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On the Hausdorff dimension of exceptional random sets
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Abstract We consider multivariate spacings blocks in the usual sense (refer
to Deheuvels (Z. Wahrsch. Verw. Gebiete 64:411-424, 1983)). We consider
the sets of exceptional points in the neighborhood of which such spacings
are, infinitely often, unusually large. Our main result, in the spirit of Hawkes
(Math. Proc. Camb. Phil. Soc.:293-303, 1981), shows that these sets constitute
random fractals, whose Hausdorff dimensions are explicitly evaluated.
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1 Introduction

Consider a sequence U1, U2, . . . of independent identically distributed random
variables with a uniform distribution on [0, 1]. If 0 = U

(n)
0 < U

(n)
1 < . . . <

U
(n)
n < U

(n)
n+1 = 1 denote the order statistics corresponding to 0, 1, U1, . . . , Un,

then, for i = 1, . . . , n + 1, the uniform spacing intervals [U (n)
i−1, U

(n)
i ) have

been extensively studied in the literature (Deheuvels, 1985; Greenwood, 1946;
Pyke, 1965). By uniform spacing (length) is meant the Lebesgue measure (or
length) of either of these intervals. For convenience, set |A| for the the Lebesgue
measure of a Borel subset A of R. The spacings are denoted by

D
(n)
i =

∣∣[U (n)
i−1, U

(n)
i )

∣∣ = U
(n)
i − U

(n)
i−1, for i = 1, . . . , n + 1. (1)

The study of spacing-based statistics such as the maximal uniform spacing of
order n, denoted by Mn = max1≤i≤n+1 D

(n)
i , has been initiated by Lévy (1939)
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and Darling (1953). In 1978, Slud (1978) showed that nMn−log n = O(log2 n),
where logj is the j-th iterated logarithm. Further refinements of this result
are due to Deheuvels (1982) and Devroye (1981) (see also (Deheuvels, 1984;
Deheuvels and Devroye, 1984)) who showed that

lim sup
n→∞

nMn − log n

2 log2 n
= 1 a.s.

and
lim inf
n→∞

nMn − log n

log3 n
= −1 a.s.

Hawkes (1981) showed that uniform spacings generate fractal random ob-
jects. For each x ∈ [0, 1), let un(x) be the uniquely defined spacing interval con-
taining x, and denote by Zn(x) = |un(x)|, the corresponding spacing length.
The exceptional points of the process {Zn(x) : x ∈ [0, 1)} fulfill the following
property. (Versions of this result are also found in earlier papers such as that
of Lévy (1937)).

Theorem A With probability 1 we have

lim sup
n→∞

nZn(x)
log log n

= 1, (2)

for almost all x ∈ [0, 1).

To understand the meaning of Theorem A, we need to recall the following
Theorem B, due to Lévy (1939).

Theorem B With probability 1 we have

lim
n→∞

sup
x∈[0,1)

nZn(x)
log n

= 1. (3)

In addition to Theorem A, Hawkes (1981) gave a description, stated below in
Theorem C, of the sets of points where the limit in (3) does not hold. Introduce
the random sets

D(c) =
{

x ∈ [0, 1) : lim sup
n→∞

nZn(x)
log n

= c
}

, (4)

and

U(c) =
{

x ∈ [0, 1) : lim sup
n→∞

nZn(x)
log n

> c
}

. (5)

Hawkes (1981), characterized the Hausdorff dimension of these sets. Recall
(Falconer, 1990) that the Hausdorff dimension of E ⊂ [0, 1] is defined by

dim E = inf{c > 0 : sc −mes(E) = 0} = sup{c > 0 : sc −mes(E) = ∞},
where sc −mes(E) denotes the Hausdorff measure of E, defined by

sc −mes(E) = lim
δ→0

inf
{ ∑

i≥1

d(Ui)c : E ⊆
⋃

i≥1

Ui, d(Ui) ≤ δ
}

. (6)
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We set for d(Ui) the diameter of Ui, defined as the supremum of the Euclidean
distance between two elements of Ui. The infimum in (6) is taken over all
collections {Ui : i ≥ 1} of subsets with diameter d(Ui) < δ for all i ≥ 1, and
such that E ⊆ ⋃

i≥1 Ui.

