, to which we can apply
Doob’s inequality, which, together with the monotone convergence theorem, yields that for any
K , T > 0,

P


sup

0≤t≤T

∞
k=0

k2+δ Xk(t) > K


= lim

m→∞
P


sup

0≤t≤T
Nm,δ(t) > K


≤ lim

m→∞
K −1E


Nm,δ(T )


= K −1E


∞

k=0

k2+δ Xk(T )


≤ K −1Cλ,δ(T ),

where we have used (2.1) for the last inequality. It now follows that for all T > 0,

P


sup

0≤t≤T

∞
k=0

k2+δ Xk(t) < ∞


= 1.

The a. s. continuity with values in Xδ is now easy to check. �

We next want to establish the equation for the first moment M1(t) :=


k≥1 k Xk(t). This
equation will involve the process M2(t) =


k≥1 k2 Xk(t) − [M1(t)]2. We know by now that

those quantities are well defined and finite.

Proposition 2.3. The first moment solves the SDE

d M1(t) = λdt + dM(t),

where {M(t), t ≥ 0} is a continuous martingale satisfying

⟨M,M⟩t = N−1
 t

0
M2(s)ds,

and for any k ≥ 0,

⟨M,Mk⟩t = N−1
 t

0
(k − M1(s))Xk(s)ds. (2.3)

Proof. For any K > 1, let M1,K (t) :=
K

k=1 k Xk(t). We have readily

M1,K (t) = M1,K (0) + λ

 t

0

K−1
j=0

X j (s)ds − λ

 t

0
K X K (s)ds +M1,K (t),
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where M1,K (t) is a continuous martingale, with

d⟨M1,K ⟩t = N−1


K

k=1

k2 Xk(t) −

M1,K (t)

2 dt.

It follows from (2.1) that

E
 t

0
K X K (s)ds → 0

as K → ∞. Consequently, all terms in the above equation converge as K → ∞, yielding that

M1(t) = M1(0) + λt +M(t),

where M(t) is a continuous martingale as follows from the next lemma, which is such that

d⟨M,M⟩t = N−1 M2(t)dt.

Moreover, if 1 ≤ k ≤ K ,

d⟨M1,K ,Mk⟩t = N−1


k Xk(t)(1 − Xk(t)) −


ℓ≠k,ℓ≤K

ℓXk(t)Xℓ(t)


dt

= N−1 Xk(t)


k −


ℓ≤K

ℓXℓ(t)


dt.

The second part of the result follows, by letting K → ∞. �

To complete this last proof, we need to establish

Lemma 2.4. The collection of processes {M1,K (t), t ≥ 0}K≥1 is tight in C([0, +∞)).

Proof. From the Corollary of Theorem 7.4 p. 83 in [2], Chebychef’s and Doob’s inequalities,
it suffices to prove that for each T > 0 there exists a constant C(δ, T ) such that for all
0 ≤ s < t ≤ T ,

E

|M1,K (t) −M1,K (s)|2+δ


≤ C(δ, T )|t − s|1+δ/2. (2.4)

From the well-known Davis–Burkholder–Gundy inequality (see e.g. p. 160 in [9]), there exists a
constant c(δ) such that

E

|M1,K (t) −M1,K (s)|2+δ


≤ c(δ)E


⟨M1,K ⟩t − ⟨M1,K ⟩s

1+δ/2

.

We have, using Jensen’s inequality in two distinct instances,

E

 t

s


k≥0

k2 Xk(r)dr

1+δ/2
 ≤ (t − s)δ/2E

 t

s


k≥0

k2 Xk(r)

1+δ/2

dr

≤ (t − s)δ/2E
 t

s


k≥0

k2+δ Xk(r)dr.

(2.4) follows by combining the two last estimates with (2.1). �
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2.2. The general case

We can now prove Theorem 3. We first proceed with the

Proof of existence We now introduce a Girsanov transformation. It follows from Proposition 2.3
that there exists a Brownian motion {B(t), t ≥ 0} such that

d M1(t) = λdt +


M2(t)

N
d Bt .

For any α > 0, let

Zα(t) := exp


−α
√

N
 t

0


M2(s)d Bs −

α2 N
2

 t

0
M2(s)ds


.

It is easily seen that

Zα(t) = exp


Nα


M1(0) + λt − M1(t) −

α

2

 t

0
M2(s)ds


≤ exp (Nα [M1(0) + λt]) .

It is now clear that {Zα(t), t ≥ 0} is a martingale, and consequently there exists a unique
probability measure Pα on (Ω ,F), such that for all t > 0,

dPα

dP

Ft
= Zα(t).

It now follows from Girsanov’s theorem that there exist a Pα-standard Brownian motion
{Bα(t), t ≥ 0} such that t

0


M2(s)

N
d B(s) = −α

 t

0
M2(s)ds +

 t

0


M2(s)

N
d Bα(s).

Moreover, we deduce from (2.3) and again Girsanov’s theorem (see the statement of
Theorem VIII.1.4 p. 327 in [9]) that for each k ≥ 0 there exists a Brownian motion {Bα

k (t), t ≥

0} with t

0


Xk(s)(1 − Xk(s))

N
d Bk(s) =

 t

0
α(M1(s) − k)Xk(s)ds

+

 t

0


Xk(s)(1 − Xk(s))

N
d Bα

k (s).

Consequently under Pα , we have proved weak existence to our infinite dimensional system (1.1).
We can now turn to the

Proof of uniqueness We exploit again Girsanov’s theorem to prove weak uniqueness. Consider
for some α, δ > 0 any Xδ-valued solution of our SDE, which we rewrite as

Xk(t) = xk +

 t

0


α(M1(s) − k)Xk(s) + λ(Xk−1(s) − Xk(s))


ds +Mk(t), k ≥ 0;

M1(t) =


k≥0

kxk +

 t

0
[λ − αM2(s)] ds +M(t),
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where for k, ℓ ≥ 0,

⟨Mk,Mℓ⟩t = N−1
 t

0
Xk(s)(δk,ℓ − Xℓ(s))ds,

⟨Mk,M⟩t = N−1
 t

0
Xk(s)(k − M1(s))ds,

⟨M,M⟩t = N−1
 t

0
M2(s)ds.

Let Qα denote the probability law of our solution on the space C([0, +∞);Xδ), and define, for
t ≥ 0,

Yα(t) = exp


α
√

NMt −
α2 N

2

 t

0
M2(s)ds


.

