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Foreword

There is by now a growing interest in Stochastic Partial Differential Equations
(abbreviated from now on as SPDEs). One can find two reasons for that.

First, more and more complex mathematical models are used in applied
sciences, in order to describe the reality. The huge progress in computer
power and the capacity of simulating high dimensional dynamical systems
allow to assess highly complex models, which take into account jointly the
fact that most systems are distributed over space, and randomness. This leads
naturally to PDEs with random coefficients, and SPDEs.

Second, the last decades have seen the emergence of new sophisticated
mathematical techniques, which allow to tackle new problems and classes
of equations. These include the theory of Rough Paths, first introduced by
T. Lyons, see the course by Hairer and Friz [11], the theory of regularity
structures invented by M. Hairer [10], and the method of paracontrolled dis-
tributions, due to Gubinelli, Imkeller and Perkowski [8].

The aim of these notes is to present a concise introduction to the “classical
theory” of SPDEs, as it was developed during the last 25 years of the last
century. We believe that a good understanding of this theory is useful, in
order to study and understand the new approaches.

Etienne Pardoux
Marseille, september 2021
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Chapter 1

Introduction and Motivation

1.1 Introduction

We shall study in these lectures stochastic parabolic PDEs, which will be
mostly non linear. The general type of equations which we have in mind is
of the form

∂u

∂t
(t, x) = F (t, x, u(t, x), Du(t, x), D2u(t, x))+G(t, x, u(t, x), Du(t, x))W̊ (t, x),

or in the semi linear case

∂u

∂t
(t, x) = ∆u+ f(t, x, u(t, x)) + g(t, x, u(t, x))W̊ (t, x).

We shall make precise what we mean by W̊ (t, x). We shall distinguish two
cases

1. W̊ is white noise in time and colored noise in space. A particular case is
that where the noise is of the form

∑N
k=1 ek(x)W̊k(t).

2. W̊ is white both in time and in space.

In both cases, we can define W̊ in the distributional sense, as a centered
generalized Gaussian process, indexed by test functions h : R+ × Rd 7→ R :

W̊ = {W̊ (h); h ∈ C∞(R+ × Rd)},

whose covariance is given by

E
(
W̊ (h)W̊ (k)

)
=

∫ ∞
0

dt

∫
Rd

dx

∫
Rd

dy h(t, x)k(t, y)ϕ(x− y) in case 1

=

∫ ∞
0

dt

∫
Rd

dx h(t, x)k(t, x) in case 2.

7



8 1 Introduction and Motivation

Here ϕ is a “reasonable” kernel, which might blow up to infinity at 0. Note
that the first formula converges to the second one, if we let ϕ converge to the
Dirac mass at 0. On the other hand, the solution of a PDE of the form

∂u

∂t
(t, x) = ∆u(t, x) + f(t, x, u(t, x))

can be considered

1. either as a function of t with values in an infinite dimensional space of
functions of x (typically a Sobolev space);

2. or else as a real valued function of (t, x).

Likewise, in the case of an SPDE of one of the above types, we can consider
the solution

1. either as a stochastic process indexed by t, and taking values in an infinite
dimensional function space, solution of an infinite dimensional SDE;

2. or else as a one dimensional random field, solution of a multiparameter
SDE.

The first point of view will be presented in Chapter 2. It applies mainly to
equations driven by Gaussian noises which are colored in space. The second
one will be presented in Chapter 3 for the study of space–time white noise
driven SPDEs.

There are several serious difficulties in the study of SPDEs, which are due
to the lack of regularity with respect to the time variable (resp. with respect
to both the time and the space variable), and the interaction between the
regularity in time and the regularity in space. As a result, as we will see,
the theory of nonlinear SPDEs driven by space–time white noise, and with
second order PDE operators, is limited to the case of a one dimensional space
variable. Also, there is no completely satisfactory theory of fully nonlinear
SPDEs, see the work of Lions and Souganidis on viscosity solutions of SPDEs
[14].

New powerful methods have been introduced recently to deal with singular
SPDEs, namely the theory of regularity structures due to M. Hairer [10], and
the notion of paracontrolled distributions introduced by Gubinelli, Imkeller
and Perkowski [8]. We shall not discuss those approaches in the present notes.

1.2 Motivation

We now introduce several models from various fields, which are expressed as
SPDEs.
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1.2.1 Turbulence

Several mathematicians and physicists have advocated that the Navier–
Stokes equation with additive white noise forcing is a relevant model for
turbulence. This equation in dimension d = 2 or 3 reads

∂u

∂t
(t, x) = ν∆u(t, x) +

d∑
i=1

ui(t, x)
∂u

∂xi
(t, x) +

∂W

∂t
(t, x)

u(0, x) = u0(x),

where u(t, x) = (u1(t, x), . . . , ud(t, x)) is the velocity of the fluid at time t
and point x. The noise term is often chosen of the form

W (t, x) =
∑̀
k=1

W k(t)ek(x),

where {W 1(t), . . . ,W `(t), t ≥ 0} are mutually independent standard Brow-
nian motions.

1.2.2 Population dynamics, population genetics

The following model has been proposed by D. Dawson in 1972, for the evo-
lution of the density of a population

∂u

∂t
(t, x) = ν

∂2u

∂x2
(t, x) + α

√
u(t, x)W̊ (t, x),

where W̊ is a space–time white noise. In this case, one can derive closed
equations for the first two moments

m(t, x) = E[u(t, x)], V (t, x, y) = E[u(t, x)u(t, y)].

One can approach this SPDE by a model in discrete space as follows. u(t, i),
i ∈ Z denotes the number of individuals in the colony i at time t. Then

• α2

2 u(t, i) is both the birth and the death rate;
• νu(t, i) is the migration rate, both from i to i− 1 and to i+ 1.

W. Fleming has proposed an analogous model in population genetics, where
the term α

√
u is replaced by α

√
u(1− u).
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1.2.3 Neurophysiology

The following model has been proposed by J. Walsh [29], in order to describe
the propagation of an electric potential in a neuron (which is identified with
the interval [0, L]).

∂V

∂t
(t, x) =

∂2V

∂x2
(t, x)− V (t, x) + g(V (t, x))W̊ (t, x).

Here again W̊ (t, x) denotes a space–time white noise.

1.2.4 Evolution of the curve of interest rate

This model has been studied by R. Cont in 1998. Let {u(t, x), 0 ≤ x ≤ L, t ≥
0} the interest rate for a loan at time t, and duration x. We let

u(t, x) = r(t) + s(t)(Y (x) +X(t, x)),

where Y (0) = 0, Y (L) = 1; X(t, 0) = 0, X(t, L) = 1; {(r(t), s(t)), t ≥ 0}
is a two dimensional diffusion process, and X solves the following parabolic
SPDE

∂X

∂t
(t, x) =

k

2

∂2X

∂x2
(t, x) +

∂X

∂x
(t, x) + σ(t,X(t, x))W̊ (t, x).

Several authors have proposed a first order parabolic SPDE (i. e. the above
equation for X with k = 0), with a finite dimensional noise.