Theorem C For each 0 ≤ c ≤ 1 we have, almost surely,

dim D(c) = dim U(c) = 1− c. (7)

The purpose of this paper is to extend the results of Theorem C to a multivari-
ate framework. We mention here that our results ,in the spirit of Deheuvels
and Mason (1995), rely on strong limit theorems. Some weak versions of these
results should rely on the corresponding description of exceptional sets. This
will not be considered in the present paper.

2 Multivariate spacings

The systematic investigation of multivariate spacings started with Deheuvels
(1983). We will see that his definition stated below is not the only possible
one. In particular, one should cite the work of Janson (1987), and Deheuvels
et al (1988). Here is the definition given by Deheuvels (1983).

Definition 1 Let U1, . . . ,Un be a random sample from the uniform distribu-
tion over (0, 1)d. A spacing block of order n is defined as any subset of (0, 1)d of
the form Πd

r=1]ar, ar + c[ referred to as a square block) which does not contain
any point among U1, . . . ,Un and cannot be enlarged by a strict inclusion in
a square block with the same properties (included in (0, 1)d and having a void
intersection with {U1, . . . ,Un}). The corresponding spacing length is defined
as the length c of the side of the spacing block.

Note that there exists with probability 1, an infinity of distinct spacing blocks
associated with a given spacing length. Deheuvels (1983) studied the asymp-
totic behavior of these multivariate spacings. Let Mk,n be the k-th maximal
spacing associated to U1, . . . ,Un. He obtained the following theorem.

Theorem D For a fixed k ≥ 1,

n{Mk,n}d − log n = O(log log n) a.s. as n →∞. (8)

Now, let z ∈ (0, 1)d. We denote by χn(z) the spacing length associated to z.
Consider the following sets.

V (c) = {z ∈ (0, 1)d : lim sup
n→∞

nχd
n(z)/ log n > c}, (9)

L(c) = {z ∈ (0, 1)d : lim sup
n→∞

nχd
n(z)/ log n = c}. (10)

In this paper, we establish the following theorem.
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Theorem 1 If 0 ≤ c ≤ 1, then

dim V (c) = dim L(c) = d(1− c). (11)

This theorem provides a natural extension of Theorem C in a multivariate
framework. Possible extensions of this result to more general spacings are
mentioned in §5.

3 Preliminaries

In this section, we gather some facts and principles which will be used in
the forthcoming section 4 to establish (11). First, we provide some methods
to calculate the Hausdorff dimension of a set A. To evaluate the dimension
dim A of a set, we split the proof into two parts. To bound dim A from above
is, generally, simple. Indeed, if st −mes(A) = 0, then dim A ≤ t. It is enough
for any δ > 0 to construct a δ-cover {Ui : i ≥ 0} of A such that

lim
δ→0

∑

i≥0

d(Ui)t = 0.

Lower bounds of the form dim A ≥ t are typically more difficult to obtain. The
solution is likely to follow from the “mass distribution principle ”. (Remember
that d(A) denotes the diameter of A.)

Fact 1 (Mass distribution principle) Let µ be a finite positive measure on
A. For a fixed t, suppose that there exists γ > 0 and δ > 0 such that

µ(U) ≤ γd(U)t,

for all sets U with d(U) < δ. Then, st −mes(A) ≥ µ(A)/γ > 0 and

dim A ≥ t. (12)

Proof See, e.g., Falconer (1990).