For each n ≥ 1, let

τn := inf


t > 0,

 t

0
M2(s)ds > n


.

It is not hard to show that for each n ≥ 1, the probability measure Q defined on C([0, +∞);Xδ)

equipped with its Borel σ -field, by

dQ
dQα

Fτn
= Yα(τn)

coincides with the law of the unique weak solution of (2.2) up to time τn . Hence the restriction
of Qα

= (Yα(τn))−1
· Q to the σ -algebra Fτn coincides with the law of the solution which we

have constructed above. Since τn → ∞ a.s., weak uniqueness is proved.

2.3. A comparison theorem for one-dimensional SDEs

We state a result, which will be useful later in this paper. Our processes are defined on a
probability space (Ω ,F , P), equipped with a filtration (Ft , t ≥ 0), assumed to satisfy the “usual
hypotheses”, which is such that for each k, ℓ ≥ 0


Bk,ℓ(t), t ≥ 0


is a Ft -Brownian motion. We

denote by P the corresponding σ -algebra of predictable subsets of R+ × Ω .
From the weak existence and uniqueness, we deduce that our system has the strong Markov

property, using a very similar proof as in Theorem 6.2.2 from [11]. Indeed, the proof of that
results exploits weak uniqueness of the martingale problem, together with the measurability of
the law of the solution, with respect to the starting point. In our case that mapping is easily shown
to be continuous.

In the next sections, we will use the following comparison theorem several times. This Lemma
can be proved exactly as the comparison Theorem 3.7 from chapter IX of [9].

Lemma 2.5. Let B(t) be a standard Ft -Brownian motion, T a stopping time, σ be a 1/2 Hölder
function, b1 : R → R a Lipschitz function and b2 : Ω ×R+×R → R be a P⊗ B(R) measurable
function. Consider the two SDEs

dY1(t) = b1(Y1(t))dt + σ(Y1(t))d B(t),
Y1(0) = y1;

(2.5)
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dY2(t) = b2(t, Y2(t))dt + σ(Y2(t))d B(t),
Y2(0) = y2.

(2.6)

Let Y1 (resp Y2) be a solution of (2.5) (resp (2.6)). If y1 ≤ y2 (resp y2 ≤ y1) and outside
a measurable subset of Ω of probability zero, ∀t ∈ [0, T ] , ∀x ∈ R, b1(x) ≤ b2(t, x) (resp
b1(x) ≥ b2(t, x)), then a.s. ∀t ∈ [0, T ] , Y1(t) ≤ Y2(t) (resp Y1(t) ≥ Y2(t)).

3. The result for a specific set of initial conditions

From

P(E) + P(F) − P(E ∩ F) = P(E ∪ F) ≤ 1,

we deduce the following trivial lemma which will be used several times below:

Lemma 3.1. Let E, F ∈ F . Then P(E ∩ F) ≥ P(E) + P(F) − 1.

Now first we show that M1 cannot grow too fast:

Lemma 3.2. For all c > 0, t > 0, t ′ > 0,

P


sup

0≤r≤t ′
M1(t + r) − M1(t) ≤ λt ′ + c


≥ 1 − exp(−2αNc).

Proof. Define Z t
t+s =

 t+s
t


M2(r)

N d Br − α
 s+t

t M2(r)dr . We note that, for any t > 0, {exp
(2αN Z t

t+u), u ≥ 0} is both a local martingale and a super-martingale. We also have

sup
0≤s≤t ′

M1(t + s) − M1(t) ≤ sup
0≤s≤t ′

Z t
t+s + λt ′.

But for all c > 0,

P


sup

0≤u≤t ′
Z t

t+u ≥ c


≤ P


sup

0≤u≤t ′
exp


2αN Z t

t+u


≥ exp (2αNc)


≤ exp (−2αNc) ,

where we have taken advantage of the fact that exp

2αN Z t

t+u


is a local martingale and of
Doob’s inequality. Then

P


sup

0≤r≤t ′
M1(t + r) − M1(t) ≤ λt ′ + c


≥ 1 − exp (−2αNc) . �

Note that we have in fact P

supu≥0 Z t

t+u ≥ c


≤ exp (−2αNc).
We choose an arbitrary value m > 0 for M1(0), which will remain the same throughout this

document (for example one could choose m = 1), and we define

ε =
1

10Nα
, t ′3 =

εN
3λ

=
1

30λα
, (3.1)

mmax = m + λA(t ′3) +
ε

6
,
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where A(t) =
1

4N

 t
0 (1 − X0(s))ds,

p2 = exp


−αN
ε

6


= exp


−

1
60


, (3.2)

µ =
ε

6mmax
∧

ε

4
∧

1
10

, (3.3)

and let δ be a real number, which will be specified below, such that δ ≤
1

10 ∧
ε
m .

Now let Y0 be the solution of the following SDE:
dY0(t) = dt + 2


Y0(t)dW (t)

Y0(0) = δ
(3.4)

with W a standard Brownian motion.
We will show that starting with X0(0) = x0 ≤ δ, M1(0) = m1 ≤ m, and as long as

X0 M1 < 2ε and X0 remains small enough, we can compare X0(t) with the solution of (3.4).

Lemma 3.3. For any δ > 0, ε given as in (3.1), µ as in (3.3), let

Tmin = inf{t > 0, X0(t)M1(t) > 2ε or X0(t) > δ + µ}.

Then provided that X0(0) = x0 ≤ δ, if A(t) :=
1
4

 t
0

1−X0(s)
N ds, there exists a standard Brownian

motion W such that the corresponding solution Y0 of (3.4) satisfies

X0(t) ≤ Y0(A(t)), ∀t ∈ [0, Tmin] .