1.2.5 Non Linear Filtering

Consider the Rd+k–valued process {(Xt, Yt) t ≥ 0}, solution of the system of
SDEs

Xt = X0 +

∫ t

0

b(s,Xs, Y )ds+

∫ t

0

f(s,Xs, Y )dVs +

∫ t

0

g(s,Xs, Y )dWs

Yt =

∫ t

0

h(s,Xs, Y )ds+Wt,

where the coefficients b, f, g and h may depend at each time s upon the
whole past of Y before time s. We are interested in the evolution in t of the
conditional law of Xt, given FYt = σ{Ys, 0 ≤ s ≤ t}. It is known that if
we denote by {σt, t ≥ 0} the measure–valued process solution of the Zakai
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equation

σt(ϕ) = σ0(ϕ) +

∫ t

0

σs(LsY ϕ)ds+

k∑
`=1

∫ t

0

σs(L
`
sY ϕ)dY `s , t ≥ 0, ϕ ∈ C∞b (Rd)

where σ0 denotes the law of X0, and, if a = ff∗ + gg∗,

LsY ϕ(x) =
1

2

d∑
i,j=1

aij(t, x, Y )
∂2ϕ

∂xi∂xj
(x) +

d∑
i=1

bi(t, x, Y )
∂ϕ

∂xi
(x),

L`sY ϕ(x) = h`(t, x, Y )ϕ(x) +

d∑
j=1

gi`(t, x, Y )
∂ϕ

∂xi
(x)

then

E(ϕ(Xt)|Ft) =
σt(ϕ)

σt(1)
,

i. e. σt, is equal, up to a normalization factor, to the conditional law of Xt,
given Ft, see e. g. [24]. Note that whenever the random measure σt possesses
a density p(t, x), the latter satisfies the following SPDE

dp(t, x) =

1

2

∑
i,j

∂2(aijp)

∂xi∂xj
(t, x, Y )dt−

∑
i

∂(bip)

∂xi
(t, x, Y )

 dt

+
∑
`

(
h`p(t, x, Y )−

∑
i

∂(gi`p)

∂xi
(t, x, Y )

)
dY `t .

1.2.6 Movement by mean curvature in random environment

Suppose that each point of a hypersurface in Rd moves in the direction normal
to the hypersurface, with a speed given by

dV (x) = v1(Du(x), u(x))dt+ v2(u(x)) ◦ dWt,

where {Wt, t ≥ 0} is a one–dimensional standard Brownian motion, and
the notation ◦ means that the stochastic integral is understood in the
Stratonovich sense.

The hypersurface at time t is a level set of the function {u(t, x), x ∈ Rd},
where u solves a nonlinear SPDE of the form

du(t, x) = F (D2u,Du)(t, x)dt+H(Du)(t, x) ◦ dWt,

where
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F (X, p) = tr

[(
I − p⊗ p

|p|2

)
X

]
, H(p) = α|p|.

1.2.7 Hydrodynamic limit of particle systems

The following model has been proposed by L. Bertini and G. Giacomin [2].
The idea is to describe the movement of a curve in R2 which is the interface
between e. g. water and ice. The true model should be in R3, but this is an
interesting simplified model.

Consider first a discrete model, where the interface belongs to the set

Λ = {ξ ∈ ZZ, |ξ(x+ 1)− ξ(x)| = 1, ∀x ∈ Z}.

We describe the infinitesimal generator of the process of interest as follows.
For any ε > 0, we define the infinitesimal generator

Lε(ξ) =
∑
x∈Z

[
c+ε (x, ξ){f(ξ + 2δx)− f(ξ)}

+c−ε (x, ξ){f(ξ − 2δx)− f(ξ)}
]
,

where

δx(y) =

{
0, if y 6= x;

1, if y = x;

c+ε (x, ξ) =

{
1
2 +
√
ε, if ξ(x) = ξ(x−1)+ξ(x+1)

2 − 1;

0, if not;

c−ε (x, ξ) =

{
1
2 , if ξ(x) = ξ(x−1)+ξ(x+1)

2 + 1;

0, if not.

Define {ξεt , t ≥ 0} as the jump Markov process with generator Lε, and

uε(t, x) =
√
ε

(
ξt/ε2

(x
ε

)
−
(

1

2ε3/2
− 1

24ε1/2

)
t

)
,

then we have the following result

Theorem 1.1 If
√
εξε0
(
x
ε

)
⇒ u0(x), and some technical conditions are met,

then uε(t, x)⇒ u(t, x), where u solves (at least formally) the following SPDE
∂u

∂t
(t, x) =

1

2

∂2u

∂x2
(t, x)− 1

2

∣∣∣∣∂u∂x (t, x)

∣∣∣∣2 + W̊ (t, x),

u(0, x) = u0(x),
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where W̊ denotes the space–time white noise.

The last SPDE is called the KPZ equation, after Kardar, Parisi, Zhang. Note
that if we define v(t, x) = exp[−u(t, x)], we have the following equation for v

∂v

∂t
(t, x) =

1

2

∂2v

∂x2
(t, x)− v(t, x)W̊ (t, x).

If we regularize W̊ in space, then we construct corresponding sequences vn
and un, which satisfy

∂vn
∂t

(t, x) =
1

2

∂2vn
∂x2

(t, x)− vn(t, x)
·
Wn (t, x),

and

∂un
∂t

(t, x) =
1

2

∂2un
∂x2

(t, x)− 1

2

(∣∣∣∣∂un∂x (t, x)

∣∣∣∣2 − cn
)

+
·
Wn (t, x),

where cn → 0, as n→∞.

1.2.8 Fluctuations of an interface on a wall

Funaki and Olla [7] have proposed the following model in discrete space
for the fluctuations of the microscopic height of an interface on a wall (the
interface is forced to stay above the wall)

dvN (t, x) = − [V ′(vN (t, x)− vN (t, x− 1)) + V ′(vN (t, x)− vN (t, x+ 1)] dt

+ dW (t, x) + dL(t, x), t ≥ 0, x ∈ Γ = {1, 2, . . . , N − 1},
vN (t, x) ≥ 0, L(t, x) is nondecreasing in t, for all x ∈ Γ∫ ∞

0

vN (t, x)dL(t, x) = 0, for all x ∈ Γ

vN (t, 0) = vN (t,N) = 0, t ≥ 0,

where V ∈ C2(R), is symmetric and V ′′ is positive, bounded and bounded
away from zero, and {W (t, 1), . . . ,W (t,N −1), t ≥ 0} are mutually indepen-
dent standard Brownian motions. The above is a coupled system of reflected
SDEs. Assuming that vN (0, ·) is a random vector whose law is the invariant
distribution of the solution of that system of reflected SDEs, one considers
the rescaled macroscopic height

vN (t, x) =
1

N

∑
y∈Γ

vN (N2t, y)1[y/N−1/2N,y/N+1/2N ](x), 0 ≤ x ≤ 1,
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which here converges to 0, as N →∞. Now the fluctuations, defined by

uN (t, x) =
1√
N

∑
y∈Γ

vN (N2t, y)1[y/N−1/2N,y/N+1/2N ](x), 0 ≤ x ≤ 1,

converge, as N → ∞, towards the solution of the reflected stochastic heat
equation

∂u

∂t
(t, x) = ν

∂2u

∂x2
(t, x) + W̊ (t, x) + ξ(t, x)

u(t, x) ≥ 0, ξ is a random measure ,

∫
R+×[0,1]

u(t, x)ξ(dt, dx) = 0

u(t, 0) = u(t, 1) = 0,

where W̊ (t, x) stands for the “space–time” white noise, and ν is a constant
which is in particular a function of V . Note that this reflected stochastic heat
equation has been studied in Nualart, Pardoux [21], and will be discussed
below in section 3.8.



Chapter 2

SPDEs as infinite dimensional SDEs

2.1 Introduction

The aim of this chapter is to describe by now classical results concerning
mostly linear and semilinear SPDEs, considered as SDEs in a Hilbert or
a Banach space. We start with a short introduction of the Itô calculus in
Hilbert space. We then present briefly the semi–group approach to linear
SPDEs. We refer the reader to the monograph Da Prato, Zabczyk [4] for a
complete treatment of this approach for linear and semilinear SPDEs.