The following two facts are based on the “mass distribution principle”, in Fact
1. We nned first to introduce a distance between hypercubes. Let A and B be
two hypercubes of [0, 1]d. The distance between A and B is

d(A,B) = inf
x∈A,y∈B

|x− y|. (13)

Fact 2 Let [0, 1]d = E0 and for all j ≥ 1, Ej is a finite union of disjoint
closed hypercubes Qi, i = 1, . . . , `(j). Suppose that Ej−1 contains at least mj

hypercubes of Ej, and for all i 6= i′ ∈ {1, . . . , `(j)}, d(Qi, Qi′) ≥ εj, where
0 < εj+1 < εj for each j ≥ 1. Then,

dim
∞⋂

j=1

Ej ≥ lim inf
j→∞

d
log(m1 . . . mj−1)
− log(mjεd

j )
. (14)
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Proof This result is similar to Example 4.6 p.64 (Falconer, 1990) in a multi-
variate framework. Suppose that Ej−1 contains exactly mj hypercubes of Ej .
If not, we may throw out excess hypercubes which will not change the lower
bound. We may define a positive measure µ on

⋂
j≥1 Ej , by assigning a mass

(m1 . . . mj)−1 to each of the m1 . . . mj hypercubes of Ej .

Let U be a hypercube such that 0 < vol(U) < εd
1, vol(U) standing for the

Lebesgue measure of U . We want to estimate µ(U). Let j be the integer such
that

εd
j ≤ vol(U) ≤ εd

j−1.

The number of hypercubes of Ej that intersect U is

(i) at most mj since U intersects at most one hypercube of Ej−1,
(ii) at most (d(U)/(

√
dεj) + 1)d ≤ 2dvol(U)/εd

j .

Therefore,

µ(U) ≤ (m1 . . .mj)−1 min
{2dvol(U)

εd
j

,mj

}

≤ (m1 . . .mj)−1
(2dvol(U)

εd
j

)s

m1−s
j ,

for every 0 ≤ s ≤ 1. Hence,

µ(U)
d(U)ds

≤ 2dsd−ds/2

(m1 . . .mj−1)ms
jε

ds
j

. (15)

But (15) is bounded by a constant if

s < lim inf
j→∞

log(m1 . . . mj−1)/− log(mjε
d
j ).

The result is deduced directly from the application of the “mass distribution
principle” (Fact 1).

Fact 3 Fix 0 < s < 1 and let n1, n2, . . . be a rapidly increasing sequence of
integers, say such that nj+1 ≥ max{nj

j , 4n
1/s
j } for each j. For each j, set

Hj ⊂ Rd the hypercubes with side length n
−1/s
j , and the length between the

midpoints of consecutive hypercubes being n−1
j . Then,

dim
⋂

j≥1

Hj ≥ ds. (16)

Proof This is similar to Example 4.7 p. 65 (Falconer, 1990). Let E0 = [0, 1]d,
and for each j ≥ 1, Ej consists of the hypercubes of Hj included in Ej−1. Then,
each hypercube I of Ej−1 contains at least (n−1/s

j−1 nj − 2)d ≥ 2d hypercubes
of Ej . Furthermore, the distance between two consecutive hypercubes of Ej

(see (13)) is at least n−1
j − n

−1/s
j ≥ 1/2n−1

j for j large enough. Then we may
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apply Fact 2, noting that setting n
−d/s
j−1 n−d

j rather than (n−1/s
j−1 nj − 2)d does

not affect the limit.

dim
∞⋂

j=1

Hj ≥ dim
∞⋂

j=1

Ej = lim inf
j→∞

d
log((n1n2 . . . nj−2)d−d/snd

j−1)

− log(n−d/s
j−1 nd

jn
−d
j )− log 2d

. (17)

Provided that nj is sufficiently rapidly increasing, the term in log nj−1 is dom-
inant in the numerator and denominator, we have (16).

4 Proof of Theorem 1

4.1 Upper bound

In this part, we show the inequality

dim V (c) ≤ d(1− c). (18)

If (18) holds, the fact that L(c) ⊆ ⋂
n≥1 V (c− 1/n) shows that for all n ≥ 1,

dim L(c) ≤ d(1− c + 1/n) and hence

dim L(c) ≤ d(1− c). (19)

We now show that (18) holds. Let p ≥ 1 be a positive integer. Set vj = j2p for
each j ≥ 1. We introduce the sets

Vp,j(c) =
{
z ∈ (0, 1)d : vjχ

d
vj

(z) > (c +
1
p
) log vj

}
.

and
Vp(c) =

{
z ∈ (0, 1)d : vjχ

d
vj

(z) > (c +
1
p
) log vj , a.s. in j

}
.