Proof. We first note that for 0 ≤ t ≤ Tmin,
t

5N ≤ A(t) ≤
t

4N because 4
5 ≤ 1−X0(t) ≤ 1


thanks

to the choices of µ and δ, and 1 − X0(t) ≥ 1 − δ − µ ≥ 1 −
1

10 −
1

10 ≥
4
5


.

Define σ(t) = inf{u > 0, A(u) ≥ t} and X̃0(t) = X0(σ (t)) (resp M̃1(t) = M1(σ (t))). Then
there exists a standard Brownian motion Wt such that

d X̃0(t) = (αM̃1(t) − λ)X̃0(t)
4N

1 − X̃0(t)
dt + 2


X̃0(t)dWt .

But whenever t ≤ A(Tmin),

(αM̃1(t) − λ)X̃0(t)
4N

1 − X̃0(t)
≤

4αN M̃1(t)X̃0(t)

1 − X̃0(t)
≤ 1,

because the numerator on the right is less than or equal to 4/5, while the denominator is bigger
than or equal to the same figure.

The result then follows from Lemma 2.5. �

Next we will prove that Y0 reaches zero with positive probability on a fixed time interval. For
any α ∈ R, we define

T ′
α = inf{t > 0, Y0(t) = α}.
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Lemma 3.4. Let {Y0(t), t ≥ 0} be the solution of (3.4). For all p < 1, µ̃ > 0, there exists δ > 0
such that with t ′3 defined as in (3.1),

P(T ′

0 ≤ t ′3 ∧ T ′

δ+µ̃) ≥ p.

Proof. Let

Ỹ (t) = δ exp (−t + 2W (t)) ,

D(t) =

 t

0
Ỹ (s)ds,

ρ(t) = inf{s > 0, D(s) > t}.

It is not too hard to show that there exists a Brownian motion W̄ such that

Ỹ (ρ(t)) = δ exp

−

 t

0

ds

Ỹ (ρ(s))
+ 2

 t

0

dW̄ (s)
Ỹ (ρ(s))

 .

It now follows from Ito’s formula that the process {Y (t) := Ỹ (ρ(t)), t ≥ 0} is the unique
strong solution of Eq. (3.4) driven by W̄ , hence Y0(t) = Ỹ (ρ(t)), t ≥ 0. We deduce that
T ′

0 = D(∞) < ∞, and

P(T ′

0 ≤ t ′3 ∧ T ′

δ+µ̃)

= P


∞

0
exp(−t + 2W (t))dt ≤

t ′3
δ


∩


sup
t≥0

exp(−t + 2W (t)) ≤
δ + µ̃

δ


→ 1,

as δ → 0, since supt≥0 exp(−t + 2W (t)) < ∞ a.s. �

Now we can choose the value of δ which we will be using from now on. Let δ′ be the largest
value of δ such that Lemma 3.4 holds, with p = p2 defined in (3.2) and µ̃ = µ (which is a
function of mmax) as defined by (3.3). We choose (recall that the value of ε has been defined in
(3.1))

δ = δ′
∧

1
10

∧
ε

m
. (3.5)

Thanks to Lemma 3.4, when starting at time 0 from δ, Y0 reaches 0 with probability p2
before time t ′3 ∧ T ′

δ+µ. Then X0 will do the same before time A(t ′3) ∧ A(T ′
δ+µ), provided that

X0(t)M1(t) ≤ 2ε, ∀0 ≤ t ≤ A(t ′3) ∧ A(T ′
δ+µ). Hence the fact that T0 < A(t ′3) with positive

probability, provided x0 ≤ δ and M1(0) ≤ m will follow from the above results and

Lemma 3.5. If X0(0) ≤ δ and M1(0) ≤ m, then we have (again with ε and t ′3 given by (3.1))

P

 sup
0≤t≤A(t ′3∧T ′

δ+µ)

X0(t)M1(t) ≤ 2ε

 = p3 > 1 − p2.
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Proof. We use Lemma 3.2. Consider the event

Em,t ′3,ε̄
=

 sup
0≤t≤A(t ′3)∧A(T ′

δ+µ)

M1(t) ≤ m + λA(t ′3) +
ε

6

 .

We have

P(Em,t ′3,ε̄
) ≥ P


sup

0≤t≤A(t ′3)
M1(t) ≤ m1 + λA(t ′3) +

ε

6



≥ 1 − exp


−αN
ε

3


= 1 − exp


−

1
30


.

Since X0(t) ≤ δ + µ for t ≤ A(T ′
δ+µ), on the event Em,t ′3,ε̄

,

sup
0≤t≤A(t ′3)∧A(T ′

δ+µ)

X0(t)M1(t) ≤ (δ + µ)


m + λA(t ′3) +

ε

6


≤ δm + µm + λA(t ′3) +

ε

6

≤ ε +
ε

6
+

ε

12
+

ε

6
≤ 2ε,

where we have used the fact that δ + µ ≤ 1 for the second inequality. �
Combining Lemmas 3.1, 3.3, 3.5 and 3.4, denoting t3 = A(t ′3), we deduce the

Corollary 3.6. There exists pfin ≥ p3 + p2 − 1 > 0 such that

P(T0 ≤ t3|X0(0) ≤ δ, M1(0) ≤ m) ≥ p f in > 0.

While this corollary is rather intuitive, we shall need the slightly more general following
result, i.e. with a larger set of initial conditions. Given m as above, and δ as in (3.5), let

I = {(x0, m1) ∈ [0, 1] × R+, x0 ≤ δ, x0m1 ≤ δm}.

We now prove the (pfin is as defined in Corollary 3.6)

Proposition 3.7. For any (x0, m1) ∈ I,

P(T0 ≤ t3|X0(0) = x0, M1(0) = m1) ≥ pfin.

Proof. Thanks to the previous corollary, we only need to consider the case m1 > m. Let (x0, m1)

be a point in the set I. First, let us consider the point (δ, m). From the previous section, starting
from (δ, m), the process (X0, M1) has a strictly positive probability to reach 0 before time
t3 = A(t ′3). We will show that the process starting from (x0, m1) has a larger probability to
reach 0 before time t3, which will prove the proposition.

Let C =
m1
m ≥ 1. Then we have x0 ≤

δ
C .