The main topic of this chapter is the presentation of the variational ap-
proach to SPDEs. We start with the case of deterministic PDEs, then present
the theory of monotone–coercive SPDEs. This theory has been developped
first by the author, see [22], [23] and [24], and further improved by Krylov
and Rozovski, see in particular [12] and [27]. We next present the extension
to SPDEs of the compactness method, which is the second method devel-
oped by J.L. Lions [13] for the study of nonlinear PDEs, and at the same
time constitutes an extension to SPDEs of the martingale approach problem
to SDEs, due to Stroock and Varadhan [28]. We do this by presenting the
theory developed in the unfortunately unpublished thesis of M. Viot.

2.2 Itô calculus in Hilbert space

Let (Ω,F , (Ft),P) be a probability space equipped with a filtration (Ft)
which is supposed to be right continuous and such that F0 contains all the
P–null sets of F . A stochastic process X : Ω × R+ 7→ X (where X can be
e.g. Rd, a Hilbert or a Banach space) is said to be progressively measurable
if for any t > 0, the mapping (ω, s) 7→ X(ω, s) from Ω × [0, t] into X is
(Ft ⊗B[0,t],BX)–measurable. We have denoted by BA the Borel σ–algebra of
subsets of A.

15



16 2 SPDEs as infinite dimensional SDEs

Martingales

Let H be a Hilbert space, and {Mt, 0 ≤ t ≤ T} be a continuous H–valued
martingale, which is such that sup0≤t≤T E(‖Mt‖2) <∞.

Then {‖Mt‖2, 0 ≤ t ≤ T} is a continuous real–valued submartingale, and
there exists a unique continuous increasing Ft–adapted process {〈M〉t, 0 ≤
t ≤ T} such that {‖Mt‖2 − 〈M〉t, 0 ≤ t ≤ T} is a martingale.

We denote by {Mt ⊗Mt, 0 ≤ t ≤ T} the L1
+(H)–valued process defined

by
((Mt ⊗Mt)h, k)H = (Mt, h)H × (Mt, h)H ,

h, k ∈ H. We have used the notation L1
+(H) to denote the set of self–adjoint

semi–definite linear positive trace–class operators from H into itself. We have
the following Theorem, whose last assertion is due to Métivier and Pistone,
see Métivier [16].

Theorem 2.1 To any continuous square integrable H–valued martingale
{Mt, 0 ≤ t ≤ T}, we can associate a unique continuous adapted increasing
L1
+(H)–valued process {〈〈M〉〉t, 0 ≤ t ≤ T} such that {Mt⊗Mt−〈〈M〉〉t, 0 ≤

t ≤ T} is a martingale. Moreover, there exists a unique predictable L1
+(H)–

valued process {Qt, 0 ≤ t ≤ T} such that

〈〈M〉〉t =

∫ t

0

Qsd〈M〉s, 0 ≤ t ≤ T.

Note that since Tr is a linear operator,

Tr(Mt ⊗Mt − 〈〈M〉〉t) = ‖Mt‖2 − Tr〈〈M〉〉t

is a real valued martingale, hence Tr〈〈M〉〉t = 〈M〉t. Consequenty, we have

that 〈M〉t =
∫ t
0

TrQsd〈M〉s, and

TrQt = 1, t a. e., a. s. (2.1)

Example 2.2 H–valued Wiener process Let {Bkt , t ≥ 0, k ∈ N} be a
collection of mutually independent standard scalar Brownian motions, and
Q ∈ L1

+(H). If {ek, k ∈ N} is an orthonormal basis of H, then the process

Wt =
∑
k∈N

Bkt Q
1/2ek, t ≥ 0

is an H–valued square integrable martingale, with 〈W 〉t = TrQ × t. It is
called an H–valued Wiener process, or Brownian motion.

Conversely, if {Mt, 0 ≤ t ≤ T} is a continuous H–valued martingale,
such that 〈M〉t = c × t and Qt = Q, where c ∈ R and Q ∈ L1

+(H) are
deterministic, then {Mt, 0 ≤ t ≤ T} is an H–valued Wiener process (this is
an infinite dimensional version of a well–known theorem due to P. Lévy).
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Example 2.3 Cylindrical Brownian motion This should be called a
“counter–example”, rather than an example. Let again {Bkt , t ≥ 0, k ∈ N}
be a collection of mutually independent standard scalar Brownian motions,
and {ek, k ∈ N} an orthonormal basis of H. Then the series

Wt =
∑
k∈N

Bkt ek

does not converge in H. In fact it converges in any larger space K such that
the injection from H into K is Hilbert–Schmidt. We shall call such a process
a cylindrical Wiener process on H (which does not take its values in H !).
Formally, 〈〈W 〉〉t = tI, which is not trace class !

Stochastic integral

Let {ϕt, 0 ≤ t ≤ T} be a predictable H–valued process such that∫ T

0

(Qtϕt, ϕt)Hd〈M〉t <∞ a. s.

Then we can define the stochastic integral∫ t

0

(ϕs, dMs)H , 0 ≤ t ≤ T.

More precisely, we have that∫ t

0

(ϕs, dMs)H = lim
n→∞

n−1∑
i=1

(
1

tni − tni−1

∫ tni

tni−1

ϕsds,Mtni+1∧t −Mtni ∧t

)
H

,

with for example tni = iT/n. The above limit holds in probability.

The process {
∫ t
0
(ϕs, dMs)H , 0 ≤ t ≤ T} is a continuous R–valued local

martingale, with

〈
∫ ·
0

(ϕs, dMs)H〉t =

∫ t

0

(Qsϕs, ϕs)Hd〈M〉s,

and if moreover

E
∫ T

0

(Qtϕt, ϕt)Hd〈M〉t <∞,

then the above stochastic integral is a square integrable martingale.



18 2 SPDEs as infinite dimensional SDEs

Stochastic integral with respect to a cylindrical Brownian motion

Let again {ϕt, 0 ≤ t ≤ T} be a progressively measurable H–valued process,
and we suppose now that ∫ T

0

‖ϕt‖2Hdt <∞ a. s.

It is then not very difficult to show that∫ t

0

(ϕs, dWs) = lim
n→∞

n∑
k=1

∫ t

0

(ϕs, ek)dBks

exists as a limit in probability.

Itô formula

Let {Xt}, {Vt} and {Mt} be progressively measurable H–valued processes,
where

• Xt = X0 + Vt +Mt, t ≥ 0,
• {Vt} is a bounded variation process with V0 = 0,
• {Mt} is a local martingale with M0 = 0.

Let moreover Φ : H → R be such that Φ ∈ C1(H;R), and for any h ∈ H,
Φ′′(h) exists in the Gateau sense, and moreover ∀Q ∈ L1(H), the mapping
h→ Tr(Φ′′(h)Q) is continuous. Then we have

Φ(Xt) = Φ(X0) +

∫ t

0

(Φ′(Xs), dVs) +

∫ t

0

(Φ′(Xs), dMs)

+
1

2

∫ t

0

Tr(Φ′′(Xs)Qs)d〈M〉s

Example 2.4 The case where Φ(h) = ‖h‖2H will be important in what follows.
In that case, we have

‖Xt‖2 = ‖X0‖2 + 2

∫ t

0

(Xs, dVs) + 2

∫ t

0

(Xs, dMs) + 〈M〉t,

since here Φ′′/2 = I, and TrQs = 1, see (2.1).
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2.3 SPDE with additive noise

This is the simplest case, where the existence–uniqueness theory needs almost
no more than the theory of deterministic PDEs. We are motivated by the two
following examples :

1. The heat equation with additive noise. Let us consider our last example
from section 1.2.8, but without the reflection, i. e. the SPDE (here in
arbitrary dimension, x ∈ D ⊂ Rd)

∂u

∂t
(t, x) = ν∆u(t, x) +

∂W

∂t
(t, x), t ≥ 0, x ∈ D

u(0, x) = u0(x), u(t, x) = 0, t ≥ 0, x ∈ ∂D,

where {W (t, x), t ≥ 0, x ∈ D} denotes a Wiener process with respect to
the time variable, with arbitrary correlation in the spatial variable (possi-
bly white in space).