We first establish the following equality.

V (c) =
⋃

p≥1

Vp(c). (20)

The inclusion
⋃

p≥1 Vp(c) ⊆ V (c) is obvious. To show the opposite inclusion,
let z ∈ V (c). For some integer p ≥ 1,

lim sup
n→∞

nχd
n(z)/ log n > c + 1/p.

But for all j, there exists an integer n such that n− 1 ≤ vj = j2p ≤ n. Then,

vjχ
d
vj

(z)
log vj

≥ (n− 1)χd
n(z)

log n
=

nχd
n(z)

log n

n− 1
n

.

Then, we have
lim sup

j→∞
vjχ

d
vj

(z)/ log vj > c + 1/p,
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and V (c) ⊆ ⋃
p≥1 Vp(c). To obtain (18), all we have to do is to show that the

inequality sd(1−c) −mes(Vp(c)) = 0 holds for every p ≥ 1. We first introduce
some additional notation. Remember that vj stands for the sample size and
we set τ−1

j = (c log vj/vj)1/d. Denote by buc ≤ u ≤ buc+ 1 the integer part of
u. For 0 ≤ i1, . . . , id ≤ bvjc and j ≥ 1, we set

J(i1, . . . , id; j) =
d∏

r=1

[ ir
τj

,
ir + 1

τj

[
. (21)

Finally, we set for 0 ≤ i1, . . . , id ≤ bvjc and j ≥ 1,

1i1,...,id;j =





1 when J(i1, . . . , id; j) contains a spacing block with

side length greater than
(
(c + 1

p ) log vj

vj

)1/d

,

0 otherwise,

(22)

and

I(i1, . . . , id; j) =
{

J(i1, . . . , id; j) if 1i1,...,id;j = 1,
∅ if 1i1,...,id;j = 0.

Note that
⋃bτjc

i1=0 . . .
⋃bτjc

id=0 I(i1, . . . , id; j) is a
√

d/τj-cover of Vp,j(c). We want
to show the inequality

sd(1−c) −mes
( ⋃

j≥1

bτjc⋃

i1=0

. . .

bτjc⋃

id=0

I(i1, . . . , id; j)
)

< ∞. (23)

As follows from the properties of Hausdorff measure, recalling (22), all we need
is to show that

∑

j≥1

bτjc∑

i1=0

. . .

bτjc∑

id=0

(√
d

1
τj

)d(1−c)

1i1,...,id;j < ∞.

Set Sj =
∑bτjc

i1=0 . . .
∑bτjc

id=0 1i1,...,id;j . The proof of (23) reduces to

∑

j≥1

(√
d

1
τj

)d(1−c)

ESj < ∞. (24)

In view of showing (24), we shall prove the next lemma.

Lemma 1 Let U1, . . . ,Uvj be a sample of length vj and J a hypercube of
[0, 1]d with side length τ−1

j = (c log vj/vj)1/d. Let Bj be the number of spacings
blocks of J which length is greater than ((c + 1/p) log vj/vj)1/d. We then have

P (Bj ≥ 1) ≤ v
−(c+1/p)
j , (25)

for all j large enough.
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Proof Suppose that the event {Bj ≥ 1} holds. Then, there exists a spacing
block ∆vj ,p with side length greater than

(
(c + 1/p)

log vj

vj

)1/d

,

and such that ∆vj ,p ∩ J 6= ∅. So let R(∆vj ,p) be the hypercube with side

length
(
(c + 1/p) log vj/vj

)1/d, and with one of his angles matching with one
of the angles of ∆vj ,p. It is then obvious that

vjµvj
(R(∆vj ,p)) = 0.

Recall that the empirical measure of the sample U1, . . . ,Un, on a set A, is
defined by

µn(A) =
1
n

#{Ui ∈ A : 1 ≤ i ≤ n}.

So, we obtain the following inclusion.

{Bj ≥ 1} ⊆ {vjµvj (R(∆vj ,p)) = 0}.