Now we will use the same reasoning as in Lemma 3.4 with a few modifications. Indeed, since
the probability that Y0(t) reaches 0 before a prescribed time is decreasing in δ, we increase this
probability by starting from Y0(0) = x0 = δ′

≤
δ
C , since C ≥ 1. We will use this new value.
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Moreover, the starting point satisfies x0m1 ≤ ε. The only thing which is worse than with the
starting point (δ, m) is the fact that m1 is greater than m, hence a greater mmax. But this only
appears in one place: in the definition of µ.

Note that if we define m′
max = m1 + λt3 +

ε
6 , we deduce from Lemma 3.2

P


sup

0≤t≤t3
M1(t) ≤ m′

max


≥ 1 − exp


−αN

ε

3


.

We define µ′ similarly as µ in (3.3), but with mmax replaced by m′
max, hence since m′

max ≤

Cmmax, µ
′
≥

µ
C . But if we look at the proof of Lemma 3.4, we have, since t ′3

δ′ ≥
Ct ′3
δ

≥
t ′3
δ

and
δ′

+µ′

δ′ = 1 +
µ′

δ′ ≥ 1 +
µ
δ

,

P(T0 ≤ t3) ≥ P(T ′

0 ≤ t ′3 ∧ T ′

δ′+µ′)

≥ P


∞

0
exp(−t + 2W (t))dt ≤

t ′3
δ′


∩


sup
t≥0

exp(−t + 2W (t)) ≤
δ′

+ µ′

δ′



≥ P


∞

0
exp(−t + 2W (t))dt ≤

t ′3
δ


∩


sup
t≥0

exp(−t + 2W (t)) ≤
δ + µ

δ


.

Hence we have a larger probability to reach zero starting from (x0, m1) rather than from
(δ, m), which concludes the proof. �

We sum up in the following proposition the results obtained in this section, with ε = δm
(recall that m has been chosen arbitrarily, δ is prescribed by (3.5), and note that ε ≤ ε).

Proposition 3.8. Let X (t) = (Xk(t))k∈Z+
be the solution of (1.1), and M1(t) =


k≥1 k Xk(t).

Then there exist p f in > 0 and t3 such that for any t ≥ 0,

P(T0 ≤ t + t3|X0(t) ≤ δ, X0(t)M1(t) ≤ ε) ≥ p f in > 0.

4. A recurrence property of M1

With the help of the results proved in the previous section, we will now prove some results on
M1. We will show that as long that as the ratchet has not clicked, M1 is bound to return under
some specified value. This particular point will be important in the sequel.

We begin with the following lemma, which is true for any probability on Z+. It will be crucial
for establishing one of our first estimates.

Lemma 4.1. Let p be a probability on Z+, and let xk = p(k), m1 =


k≥0 kxk and m2 =
k≥0(k − m1)

2xk . Then

m2 ≥ (1 − x0)m2 ≥ x0m2
1.

Proof. If x0 = 1, m1 = m2 = 0 and the result is true. So it suffices to study the case x0 < 1. By
Jensen’s inequality we have

k≥1

xk

1 − x0
k

2

≤


k≥1

xk

1 − x0
k2
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with equality if and only if there exists only one k ≥ 1 such that xk > 0. Then:
k≥1

xkk

2

≤ (1 − x0)

k≥1

xkk2,

that is

m2
1 ≤ (1 − x0)


k≥1

xkk2,

hence

x0m2
1 ≤ (1 − x0)


k≥1

k2xk − (1 − x0)m2
1

= (1 − x0)m2. �

We now introduce for each t ≥ 0 the stopping time

H t
λ := inf


s ≥ t, X0(s)M1(s)2

≤ 2
λ + 1

α


,

and we define Hλ = H0
λ .

Our next claim is

Proposition 4.2. For any stopping time T , we have H T
λ < +∞ a.s.

The proposition follows from the strong Markov property and

Lemma 4.3. Suppose that X0(0)M1(0)2 > 2λ+1
α

. Then Hλ < ∞ a.s.

Proof. On the interval [0, Hλ],we have from Lemma 4.1

−
α

2
M2 ≤ −

α

2
X0 M2

1 ≤ −(λ + 1),

hence from the third line of (1.3),

M1(t) ≤ M1(0) − t −
α

2

 t

0
M2(s)ds +

 t

0


M2(s)

N
d Bs . (4.1)

We will show next that

Z t :=

 t

0


M2(r)

N
d Br −

α

2

 t

0
M2(r)dr

is bounded from above a.s. This will imply the result, since on the event {Hλ = +∞}, (4.1) holds
for all t > 0, which would imply that M1 eventually becomes negative, and this is absurd.

If we define C(t) =
1
N

 t
0 M2(s)ds, we have Z t = W (C(t))−

αN
2 C(t) where W is a standard

Brownian motion.
Now, if C(∞) = ∞ then limt→∞ Z t = −∞, hence Z t is bounded from above. Or else

C(∞) < ∞, and we have supt>0 |Z t | = sup0<s<C(∞) |W (s) −
αN
2 s| < ∞ a.s. �

Now we will finally be able to prove that M1 always returns below β := λ/α, as long as the
ratchet does not click. Let for each t ≥ 0

St
β = inf{s > t, M1(s) ≤ β}.
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We have the following lemma:

Lemma 4.4. For any stopping time T, P(T0 ∧ ST
β < ∞) = 1.

Proof. From the strong Markov property of the solution of (1.1), we may assume that T = 0.
First, we let δinf = δ ∧

ε2α
4(λ+1)

(recall that ε = δm).
Now we introduce the process Y s

t , defined for all s ≥ 0, t ≥ s, which is the solution of the
following SDE:dY s

t =


Y s

t (1 − Y s
t )

N
d B0(t), t ≥ s,

Y s
s = δinf.

(4.2)

We define for any 0 ≤ u ≤ 1

Rs
u = inf{t ≥ s, Y s

t = u}.