2. The two–dimensional Navier–Stokes equation with additive finite dimen-
sional noise. Its vorticity formulation is as follows

∂ω

∂t
(t, x) +B(ω, ω)(t, x) = ν∆ω(t, x) +

∂W

∂t
(t, x)

ω(0, x) = ω0(x),

where x = (x1, x2) ∈ T2, the two-dimensional torus [0, 2π]× [0, 2π], ν > 0
is the viscosity constant, ∂W

∂t is a white–in–time stochastic forcing of the
form

W (t, x) =
∑̀
k=1

Wk(t)ek(x),

where {W1(t), . . . ,W`(t)} are mutually independent standard Brownian
motions and

B(ω, ω̃) =

2∑
i=1

ui(x)
∂ω̃

∂xi
(x)

where u = K(ω). Here K is the Biot-Savart law which in the two-
dimensional periodic setting can be expressed as

K(ω) =
∑
k∈Z2

∗

k⊥

|k|2
[
βk cos(k · x)− αk sin(k · x)

]
(2.2)

where k⊥ = (−k2, k1) and ω(t, x) =
∑
k∈Z2

∗
αk cos(k ·x)+βk sin(k ·x) with

Z2
∗ = {(j1, j2) ∈ Z2 : j2 ≥ 0, |j| > 0}.

Let us start with some results on PDEs, sketching two different approaches.
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2.3.1 The semi–group approach to linear parabolic PDEs

First consider the following abstract linear parabolic equation
∂u

∂t
(t) = Au(t), t ≥ 0

u(0) = u0,

where A is a (possibly unbounded) linear operator on some Hilbert space H,
i. e. A maps its domain D(A) ⊂ H into H. Suppose that u0 ∈ H, and we
are looking for a solution which should take its values in H. For each t > 0,
the mapping u0 → u(t) is a linear mapping P (t) ∈ L(H), and the mappings
{P (t), t ≥ 0} form a semigroup, in the sense that P (t + s) = P (t)P (s).
A is called the infinitesimal generator of this semigroup. Suppose now that
H = L2(D), where D is some domain in Rd. Then the linear operator P (t)
has a kernel p(t, x, y) such that ∀h ∈ L2(D),

[P (t)h](x) =

∫
D

p(t, x, y)h(y)dy.

Example 2.5 If D = Rd, and A = 1
2∆, then

p(t, x, y) =
1

(2πt)d/2
exp

(
−|x− y|

2

2t

)
.

Consider now the PDE
∂u

∂t
(t) = Au(t) + f(t), t ≥ 0

u(0) = u0,

where f(·) is an H–valued function of t. The solution of this last equation is
given by the variation of constants formula

u(t) = P (t)u0 +

∫ t

0

P (t− s)f(s)ds.

Consider now the parabolic equation with additive white noise, i. e.
du

dt
(t) = Au(t) +

dW

dt
(t), t ≥ 0

u(0) = u0,
(2.3)

where {W (t), t ≥ 0} is an H–valued Wiener process. Then the variation of
constants formula, generalized to this situation, yields the following formula
for u(t) :
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u(t) = P (t)u0 +

∫ t

0

P (t− s)dW (s),

in terms of a Wiener integral (we call Wiener integral an Itô integral whose
integrand is deterministic). In the case H = L2(D), W (t) = W (t, x) and this
formula can be rewritten more explicitly as follows:

u(t, x) =

∫
D

p(t, x, y)u0(y)dy +

∫ t

0

∫
D

p(t− s, x, y)W (ds, y)dy.

In the case of the cylindrical Wiener process, i. e. if the equation is driven by
space–time white noise, then the above formula takes the form

u(t, x) =

∫
D

p(t, x, y)u0(y)dy +

∫ t

0

∫
D

p(t− s, x, y)W (ds, dy),

where {W (t, x), t ≥ 0, x ∈ D} denotes the so–called Brownian sheet, and the
above is a two–parameter stochastic integral, which we will discuss in more
detail in chapter 3. We just considered a case where W (t) does not take its
values in H.

Let us now discuss the opposite case, where W (t) takes its values not only
in H, but in fact in D(A). Then considering again the equation (2.3), and
defining v(t) = u(t)−W (t), we have the following equation for v :

dv

dt
(t) = Av(t) +AW (t)

v(0) = u0,

which can be solved ω by ω, without any stochastic integration.

2.3.2 The variational approach to linear and nonlinear
parabolic PDEs

We now sketch the variational approach to deterministic PDEs, which was
developed among others by J. L. Lions. We first consider the case of

Linear equations

From now on, A will denote an extension of the unbounded operator from
the previous section. That is, instead of considering

A : D(A) −→ H,

we shall consider



22 2 SPDEs as infinite dimensional SDEs

A : V −→ V ′,

where
D(A) ⊂ V ⊂ H ⊂ V ′.

More precisely, the framework is as follows.
H is a separable Hilbert space. We shall denote by | · |H or simply by | · |

the norm in H and by (·, ·)H or simply (·, ·) its scalar product. Let V ⊂ H
be a reflexive Banach space, which is dense in H, with continuous injection.
We shall denote by ‖ · ‖ the norm in V . We shall identify H with its dual H ′,
and consider H ′ as a subspace of the dual V ′ of V , again with continuous
injection. We then have the situation

V ⊂ H ' H ′ ⊂ V ′.

More precisely, we assume that the duality pairing 〈·, ·〉 between V and V ′

is such that whenever u ∈ V and v ∈ H ⊂ V ′, 〈u, v〉 = (u, v)H . Finally, we
shall denote by ‖ · ‖∗ the norm in V ′, defined by

‖v‖∗ = sup
u∈V, ‖u‖≤1

〈u, v〉.

We can without loss of generality assume that whenever u ∈ V , |u| ≤ ‖u‖. It
then follows (exercise) that if again u ∈ V , ‖u‖∗ ≤ |u| ≤ ‖u‖.

Now suppose given an operator A ∈ L(V, V ′) is given, which is assumed
to satisfy the following coercivity assumption :{

∃λ, α > 0 such that ∀u ∈ V,
2〈Au, u〉+ α‖u‖2 ≤ λ|u|2,

Example 2.6 Let D be an open domain in Rd. We let H = L2(D) and V =
H1(D), where

H1(D) = {u ∈ L2(D);
∂u

∂xi
∈ L2(D), i = 1, . . . , d}.

Equipped with the scalar product

((u, v)) =

∫
D

u(x)v(x)dx+

d∑
i=1

∫
D

∂u

∂xi
(x)

∂v

∂xi
(x)dx,

H1(D) is a Hilbert space, as well as H1
0 (D), which is the closure in H1(D)

of the set C∞K (D) of smooth functions with support in a compact subset of
D. We now let

∆ =

d∑
i=1

∂2

∂x2i
.
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∆ ∈ L(H1(D), [H1(D)]′), and also ∆ ∈ L(H1
0 (D), [H1

0 (D)]′). Note that pro-
vided that the boundary ∂D of D is a little bit smooth, H1

0 (D) can be
identified wit the closed subset of H1(D) consisting of those functions which
are zero on the boundary ∂D (one can indeed make sense of the trace of
u ∈ H1(D) on the boundary ∂D. [H1

0 (D)]′ = H−1(D), where any element of
H−1(D) can be put in the form

f +

d∑
i=1

∂gi
∂xi

,

where f, g1, . . . , gd ∈ L2(D).