But we know that

P (vjµvj (R(∆vj ,p)) = 0) =
(
1− (c + 1/p) log vj

vj

)vj

=
(
1 + o(1)

) 1

v
c+1/p
j

.

for j large enough. Then

P (Bj ≥ 1) ≤ P (vjµvj (R(∆vj ,p)) = 0) ≤ 1

v
c+1/p
j

,

for j large enough.

Noting that ESj = bτjcdP (Bj ≥ 1), (25) implies

∑

j≥1

(√d

τj

)d(1−c)

ESj ≤
∑

j≥1

dd(1−c)/2τ c
j P (Bj ≥ 1)

≤
∑

j≥1

dd(1−c)/2(c log vj)
1

v
1/p
j

.

Recalling that vj = j2p, we conclude that (24) holds. To conclude, we have
dim V (c) ≤ d(1− c) and dim L(c) ≤ d(1− c).
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4.2 Lower bound

In this part, we will establish the inequality

dim L(c) ≥ d(1− c). (26)

which is enough to complete the proof of Theorem 1. Indeed, we may sup-
pose that (26) holds. Noting that

⋃
n≥1 L(c + 1/n) ⊆ V (c), we deduce that

dim V (c) ≥ d(1 − c). By combining this last result with (18) and (19) we
readily obtain (11).

The idea underlying our proof is the following. We construct a mesh on
[0, 1]d. For a large integer Kj , the hypercubes Πd

r=1[ir/Kj ; (ir + 1)/Kj) are
the components of the mesh. We show that “most” of the hypercubes of the
mesh contain a subspacing T (i1, . . . , id, j), from a sample of size Nj of side
length about (c log Nj)/Nj . Thus, roughly speaking, the set

Aj =
⋃

i1,...,id even

T (i1, . . . , id, j),

consists of (1/2Kj)d hypercubes of side length (c log Nj)/Nj , separated by a
distance of at least 1/Kj . We will have to verify that we can apply Fact 3 for
Aj , and that the number of hypercubes of the mesh which may not contain a
spacing of the stated length is “small”.

First we need some results on the distribution of spacings. Let {δj , j ≥ 1}
be a sequence decreasing to 0. The sequence {Nj , j ≥ 1} denotes the sample
size. It fulfills the following conditions.

N1) the sequence {Nj , j ≥ 1} increases fast enough so the sequence n−1
j =

ν−1
j = (c log Nj/Nj)1−c fulfills the conditions of Fact 3, (which means

that nj+1 ≥ max{nj
j , 4ns

j} for each j),

N2) the series
∑

j≥1 N
−(c+δj)
j is convergent.

The following lemma will be an argument to say that the number of hy-
percubes of the mesh which may not contain a subspacing of the stated length
is “small”.

Lemma 2 Suppose that 0 ≤ c ≤ 1 and {δj , j ≥ 1} is a sequence decreasing
to 0. Let J be a hypercube of [0, 1]d of side length ν−1

j = (c log Nj/Nj)(1−c)/d,
the sample size being Nj. Let Mj be the number of subspacings of J , with side
length in [(

c
log Nj

Nj

) 1
d

,
(
(c + δj)

log Nj

Nj

) 1
d
]
.

Then,
∑

j≥1 P (Mj = 0) is a convergent series.

Proof For j ≥ 1, let Cj be the number of spacings of J , with side length
strictly lower to (c log Nj/Nj)1/d. We can see that

P (Mj ≥ 1) ≥ P (Bj = 0)× P (Cj = 0).



10

Suppose that {Cj ≥ 1} holds. Therefore, there exists a spacing Υ with side
length strictly lower to (c log Nj/Nj)1/d. Let Q be a hypercube of [0, 1]d with
side length (c log Nj/Nj)1/d, and such that Υ ⊂ Q. Then,

P (Cj ≥ 1) ≤ P (NjµNj (Q) ≥ 2)

≤
(c log Nj

Nj

)2

.