We have
Rs

0 ∧ Rs
1 < +∞ a.s.,

P(Rs
1 < Rs

0) > 0.
(4.3)

Indeed, for all a ∈ (0, δinf), by the non-degeneracy of the diffusion coefficient, Y s
t gets out of

[a, 1 − a] in finite time. Then if we choose a small enough (using the same reasoning as in
Lemma 3.4), we have a chance p′

f in to reach 0 before a time V > 0 as soon as we start below a
(the same with 1 and starting above ≥ 1 − a by symmetry).

Define recursively the stopping times

ξ1 = inf{t > s; Y s
t ∉ (a, 1 − a)},

and for k ≥ 1, ξk+1 = inf{t > ξk + V ; Y s
t ∉ (a, 1 − a)}.

A standard application of the strong Markov property of Y s
t yields that

P(Y s
ξk+1

∉ {0, 1}) ≤ (1 − p′

f in)k,

hence the first line of (4.3). The second line is essentially obvious. Note that using an argument
based upon Green’s functions, one can in fact prove that E(Rs

0 ∧ Rs
1) < +∞.

From this we deduce that there exist K > 0, p > 0 such that P(Rs
1 ≤ K ∧ Rs

0) ≥ p > 0. In
particular P(Rs

1 ≤ K ) ≥ p > 0.
We define L = K ∨ t3, where t3 is as in Proposition 3.8, and the following collection of

stopping times:

U t
0 = inf


s > t, X0(s)M2

1 (s) ≤ 2
λ + 1

α


,

and for all n ≥ 1,

U t
n = inf


s > U t

n−1 + L , X0(s)M2
1 (s) ≤ 2

λ + 1
α


.

For all n ≥ 0, U t
n is a.s. finite, thanks to Proposition 4.2.
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Now, at time U t
0: either we are on the event A0 = {X0(U t

0) ≤ δinf}(δinf ≤ δ), in which case

X0(U t
0)M1(U t

0) =


X0(U t

0)M2
1 (U t

0) × X0(U t
0)

≤


2
λ + 1

α

ε2α

4(λ + 1)

< ε,

and we deduce from Proposition 3.8 that

P(T0 ≤ U t
0 + L|A0) = p f in > 0.

The other possibility is that we are on the event

Ac
0 = B0 ∪ C0, where

B0 =


X0(U t
0) > δinf


∩


inf

U t
0≤s≤U t

0+L
M1(s) ≥ β


,

C0 =


X0(U t
0) > δinf


∩


inf

U t
0≤s≤U t

0+L
M1(s) < β


.

On the event C0, Sβ ≤ U t
0 + L . On the event B0, infU t

0≤s≤U t
0+L(αM1(s)−λ)X0(s) ≥ 0, and then

we deduce from Lemma 2.5 that X0(s) ≥ Y
U t

0
s . Consequently, if T1 = inf {t ≥ 0, X0(t) = 1},

P(T1 ≤ U t
0 + L|B0) ≥ p > 0.

But if X0(s) = 1, then M1(s) = 0. Hence

P(Sβ ≤ U t
0 + L|B0) ≥ p > 0.

Finally

P(T0 ∧ St
β ≤ U t

0 + L) = P(T0 ∧ St
β ≤ U t

0 + L|A0)P(A0)

+ P(T0 ∧ St
β ≤ U t

0 + L|B0)P(B0)

+ P(T0 ∧ St
β ≤ U t

0 + L|C0)P(C0)

≥ p f inP(A0) + pP(B0) + P(C0)

≥ p f in ∧ p =: q,

P(T0 ∧ St
β = +∞) ≤ P(T0 ∧ St

β ≥ U t
0 + L) ≤ 1 − q.

It follows from the strong Markov property of the process X = (Xk, k ≥ 0), repeating this
argument with U t

0 replaced by U t
1 that

P(T0 ∧ St
β = +∞) ≤ P(T0 ∧ St

β ≥ U t
1 + L) ≤ (1 − q)2.

Iterating the above argument, we have for all ℓ ≥ 0,

P(T0 ∧ St
β > U t

ℓ + L) ≤ (1 − q)ℓ.

We have proved that

P(T0 ∧ St
β = +∞) = 0. �
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5. Reaching the special set from any initial condition

Now we will show that starting from an initial condition ((xk)k∈Z+
, m1) with m1 ≤ β the

process has a probability bounded below by p f in to click before a given time. Since the process
is Markovian and this situation repeats itself as long as the ratchet has not clicked, we will
conclude that P(T0 < +∞) = 1.

In this section we denote by (xk)k≥0 the initial condition of our system, and we suppose that
m1 =


k≥0 kxk ≤ β.

One of the difficulties we have to face is that the quadratic variation of X0 is X0(1−X0)
N , which

is not bounded away from 0, near 1 and 0. We need to study three separate cases.
The first case will be described in terms of the constant

xmax = max


9
10

,
3λ + 5α

5(λ + α)
, 1 −

2
λ


. (5.1)

5.1. x0 ∈

xmax; 1


The following lemma will show that if X0 starts close to 1, it will quickly go under xmax:

Lemma 5.1. Let t1 =
8
λ2 . If X0(0) > xmax, then

P


inf
s<t1

X0(s) ≤ xmax


≥ 1 − exp(−N ).

Proof. Let Txmax = inf{s ≥ 0, X0(s) ≤ xmax}. On the time interval [0, Txmax), we have

X0(s) > xmax ≥
3λ + 5α

5(λ + α)
.

Since X1 ≤ 1 − X0, on the same interval we have X1(s) ≤
2λ

5(λ+α)
while X0(s) > 9

10 , hence

αM1(s)X1(s) + λX0(s) − (λ + α)X1(s) ≥ λX0(s) − (λ + α)
2λ

5(λ + α)

≥
λ

2
.