We consider the linear parabolic equation
du

dt
(t) = Au(t) + f(t), t ≥ 0;

u(0) = u0.
(2.4)

We have the

Theorem 2.7 If A ∈ L(V, V ′) is coercive, u0 ∈ H and f ∈ L2(0, T ;V ′), then
equation (2.4) has a unique solution u ∈ L2(0, T ;V ), which also belongs to
C([0, T ];H).

We first need to show the following interpolation result, which is Lemma
2.14 below in the particular case M ≡ 0.

Lemma 2.8 If u ∈ L2(0, T ;V ), t→ u(t) is absolutely continuous with values
in V ′, du

dt ∈ L
2(0, T ;V ′) and u(0) ∈ H, then u ∈ C([0, T ];H) and

d

dt
|u(t)|2 = 2〈du

dt
(t), u(t)〉, t a. e.

Proof of Theorem 2.7 Uniqueness Let u, v ∈ L2(0, T ;V ) two solutions
of equation (2.4). Then the difference u− v solves

d(u− v)

dt
(t) = A(u(t)− v(t)),

u(0)− v(0) = 0.

Then from the Lemma,

|u(t)− v(t)|2 = 2

∫ t

0

〈A(u(s)− v(s)), u(s)− v(s)〉ds ≤ λ
∫ t

0

|u(s)− v(s)|2ds,

and Gronwall’s lemma implies that u(t)− v(t) = 0, ∀t ≥ 0.
Existence We use a Galerkin approximation. Let {ek, k ≥ 1} denote an
orthonormal basis of H, made of elements of V . For each n ≥ 1, we define
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Vn = span{e1, e2, . . . , en}.

For all n ≥ 1, there exists a function un ∈ C([0, T ];Vn) such that for all
1 ≤ k ≤ n,

d

dt
(un(t), ek) = 〈Aun(t), ek〉+ 〈f(t), ek〉,

(un(0), ek) = (u0, ek).

un is the solution of a finite dimensional linear ODE. We now prove the
following uniform estimate

sup
n

[
sup

0≤t≤T
|un(t)|2 +

∫ T

0

‖un(t)‖2dt

]
<∞. (2.5)

It is easily seen that

|un(t)|2 =

n∑
k=1

(u0, ek)2 + 2

∫ t

0

〈Aun(s) + f(s), un(s)〉ds.

Hence we deduce from the coercivity of A that

|un(t)|2 + α

∫ t

0

‖un(s)‖2ds ≤ |u0|2 +

∫ T

0

‖f(s)‖2∗ds+ (λ+ 1)

∫ t

0

|un(s)|2ds,

and (2.5) follows from Gronwall’s lemma.
Now there exists a subsequence, which, by an abuse of notation, we still

denote {un}, which converges in L2(0, T ;V ) weakly to some u. Since A is
linear and continuous from V into V ′, it is also continuous for the weak
topologies, and taking the limit in the approximating equation, we have a
solution of (2.4). �

Let us now indicate how this approach can be extended to

Nonlinear equations

Suppose now that A : V → V ′ is a nonlinear operator satisfying again
the coercivity assumption. We can repeat the first part of the above proof.
However, taking the limit in the approximating sequence is now much more
involved. The problem is the following. While a continuous linear operator is
continuous for the weak topologies, a nonlinear operator which is continuous
for the strong topologies, typically fails to be continuous with respect to the
weak topologies.

In the framework which has been exposed in this section, there are two
possible solutions, which necessitate two different assumptions.
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1. Monotonicity. If we assume that the non linear operator A satisfies in
addition the condition

〈A(u)−A(v), u− v〉 ≤ λ|u− v|2,

together with some boundedness condition of the type ‖A(u)‖∗ ≤ c(1 +
‖u‖), and some continuity condition, then the above difficulty can be
solved. Indeed, following the proof in the linear case, we show both that
{un} is a bounded sequence in L2(0, T ;V ) and that {A(un)} is a bounded
sequence in L2(0, T ;V ′). Hence there exists a subsequence, still denoted
the same way, along which un → u in L2(0, T ;V ) weakly, and A(un)→ ξ
weakly in L2(0, T ;V ′). It remains to show that ξ = A(u). Let us explain
the argument, in the case where the monotonicity assumption is satisfied
with λ = 0. Then we have that for all v ∈ L2(0, T ;V ),∫ T

0

〈A(un(t))−A(v(t)), un(t)− v(t)〉dt ≤ 0.

The above expression can be developped into four terms, three of which
converge without any difficulty to the wished limit. The only difficulty is
with the term∫ T

0

〈A(un(t)), un(t)〉dt =
1

2
(|un(T )|2 −

n∑
k=1

(u0, ek)2)−
∫ T

0

〈f(t), un(t)〉dt.

Two of the three terms of the right hand side converge. The first one DOES
NOT. But it is not hard to show that the subsequence can be chosen in
such a way that un(T ) → u(T ) in H weakly, and the mapping which to
a vector in H associates the square of its norm is convex and strongly
continuous, hence it is the upper envelope of linear continuous (hence also
weakly continuous) mappings, hence it is l. s. c. with respect to the weak
topology of H, hence

liminfn|un(T )|2 ≥ |u(T )|2,

and consequently we have that, again for all v ∈ L2(0, T ;V ),∫ T

0

〈ξ(t)−A(v(t)), u(t)− v(t)〉dt ≤ 0.

We now choose v(t) = u(t)−θw(t), with θ > 0, divide by θ, and let θ → 0,
yielding ∫ T

0

〈ξ(t)−A(u(t)), w(t)〉dt ≤ 0.

Since w is an arbitrary element of L2(0, T, ;V ), the left hand side must
vanish, hence ξ ≡ A(u).
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Example 2.9 The simplest example of an operator which is monotone in
the above sense is an operator of the form

A(u)(x) = ∆u(x) + f(u(x)),

where f : R→ R is the sum of a Lipschitz and a decreasing function.

2. Compactness We now assume that the injection from V into H is com-
pact (in the example V = H1(D), H = L2(D), this implies that D be
bounded). Note that in the preceding arguments, there was no serious dif-
ficulty in proving that the sequence {dun

dt } is bounded in L2(0, T ;V ′). But
one can show the following compactness Lemma (see Lions [13]) :

Lemma 2.10 Let the injection from V into H be compact. If a sequence
{un} is bounded in L2(0, T ;V ), while the sequence {dun

dt } is bounded in
L2(0, T ;V ′), then one can extract a subsequence of the sequence {un},
which converges strongly in L2(0, T ;H).

Let us explain how this Lemma can be used in the case of the Navier–Stokes
equation. The nonlinear term is the sum of terms of the form ui(t, x) ∂u∂xi

,
i. e. the product of a term which converges strongly with a term which
converges weakly, i. e. one can take the limit in that product.

PDE with additive noise

Let us now consider the parabolic PDE
du

dt
(t) = A(u(t)) + f(t) +

dW

dt
(t), t ≥ 0;

u(0) = u0.

If we assume that the trajectories of the Wiener process {W (t)} belong to
L2(0, T ;V ), then we can define v(t) = u(t) −W (t), and note that v solves
the PDE with random coefficents

dv

dt
(t) = A(v(t) +W (t)) + f(t), t ≥ 0;

u(0) = u0,

which can again be solved ω by ω, without any stochastic integration. How-
ever, we want to treat equations driven by a noise which does not necessarily
takes its values in V , and also may not be additive.
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2.4 Variational approach to SPDEs

The framework is the same as in the last subsection.

2.4.1 Monotone – coercive SDPEs

Let A : V → V ′ and for each k ≥ 1, Bk : V → H, so that B = (Bk, k ≥ 1) :
V → H = `2(H).