So,

P (Cj = 0) ≥ 1−
(c log Nj

Nj

)2

. (27)

Use Lemma 1 with the formal replacement of 1/p by δj , τj by νj and vj by
Nj . Then (25) and (27) jointly imply that

P (Mj ≥ 1) ≥
(
1− 1

N
c+δj

j

)(
1−

(c log Nj

Nj

)2)

≥ 1−
(c log Nj

Nj

)2

− 1

N
c+δj

j

+
(c log Nj)2

N
2+c+δj

j

.

So, we have the inequality,

P (Mj = 0) ≤
(c log Nj

Nj

)2

+
1

N
c+δj

j

− (c log Nj)2

N
2+c+δj

j

≤ 1

N
c+δj

j

,

for j large enough. Finally, we use the condition N2) to show that this lemma
holds.

We now give the details of the proof of Theorem 1. Remember that for j ≥ 1,
ν−1

j = (c log Nj/Nj)(1−c)/d. For all 0 ≤ i1, . . . , id ≤ bνjc, we set

J(i1, . . . , id, j) =
d∏

r=1

[irν−1
j , (ir + 1)ν−1

j ).

If J(i1, . . . , id, j) contains a spacing (from the sample of size Nj) with side
length in [(

c
log Nj

Nj

)1/d

,
(
(c + δj)

log Nj

Nj

)1/d]
,

(it is the case if Mj ≥ 1), we choose this spacing and call it T (i1, . . . , id, j).
Otherwise, we choose any hypercube with side length (c log Nj/Nj)1/d, and
call it S(i1, . . . , id, j). Next, we define

Sj =
⋃

i1,...,id even

S(i1, . . . , id, j); Tj =
⋃

i1,...,id even

T (i1, . . . , id, j);
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and finally

Rj = Sj ∪ Tj ; R =
⋂

j≥1

Rj ; S =
⋂

j≥1

Sj ; T =
⋂

j≥1

Tj . (28)

By construction, Rj consists of hypercubes of side length in

[
(c log Nj/Nj)1/d, ((c + δj) log Nj/Nj)1/d

]
,

separated by a distance greater than (c log Nj/Nj)(1−c)/d. Note that Fact 3 is
still true when the hypercubes Hj have side length equivalent to n

−1/s
j . Using

the condition N1), we can apply Fact 3 with n−1
j = ν−1

j = (c log Nj/Nj)(1−c)/d

and s = 1− c. We get

dim R ≥ d(1− c). (29)

Now, by (28) R = S ∪ T and T ∩ V (c) ⊂ L(c). Moreover, by (29), sd(1−c) −
mes(R) > 0. Thus, if we show sd(1−c)−mes(S) = 0, we will be able to conclude
that sd(1−c) −mes(L(c)) > 0 and so that (26) holds.

The hypercubes S(i1, . . . , id, j), 0 ≤ i1, . . . , id ≤ νj , are together a cover of
S. We want

∑

j≥1

νj∑

i1=0

. . .

νj∑

id=0

d(S(i1, . . . , id, j))d(1−c) < ∞, (30)

where d(A) denotes the diameter of A. But (30) holds if

∑

j≥1

E
νj∑

i1=0

. . .

νj∑

id=0

d(S(i1, . . . , id, j))d(1−c)

=
∑

j≥1

(1
2
νj

)d

P (Mj = 0)
(c log Nj

Nj

)1−c

< ∞. (31)

Recalling ν−1
j = (c log Nj/Nj)(1−c)/d, we replace νj in (31) and using Lemma

2, we obtain

∑

j≥1

(1
2
νj

)d

P (Mj = 0)
(c log Nj

Nj

)1−c

=
∑

j≥1

(1
2

)d

P (Mj = 0) < ∞.

We have established that

sd(1−c) −mes(L(c)) > 0 so dim L(c) ≥ d(1− c).

This completes the proof of Theorem 1.
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5 Extensions

As mentioned earlier, there are several different definitions for multivariate
spacings. We only considered here squared shapes spacings. In their article,
Deheuvels et al (1988) allow the shapes to be more general, like balls, rect-
angles, polyhedra. It would be interesting to obtain similar results for these
types of spacings. We conjecture that our results should remain valid in this
extended framework. However, the technicality of proofs becomes much more
involved.
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