Then X1(s) ≥ Y1(s) for s ∈

0, Txmax


, where Y1 is the solution of the SDEdY1(s) =

λ

2
ds +


Y1(1 − Y1)

N
d B1(s),

Y1(0) = 0,

(5.2)

where we stop Y1 as soon as it reaches 1.
We have

P

 t1

0


Y1(1 − Y1)

N
d B1 < −C


= P


−

 t1

0


Y1(1 − Y1)

N
d B1 > C



≤ P


exp


−γ

 t1

0


Y1(1 − Y1)

N
d B1 −

 t1

0

γ 2Y1(s)(1 − Y1(s))
2N

ds
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> exp


γ C −
γ 2

8N
t1



≤ exp


−γ C +
γ 2

8N
t1


,

where the first inequality follows from Y1(s)(1 − Y1(s)) ≤ 1/4, and the second one is
Chebychev’s inequality. Choosing γ = 4C N/t1 and C = 2/λ, we deduce that

P

 t1

0


Y1(1 − Y1)

N
d B1 ≥ −

2
λ


≥ 1 − exp (−N ) > 0.

Now, since t1

0

λ

2
ds =

4
λ

,

and on [0, Txmax), X0(s) > 1 − 2/λ, hence X1(s) < 2/λ, we have the inclusion t1

0


Y1(1 − Y1)

N
d B1 ≥ −ℓ

2
λ


⊂ {Txmax < t1},

which implies that

P

Txmax ≤ t1


≥ 1 − exp(−N ),

hence the conclusion. �

We need to control M1 on the same time interval of length t1. Using Lemma 3.2 we will
deduce the following proposition:

Proposition 5.2. Let again xmax be given by (5.1), t1 =
8
λ2 , ε0 =

1
2αN ln


2

1−exp(−N )


and

β ′
= β + λt1 + ε0. If X0(0) > xmax and M1(0) < β, then

P

{Txmax ≤ t1} ∩ {M1(Txmax) ≤ β ′

}


= pini t > 0.

Proof. It follows from Lemmas 5.1 and 3.2

P(Txmax ≤ t1) ≥ 1 − exp(−N ),

P(M1(Txmax) ≤ β ′) ≥ 1 − exp(−2αNε0).

Those two inequalities together with Lemma 3.1 imply

P

{Txmax ≤ t1} ∩ {M1(Txmax) ≤ β ′

}


≥ 1 − exp(−N ) − exp(−2αNε0)

=
1 − exp(−N )

2
=: pini t . �

So even if we started with (X0(0), M1(0)) such that X0(0) > xmax and M1(0) < β, we obtain
before time t1 with probability at least pini t > 0 a new initial condition X0 ≤ xmax and M1 ≤ β ′,
so we can resume with the next case.
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5.2. X0 ≤ xmax but either X0 > δ or X0 M1 > ε

The idea of this subsection is to show that with a strictly positive probability ptrans , both X0
goes from xmax to a δ′ < δ in finite time, and during the same time interval, M1 stays small
enough so that at the end X0 M1 ≤ ε.

We start by showing some inequalities.

Lemma 5.3. Let {Vt , t ≥ 0} be a standard Brownian motion, and c > 0 a constant. Then for
any t > 0, δ̃ > 0, µ̃ > 0,

P


inf

0≤s≤t
{cs + Vs} ≤ −δ̃, sup

0≤s≤t
{cs + Vs} ≤ µ̃



≥ 1 −


2
π


δ̃

√
t

+ c
√

t


− 2 exp


−

1
2


µ̃
√

t
− c

√
t
2


.

Proof. Using Lemma 3.1, the result follows from the two following computations. We have, with
Z denoting a N (0, 1) random variable,

P


inf
0≤s≤t

{cs + Vs} ≤ −δ̃


≥ P


inf

0≤s≤t
Vs ≤ −δ̃ − ct


= P


sup

0≤s≤t
Vs ≥ δ̃ + ct


= 2P(Vt ≥ δ̃ + ct)

= 1 − P


|Z | ≤

δ̃
√

t
+ c

√
t



≥ 1 −


2
π


δ̃

√
t

+ c
√

t


.

On the other hand,

P


sup

0≤s≤t
(cs + Vs) ≤ µ̃


≥ P


sup

0≤s≤t
Vs ≤ µ̃ − ct



= 1 − P


sup

0≤s≤t
Vs ≥ µ̃ − ct



= 1 − 2P


Z ≥
µ̃
√

t
− c

√
t


,

and

P


Z ≥
µ̃
√

t
− c

√
t


= P


exp(γ Z − γ 2/2) ≥ exp


γ


µ̃
√

t
− c

√
t


−
γ 2

2


≤ exp


−γ


µ̃
√

t
− c

√
t


+
γ 2

2


.
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Choosing γ = µ̃/
√

t − c
√

t , we conclude from the above computations that

P


sup

0≤s≤t
(cs + Vs) ≤ µ̃


≥ 1 − 2 exp


−

1
2


µ̃
√

t
− c

√
t
2


. �

We will choose from now on

ε̃ =
log(4)

2αN
, so that e−2Nαε̃

=
1
4
. (5.3)

We start from (X0, M1) = (x, β ′), where 0 < x ≤ xmax < 1 (recall the defini-
tion (5.1) of xmax) and β < β ′. Let 0 < µ̃ =

1−xmax
2 . We are going to prove that, with

positive probability, X0 goes down to δ′ in a finite number of steps, while staying below
x + µ̃


so that 1 − X0(t) ≥ a :=

1−xmax
2


, and while M1 remains under control.

Considering the SDE

d X0(t) = (αM1(t) − λ)X0(t)dt +


X0(t)[1 − X0(t)]

N
d B0,

let

A(t) :=

 t

0

X0(s)[1 − X0(s)]
N

ds, and

σ(t) := inf{s > 0, A(s) > t}.

Since  σ(t)

0

X0(s)(1 − X0(s))
N

ds = t,

we deduce that
dσ(t)

dt
=

N

X̃0(t)(1 − X̃0(t))
, provided we let

X̃0(t) := X0(σ (t)).

Finally

σ(t) =

 t

0

N

X̃0(s)(1 − X̃0(s))
ds,

and if we let

M̃1(t) := M1(σ (t)),

we deduce from the above SDE for the process X0 that

X̃0(t) = x + N
 t

0

αM̃1(s) − λ

1 − X̃0(s)
ds + B(t),

where B(t) is a new standard Brownian motion (we use the same notation as above, which is a
slight abuse).