We make the following four basic assumptions :
Coercivity

(H1)

{
∃α > 0, λ, ν such that ∀u ∈ V,
2〈A(u), u〉+ |B(u)|2H + α‖u‖2 ≤ λ|u|2 + ν,

Monotonicity

(H2)

{
∃λ > 0 such that ∀u, v ∈ V,
2〈A(u)−A(v), u− v〉+ |B(u)−B(v)|2H ≤ λ|u− v|2.

Linear growth

(H3) ∃c > 0 such that ‖A(u)‖∗ ≤ c(1 + ‖u‖), ∀u ∈ V,

Weak continuity

(H4)

{
∀u, v, w ∈ V,
the mapping λ→ 〈A(u+ λv), w〉 is continuous from R into R.

Note that

|B(u)|2H =

∞∑
k=1

|Bk(u)|2, |B(u)−B(v)|2H =

∞∑
k=1

|Bk(u)−Bk(v)|2.

We want to study the equation

u(t) = u0 +

∫ t

0

A(u(s))ds+

∫ t

0

B(u(s))dWs

= u0 +

∫ t

0

A(u(s))ds+

∞∑
k=1

∫ t

0

Bk(u(s))dW k
s ,

(2.6)

where u0 ∈ H, and {Wt = (W k
t , k = 1, 2, . . .), t ≥ 0} is a sequence of

mutually independent Ft–standard scalar Brownian motions. We shall look



28 2 SPDEs as infinite dimensional SDEs

for a solution u whose trajectories should satisfy u ∈ L2(0, T ;V ), for all
T > 0. Hence A(u(·)) ∈ L2(0, T ;V ′), for all T > 0. In fact, the above equation
can be considered as an equation in the space V ′, or equivalently we can write
the equation in the so–called weak form

(u(t), v) = (u0, v) +

∫ t

0

〈A(u(s)), v〉ds+

∫ t

0

(B(u(s)), v)dWs, ∀v ∈ V, t ≥ 0,

(2.7)
where the stochastic integral term should be interpreted as∫ t

0

(B(u(s)), v)dWs =

∞∑
k=1

∫ t

0

(Bk(u(s)), v)dW k
s .

Remark 2.11 Since |u| ≤ ‖u‖, it follows from (H1) + (H3) that for some
constant c′, |B(u)|H ≤ c′(1 + ‖u‖).

We can w. l. o. g. assume that λ is the same in (H1) and in (H2). In fact
it suffices to treat the case λ = 0, since v = e−λt/2u solves the same equation,
with A replaced

e−λt/2A(eλt/2·)− λ

2
I,

and B replaced by
e−λt/2B(eλt/2·),

and in most cases of interest this new pair satisfies (H1) and (H2) with λ = 0.

Remark 2.12 We can replace in (H1) ‖u‖2 by ‖u‖p, with p > 2, provided we
replace (H3) by

(H3)p ∃c > 0 such that ‖A(u)‖∗ ≤ c(1 + ‖u‖p−1), ∀u ∈ V.

This modified set of assumptions is well adapted for treating certain non
linear equations, see the last example in the next subsection. Note that the
operator A can be the sum of several Ai’s with different associated pi’s.

We can now state the main result of this section.

Theorem 2.13 Under the assumptions (H1), (H2), (H3) and (H4), if u0 ∈
H, there exists a unique adapted process {u(t), t ≥ 0} whose trajectories
belong a. s. for any T > 0 to the space L2(0, T ;V ) ∩ C([0, T ];H), which is a
solution to equation (2.6).

An essential tool for the proof of this Theorem is the following ad hoc Itô
formula:

Lemma 2.14 Let u0 ∈ H, {u(t), 0 ≤ t ≤ T} and {v(t), 0 ≤ t ≤ T}
be adapted processes with trajectories in L2(0, T ;V ) and L2(0, T ;V ′) respec-
tively, and {Mt, 0 ≤ t ≤ T} be a continuous H–valued local martingale, such
that
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u(t) = u0 +

∫ t

0

v(s)ds+Mt.

Then

(i) u ∈ C([0, T ];H) a. s.
(ii) the following formula holds ∀0 ≤ t ≤ T and a. s.

|u(t)|2 = |u0|2 + 2

∫ t

0

〈v(s), u(s)〉ds+ 2

∫ t

0

(u(s), dMs) + 〈M〉t.

Proof: Proof of (ii) Since V is dense in H, there exists an orthonormal
basis {ek, k ≥ 1} of H with each ek ∈ V . For the sake of this proof, we
shall assume that V is a Hilbert space, and that the above basis is also
orthogonal in V . Also these are not always true, it holds in many interesting
examples. The general proof is more involved than the one which follows,
see the comments after the proof for references. We have, with the notation
Mk
t = (Mt, ek),

|u(t)|2 =
∑
k

(u(t), ek)2

=
∑
k

[
(u0, ek)2 + 2

∫ t

0

〈v(s), ek〉(ek, u(s))ds+ 2

∫ t

0

(u(s), ek)dMk
s + 〈Mk〉t

]
= |u0|2 + 2

∫ t

0

〈v(s), u(s)〉ds+ 2

∫ t

0

(u(s), dMs) + 〈M〉t.

Proof of (i) It clearly follows from our assumptions that u ∈ C([0, T ];V ′) a.
s. Moreover, from (ii), t → |u(t)| is a. s. continuous. It suffices to show that
t→ u(t) is continuous intoH equipped with its weak topology, since whenever
un → u inH weakly and |un| → |u|, then un → u inH strongly (easy exercise,
exploiting the fact that H is a Hilbert space). Now, clearly u ∈ L∞(0, T ;H)
a. s., again thanks to (ii). Now let h ∈ H and a sequence tn → t, as n→∞
be arbitrary. All we have to show is that (u(tn), h) → (u(t), h) a. s. Let
{hm, m ≥ 1} ⊂ V be such that hm → h in H, as m → ∞. Let us choose
ε > 0 arbitrary, and m0 large enough, such that

sup
0≤t≤T

|u(t)| × |h− hm| ≤ ε/2, m ≥ m0.

It follows that

|(u(t), h)− (u(tn), h)| ≤ |(u(t), h− hm0)|+ |(u(t)− u(tn), hm0)|+ |(u(tn), h− hm0)|
≤ ‖u(t)− u(tn)‖∗ × ‖hm0‖+ ε,

hence
limsupn|(u(t), h)− (u(tn), h)| ≤ ε,
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and the result follows from the fact that ε is arbitrary. �
The above Lemma is proved under the assumption that there exists an

operator A ∈ L(V, V ′) satisfying (H1) above with B = 0 in Pardoux [22] and
[23]. The result as stated above has been proved by Krylov and Rozovsky,
see [27].

We give a further result, which will be needed below. It is proved similarly
as the preceding result, see e.g. [23].

Lemma 2.15 Under the assumptions of Lemma 2.14, and given a function Φ
from H into R, which satisfies all assumptions from the Itô formula in section
2.2, plus the fact that Φ′(u) ∈ V , whenever u ∈ V the mapping u→ Φ′(u) is
continuous from V into V equipped with the weak topology, and for some c,
all u ∈ V ,

‖Φ′(u)‖ ≤ c(1 + ‖u‖).

Then we have the Itô formula

Φ(Xt) = Φ(X0) +

∫ t

0

〈vs, Φ′(Xs)〉ds+

∫ t

0

(Φ′(Xs), dMs)

+
1

2

∫ t

0

Tr(Φ′′(Xs)Qs)d〈M〉s

Proof of Theorem 2.13 Uniqueness Let u, v ∈ L2(0, T ;V )∩C([0, T ];H)
a. s. be two adapted solutions. For each n ≥ 1, we define the stopping time

τn = inf{t ≤ T ; |u(t)|2 ∨ |v(t)|2 ∨
∫ t

0

(‖u(s)‖2 + ‖v(s)‖2)ds ≥ n}.

We note that τn → ∞ a. s., as n → ∞. Now we apply Lemma 2.14 to the
difference u(t)− v(t), which satisfies

u(t)− v(t) =

∫ t

0

[A(u(s))−A(v(s))]ds+

∫ t

0

[B(u(s))−B(v(s))]dWs.

Clearly Mt =
∫ t
0
[B(u(s)) − B(v(s))]dWs is a local martingale, and 〈M〉t =∫ t

0
|B(u(s))−B(v(s))|2Hds. Hence we have

|u(t)− v(t)|2 = 2

∫ t

0

〈A(u(s))−A(v(s)), u(s)− v(s)〉ds

+ 2

∫ t

0

(u(s)− v(s), B(u(s))−B(v(s)))dWs

+

∫ t

0

|B(u(s))−B(v(s))|2Hds

If we write that identity with t replaced by t∧ τn = inf(t, τn), it follows from
the first part of Remark 2.11 that the stochastic integral
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0

(u(s)− v(s), B(u(s))−B(v(s)))dWs

is a martingale with zero mean. Hence taking the expectation and exploiting
the monotonicity assumption (H2) yields

E[|u(t ∧ τn)− v(t ∧ τn)|2] = 2E
∫ t∧τn

0

〈A(u(s))−A(v(s)), u(s)− v(s)〉ds

+ E
∫ t∧τn

0

|B(u(s))−B(v(s))|2Hds

≤ λE
∫ t∧τn

0

|u(s)− v(s)|2ds

≤ λE
∫ t

0

|u(s ∧ τn)− v(s ∧ τn)|2ds,

hence from Gronwall’s Lemma, u(t∧τn)−v(t∧τn) = 0 a. s., for all 0 ≤ t ≤ T
and all n ≥ 1. Uniqueness is proved.
Existence We use a Galerkin approximation. Again, {ek, k ≥ 1} denotes an
orthonormal basis of H, made of elements of V . For each n ≥ 1, we define

Vn = span{e1, e2, . . . , en}.

The two main steps in the proof of existence are contained in the two following
Lemmas :

Lemma 2.16 For all n ≥ 1, there exists an adapted process un ∈
C([0, T ];Vn) a. s. such that for all 1 ≤ k ≤ n,

(un(t), ek) = (u0, ek) +

∫ t

0

〈A(un(s)), ek〉ds+

n∑
`=1

∫ t

0

(B`(un(s)), ek)dW `
s .

(2.8)

Lemma 2.17

sup
n

E

[
sup

0≤t≤T
|un(t)|2 +

∫ T

0

‖un(t)‖2dt

]
<∞.

Let us admit for a moment these two Lemmas, and continue the proof of the
Theorem. Lemma 2.17 tells us that the sequence {un, n ≥ 1} is bounded in
L2(Ω;C([0, T ];H) ∩ L2(Ω × [0, T ];V ). It then follows from our assumptions
that

1. the sequence {A(un), n ≥ 1} is bounded in L2(Ω × [0, T ];V ′);
2. the sequence {B(un), n ≥ 1} is bounded in L2(Ω × [0, T ];H).

Hence there exists a subsequence of the original sequence (which, by an abuse
of notation, we do not distinguish from the original sequence), such that
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un ⇀ u in L2(Ω;L2(0, T ;V ) ∩ L∞(0, T ;H))

A(un) ⇀ ξ in L2(Ω × (0, T );V ′)

B(un) ⇀ η in L2(Ω × (0, T );H)

weakly (and in fact weakly ? in the L∞ space). It is now easy to let n→∞
in equation (2.8), and deduce that for all t ≥ 0, k ≥ 1,

(u(t), ek) = (u0, ek) +

∫ t

0

〈ξ(s), ek〉ds+

∞∑
`=1

∫ t

0

(η`(s), ek)dW `
s . (2.9)

It thus remains to prove that

Lemma 2.18 We have the identities ξ = A(u) and η = B(u).

We now need to prove the three Lemmas.
Proof of Lemma 2.16 If we write the equation for the coefficients of un(t)
in the basis of Vn, we obtain a usual finite dimensional Itô equation, to
which the classical theory does not quite apply, since the coefficients of that
equation need not be Lipschitz. However, several results allow us to treat the
present situation, see e.g. Theorem 3.21 in Pardoux, Răşcanu [25]. We shall
not discuss this point further, since it is technical, and in all the examples we
have in mind, the coefficients of the approximate finite dimensional equation
are locally Lipschitz, which the reader can as well assume for convenience.
Proof of Lemma 2.17 We first show that

sup
n

[
sup

0≤t≤T
E(|un(t)|2) + E

∫ T

0

‖un(s)‖2ds

]
<∞. (2.10)

From the equation (2.8) and Itô’s formula, we deduce that for all 1 ≤ k ≤ n,

(un(t), ek)2 = (u0, ek)2 + 2

∫ t

0

(un(s), ek)〈A(un(s)), ek〉ds

+ 2

n∑
`=1

∫ t

0

(un(s), ek)(B`(un(s)), ek)dW `
s +

n∑
`=1

∫ t

0

(B`(un(s)), ek)2ds

Summing from k = 1 to k = n, we obtain

|un(t)|2 =

n∑
k=1

(u0, ek)2 + 2

∫ t

0

〈A(un(s)), un(s)〉ds

+ 2

n∑
`=1

∫ t

0

(B`(un(s)), un(s))dW `
s +

n∑
`=1

n∑
k=1

∫ t

0

(B`(un(s)), ek)2ds,

(2.11)

from which we deduce that
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|un(t)|2 ≤ |u0|2 + 2

∫ t

0

〈A(un(s)), un(s)〉ds

+ 2

n∑
`=1

∫ t

0

(B`(un(s)), un(s))dW `
s +

∫ t

0

|B(un(s))|2Hds,
(2.12)

Now we take the expectation in the above inequality :

E(|un(t)|2) ≤ |u0|2 + 2E
∫ t

0

〈A(un(s)), un(s)〉ds+ E
∫ t

0

|B(un(s))|2Hds,

and combine the resulting inequality with the assumption (H1), yielding

E
(
|un(t)|2 + α

∫ t

0

‖un(s)‖2ds
)
≤ |u0|2 + λE

∫ t

0

|un(s)|2ds+ νt. (2.13)

Combining with Gronwall’s Lemma, we conclude that

sup
n

sup
0≤t≤T

E(|un(t)|2) <∞,

and combining the last two inequalities, we deduce that

sup
n

E
∫ T

0

‖un(t)‖2dt <∞. (2.14)

The estimate (2.10) follows from (2.13) + (2.14). We now take the sup over
t in (2.12), yielding

sup
0≤t≤T

|un(t)|2 ≤ |u0|2 + 2

∫ T

0

|〈A(un(s)), un(s)〉|ds

+ 2 sup
0≤t≤T

∣∣∣∣∣
n∑
`=1

∫ t

0

(B`(un(s)), un(s))dW `
s

∣∣∣∣∣+

∫ T

0

|B(un(s))|2Hds.

(2.15)

Now the Burkholder–Davis–Gundy inequality tells us that
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E

[
2 sup
0≤t≤T

∣∣∣∣∣
n∑
`=1

∫ t

0

(B`(un(s)), un(s))dW `
s

∣∣∣∣∣
]

≤ cE

√√√√ n∑
`=1

∫ T

0

(B`(un(t)), un(t))2dt

≤ cE

 sup
0≤t≤T

|un(t)|

√∫ T

0

|B(un(t))|2Hdt


≤ 1

2
E
(

sup
0≤t≤T

|un(t)|2
)

+
c2

2
E
∫ T

0

|B(un(t))|2Hdt

Combining (2.15) with the assumption (H1) and this last inequality, we de-
duce that

E
(

sup
0≤t≤T

|un(t)|2
)
≤ 2|u0|2 + c′E

∫ T

0

(1 + |un(t)|2dt.