At the k-th step of our iterative procedure, k ≥ 1, we let X̃0 start from x −
k−1

j=1 δ j , and we

stop the process X̃0 at the first time that it reaches the level x −
k

j=1 δ j . We will choose not



Author's personal copy

J. Audiffren, E. Pardoux / Stochastic Processes and their Applications 123 (2013) 2370–2397 2391

only the sequence δk , but also the sequence sk in such a way that we can deduce from Lemma 5.3
(see (5.11) and (5.12) below) that for each 1 ≤ k ≤ K (K to be defined below),

P


inf

0≤s≤sk
{Θks + Bs} ≤ −δk, sup

0≤s≤sk

{Θks + Bs} ≤ µ̃


>

1
3
. (5.4)

We shall make sure that

Θ0 = β ′, and Θk − Θk−1 ≥ ε̃ + λs′

k, (5.5)

with s′

k := σ(sk) and ε̃ defined by (5.3), so that we deduce from Lemma 3.2 and our choice of ε̃

that

P


sup

0≤s≤s′
k

M1(s) ≤ Θk

M1(0) ≤ Θk−1


≥ 3/4. (5.6)

The fact that with positive probability X0 goes down to δ′, while staying below x + µ̃ and M1
remaining under control, will follow from a combination of (5.4) and (5.6), provided we show
that we can choose the two sequences δk and sk for k ≥ 1 in such a way that not only (5.4) holds,
but also that there exists K < ∞ such that

x −

K
k=1

δk ≤ δ′.

Since during the k-th step we are considering the event that X0(t) ≤ x + µ̃ i.e. 1− X0(t) ≥ a,
and also X0(t) ≥ x −

k
j=1 δ j , we have that

s′

k ≤
N

a


x −

k
j=1

δ j

 sk,

so that we may, in accordance with (5.5), make the following choice of Θk in terms of
{δ j , s j , 1 ≤ j ≤ k}:

Θk := β ′
+ kε̃ + N

λ

a

k
j=1

s j

x −

j
i=1

δi

.

We first want to ensure that (the reason for 0.4 will be made clear below)

δk
√

sk
+ Θk

√
sk ≤ 0.4,

which we achieve by requesting both that

δk = 0.2
√

sk (5.7)

and

Θk
√

sk ≤ 0.2 ⇔ sk ≤


0.2
Θk

2

. (5.8)
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On the other hand, we shall also request that for each j ≥ 1,

δ j

x −

j
1

δi

≤ 1 ⇔ δ j ≤
1
2


x −

j−1
i=1

δi


.

This combined with (5.7) implies that

s j

x −

j
i=1

δi

≤ 25δ j .

Consequently

β ′
≤ Θk ≤ β ′

+ kε̃ + 25N
λ

a


sup

1≤ j≤k
δ j


k.

Moreover, a combination of (5.7) and (5.8) yields

δ j = 0.2
√

s j ≤
(0.2)2

Θ j

≤ (25β ′)−1,

and from the above inequality follows

Θk ≤ β ′
+ DN k, (5.9)

with DN = ε̃ +
Nλ

aβ ′
.

Finally this leads us to choose

δk = inf


κ

(β ′ + DN k)
,

1
2


x −

k−1
j=1

δ j


, (5.10)

sk = 25δ2
k .

It still remains to choose κ , which will be done below. Note that (5.7) + (5.8) request us to make
sure that κ ≤

1
25 .

We now have

Lemma 5.4. ∃K > 0, ∀k > K ,

δk =
1
2


x −

k−1
j=1

δ j


.

Proof. We first show that for k ≥ 2,

1
2


x −

k−1
j=1

δ j


≤

κ

(β ′ + DN k)
⇒

1
2


x −

k
j=1

δ j


<

κ

(β ′ + DN (k + 1))
.
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Indeed, if the above left inequality holds, then
κ

(β ′+DN (k+1))

1
2


x −

k−1
j=1

δ j

 ≥

κ
(β ′+DN (k+1))

κ
(β ′+DN k)

>
1
2
,

where the last inequality follows easily from k ≥ 2. Consequently

κ

(β ′ + DN (k + 1))
>

1
2
δk

=
1
4


x −

k−1
j=1

δ j



=
1
2


x −

k
j=1

δ j


.

Finally there exists K ′
≥ 1 such that

x −

K ′
j=1

κ

(β ′ + DN j)
< 0.

Therefore for some k ≤ K ′,

κ

(β ′ + DN k)
>

1
2


x −

k
j=1

δ j


. �

This means that at each k > K , X̃0 progresses by a step equal to half the remaining distance
to zero. Consequently ∃c > 0 such that xk = x −

k
j=1 δ j ≤ c2−k . We are looking for the

smallest integer k such that c2−k
≤ δ′, δ′ to be specified below, which implies that

k − 1 <
log(c) − log(δ′)

log(2)
≤ k.

Consequently, since we may as well assume that δ′
≤ 1/2,

k ≤ 1 +
log(c)
log(2)

+
log(1/δ′)

log(2)

≤

log(2)

−1


2 +
log(c)
log(2)


log


1
δ′


.

Combining this estimate with (5.9), we deduce that there exists a constant D′

N such that

Θk ≤ β ′
+ D′

N log


1
δ′


.

Hence there exists a δ′
≤ δ ∧ 1/2 such that δ′Θk ≤ ε. If we now check that the probability of the

previous path is bounded below by a positive constant, we will have that with a positive constant,
at the end of the k-th step, both X0 ≤ δ′

≤ δ, and M1 ≤ Θk , hence X0 M1 ≤ ε, which puts us in
a position to apply Proposition 3.8.
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Given the choice that we have made for ε̃, see (5.3), it suffices to make sure that
2
π


δk

√
sk

+ Θk
√

sk


< 1/3, ∀k ≥ 1, (5.11)

as well as

2 exp


−

1
2


µ̃

√
sk

− Θk
√

sk

2


< 1/3, ∀k ≥ 1. (5.12)

Since 3−1√π/2 > 0.4, (5.7) + (5.8) implies (5.11).
On the other hand, (5.12) is equivalent to

µ̃
√

sk
− Θk

√
sk

2

> 2 log 6. (5.13)

But we have

Lemma 5.5. A sufficient condition for (5.13) is that

κ ≤ 1 ∧
β ′µ̃

25 + 10 log 6
. (5.14)

Proof. It follows from (5.14)

µ̃(β ′
+ DN k) > (25 + 10 log 6)κ

≥


25Θk

β ′ + DN k
+ 10 log 6


κ

≥
25Θk

β ′ + DN k
κ2

+ 10(log 6)κ,

µ̃

5κ/(β ′ + DN k)
> Θk

5κ

β ′ + DN k
+ 2 log 6.

Finally (5.13) follows from the last inequality, (5.10) and (5.7). �
We therefore choose

κ =
1
25

∧
β ′µ̃

25 + 10 log 6
.

We can now conclude that

Proposition 5.6. Suppose that X0(0) ≤ xmax and M1(0) ≤ β ′. Let

Tδ′ = inf{s > 0, X0(s) ≤ δ′
}.

Then

P (Tδ′ ≤ t2, X0(Tδ′) × M1(Tδ′) ≤ ε) ≥


1

12

kmax

:= ptrans,

with t2 = 25kmax, and kmax is the number of steps needed to reach δ′ in the above procedure,
while starting from xmax.
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Proof. It follows from (5.6), (5.11), (5.12), Lemma 5.3 and again Lemma 3.1 that the k-th step
in the above procedure happens with probability at least 1/12. It remains to exploit the Markov
property, like at the end of the proof of Lemma 4.4. �

5.3. Conclusion

Proposition 5.2 shows that, if we start with M1 < β, with probability pini t we need to wait at
most a length of time t1 for the pair (X0, M1) to reach the set [0, xmax] × [0, β ′

]. Proposition 5.6
shows that starting from that set, with probability ptrans we need to wait at most a length of time
t2 for (X0, X0 M1) to reach the set [0, δ′

] × [0, ϵ], with δ′ < δ. But from Proposition 3.8, starting
from this last set, we have a probability p f in to reach 0 during an interval of time of length t3.

So to sum up, using again the strong Markov property of the system, we have

Proposition 5.7. For any finite stopping time T , if M1(T ) ≤ β, then

P(T0 < T + t1 + t2 + t3) ≥ p f in ptrans pini t > 0.

Moreover Lemma 4.4 implies that this situation will happen infinitely many times as long as
the ratchet does not click, which implies Theorem 1, exploiting again the strong Markov property
of the solution of (1.1).

6. Proof of Theorem 2

This final section is devoted to the proof of Theorem 2.
We first note that the reasoning of Section 5 can be done with any initial value ρ for M1,

instead of β. That is to say, with St
ρ = inf {s > t, M1(s) ≤ ρ} (and Sρ = S0

ρ),

Lemma 6.1. ∃tρ1 , tρ2 , tρ3 < ∞, and pρ
ini t , pρ

trans, pρ
f in > 0 such that

P(T0 < St
ρ + tρ1 + tρ2 + tρ3 ) ≥ pρ

ini t pρ
trans pρ

f in .

Choosing ρ =
ε
δ

∨
2λ
α

, we have:

Lemma 6.2. There exist K , p̃ > 0, such that for any initial condition in the set Xδ ,

P(T0 ∧ Sρ ≤ K ) ≥ p̃.

Proof. We are going to argue like in the proof of Lemma 4.4. We introduce the process
{Ys, s ≥ 0}, which is the solution of the following system:dYs =

αε

2
ds +


Ys(1 − Ys)

N
d B0(s),

Y0 = 0.

(6.1)

For any 0 ≤ u ≤ 1, let

Ru = inf{s ≥ 0, Ys = u}.

Since αε
2 > 0 we deduce that there exist L > 0, p > 0 such that P(R1 ≤ L) ≥ p > 0. We

choose K = L + t3, where t3 has been defined in Proposition 3.8.
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Now there are several possibilities:

Case1. inf0≤s≤L M1(s) ≤ ρ, then Sρ < L < K .
Case2a. inf0≤s≤L M1(s) ≥ ρ and inf0≤s≤L X0(s)M1(s) ≤ ε. Then there exists t < L such

that X0(t)M1(t) ≤ ε


which implies X0(t) ≤ δ, because M1(t) ≥ ρ ≥
ε
δ


. In that

case we can use Proposition 3.8, and we have P(T0 ≤ K ) ≥ p f in > 0, which implies
P(T0 ∧ Sρ ≤ K ) ≥ p f in > 0.

Case2b. inf0≤s≤L M1(s) ≥ ρ and inf0≤s≤L X0(s)M1(s) ≥ ε. In that last case we have


using

first X0 ≥
ε

M1
combined with αM1 − λ ≥ λ > 0, and next −

λ
M1(s)

≥ −
α
2


inf

0≤s≤L
(αM1(s) − λ)X0(s) ≥ inf

0≤s≤L
ε


α −

λ

M1(s)


≥

αε

2
,

and consequently we can use the comparison theorem (Lemma 2.5), which implies that
∀s ∈ [0, L] , X0(s) ≥ Ys . Then P(T1 ≤ L) ≥ p > 0. But when X0 hits 1, M1 hits 0.
Hence P(Sρ ≤ L) ≥ p > 0.

We may now conclude that there exists p̃ > 0 such that

P(T0 ∧ Sρ ≤ K ) ≥ p̃. �

We deduce from the two above lemmas:

Corollary 6.3. There exists K < ∞, and p > 0 such that, for any initial condition in Xδ for
some δ > 0,

P(T0 ≤ K ) ≥ p.

We can now proceed with the

Proof of Theorem 2. We deduce from Corollary 6.3 and the strong Markov property that for all
n ≥ 0, P(T0 > nK ) ≤ (1 − p)n . Consequently

E[eρT0 ] ≤

∞
n=0

e(n+1)ρK P(nK ≤ T0 ≤ (n + 1)K )

≤

∞
n=0

e(n+1)ρK (1 − p)n

= eρK
∞

n=0


eρK (1 − p)

n

< ∞,

provided log(1 − p) + ρK < 0, in other words ρ < ρ := − log(1 − p)/K . �
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