The result follows from this and (2.10).
Proof of Lemma 2.18 We are going to exploit the monotonicity assumption
(H2), which for simplicity we assume to hold with λ = 0 (this is in fact not
necessary, but is also not a restriction). (H2) with λ = 0 implies that for all
v ∈ L2(Ω × (0, T );V ) and all n ≥ 1,

2E
∫ T

0

〈A(un(t)−A(v(t)), un(t)−v(t)〉dt+E
∫ T

0

|B(un(t))−B(v(t))|2Hdt ≤ 0.

(2.16)
Weak convergence implies that∫ T

0

〈A(un(t)), v(t)〉dt ⇀
∫ T

0

〈ξ(t), v(t)〉dt,∫ T

0

〈A(v(t)), un(t)〉dt ⇀
∫ T

0

〈A(v(t)), u(t)〉dt,∫ T

0

(B(un(t)), B(v(t)))Hdt ⇀

∫ T

0

(η(t), B(v(t)))Hdt.

(2.17)

in L2(Ω) weakly. Suppose we have in addition the inequality

2E
∫ T

0

〈ξ(t), u(t)〉dt+ E
∫ T

0

|η(t)|2Hdt

≤ liminfn→∞E

[
2

∫ T

0

〈A(un(t)), un(t)〉dt+

∫ T

0

|B(un(t)|2Hdt

]
.

(2.18)

It follows from (2.16), (2.17) and (2.18) that for all v ∈ L2(Ω × (0, T );V ),
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2E
∫ T

0

〈ξ(t)−A(v(t)), u(t)− v(t)〉dt+E
∫ T

0

|η(t)−B(v(t))|2Hdt ≤ 0. (2.19)

We first choose v = u in (2.19), and deduce that η ≡ B(u). Moreover (2.19)
implies that

E
∫ T

0

〈ξ(t)−A(v(t)), u(t)− v(t)〉dt ≤ 0.

Next we choose v(t) = u(t) − θw(t), with θ > 0 and w ∈ L2(Ω × (0, T );V ).
After division by θ, we obtain the inequality

E
∫ T

0

〈ξ(t)−A(u(t)− θw(t)), w(t)〉dt ≤ 0.

We now let θ → 0, and thanks to the assumption (H4), we deduce that

E
∫ T

0

〈ξ(t)−A(u(t)), w(t)〉dt ≤ 0, ∀w ∈ L2(Ω × (0, T );V ).

It clearly follows that ξ ≡ A(u).
It remains to establish the inequality (2.18). It follows from (2.11) that

2E
∫ T

0

〈A(un(t)), un(t)〉dt+ E
∫ T

0

|B(un(t)|2Hdt ≥ E
[
|un(T )|2 − |un(0)|2

]
,

and from Lemma 2.14 applied to u(t) satisfying (2.9) that

2E
∫ T

0

〈ξ(t), u(t)〉dt+ E
∫ T

0

|η(t)|2Hdt = E
[
|u(T )|2 − |u0|2

]
.

Hence (2.18) is a consequence of the inequality

E
[
|u(T )|2 − |u0|2

]
≤ liminfn→∞E

[
|un(T )|2 − |un(0)|2

]
.

But clearly un(0) =
∑n
k=1(u0, ek)ek → u0 in H. Hence the result will follow

from the convexity of the mapping ρ → E(|ρ|2) from L2(Ω,FT ,P;H) into
R, provided we show that un(T ) → u(T ) in L2(Ω,FT ,P, H) weakly. Since
the sequence {un(T ), n ≥ 1} is bounded in L2(Ω,FT ,P, H), we can w. l. o.
g. assume that the subsequence has been chosen in such a way that un(T )
converges weakly in L2(Ω,FT ,P, H) as n → ∞. On the other hand, for any
n0 and v ∈ Vn0

, whenever n ≥ n0,

(un(T ), v) = (u0, v) +

∫ T

0

〈A(un(t)), v〉dt+

n∑
`=1

∫ T

0

(B`(un(t)), v)dW `
t .

The right–hand side converges weakly in L2(Ω,FT ,P;R) towards
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(u0, v) +

∫ T

0

〈ξ(t), v〉dt+

∞∑
`=1

∫ T

0

(η`(t), v)dW `
t = (u(T ), v).

The result follows.

2.4.2 Examples

A simple example

We start with a simple example, which will illustrate the coercivity condition.
Consider the following parabolic “bilinear” SPDE with space dimension equal
to one, driven by a one dimensional Wiener process, namely

∂u

∂t
(t, x) =

1

2

∂2u

∂x2
(t, x) + θ

∂u

∂x
(t, x)

dW

dt
(t); u(0, x) = u0(x).

The coercivity condition, when applied to this SPDE, yields the restriction
|θ| < 1. Under that assumption, the solution, starting from u0 ∈ H, is in V
for a. e. t > 0, i. e. we have the regularization effect of a parabolic equation.

When θ = 1 (resp. θ = −1), we deduce from Itô’s formula the explicit
solution u(t, x) = u0(x + W (t)) (resp. u(t, x) = u0(x −W (t))). It is easily
seen that in this case the regularity in x of the solution is the same at each
time t > 0 as it is at time 0. This should not be considered as a parabolic
equation, but rather as a first order hyperbolic equation.

What happens if |θ| > 1 ? We suspect that solving the SPDE in that case
raises the same type of difficulty as solving a parabolic equation (like the
heat equation) backward in time.

Note that the above equation is equivalent to the following SPDE in the
Stratonovich sense

∂u

∂t
(t, x) =

1− θ2

2

∂2u

∂x2
(t, x) + θ

∂u

∂x
(t, x) ◦ dW

dt
(t); u(0, x) = u0(x).

Zakai’s equation

We look at the equation for the density p in the above example 1.2.5.
We assume that the following are bounded functions defined on Rd :
a, b, h, g,

∂aij
∂xj

, ∂gi`∂xi
, for all 1 ≤ i, j ≤ d, 1 ≤ ` ≤ k. The equation for p is

of the form

∂p

∂t
(t, x) = Ap(t, x) +

k∑
`=1

B`p(t, x)
dW`

dt
(t),

where
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Au =
1

2

∑
i,j

∂

∂xi

(
aij

∂u

∂xj

)
+
∑
i

∂

∂xi

∑
j

1

2

∂aij
∂xj

− bi

u


and

B` = −
∑
i

gi`
∂u

∂xi
+

(
h` −

∑
i

∂gi`
∂xi

)
u.

We note that

2〈Au, u〉+

k∑
`=1

|B`u|2 =
∑
i,j

∫
Rd

(gg∗ − a)ij(x)
∂u

∂xi
(x)

∂u

∂xj
(x)dx

+
∑
i

∫
Rd

ci(x)
∂u

∂xi
(x)u(x)dx+

∫
Rd

d(x)u2(x)dx.

Whenever ff∗(x) > βI > 0 for all x ∈ Rd, the coercivity assumption is
satisfied with any α < β, some λ > 0 and ν = 0. Note that it is very
natural that the ellipticity assumption concerns the matrix ff∗. Indeed, in
the particular case where h ≡ 0, we observe the Wiener process W , so the
uncertainty in the conditional law of Xt given FYt depends on the diffusion
matrix ff∗ only. The case without the restriction that ff∗ be elliptic can be
studied, but we need some more regularity of the coefficients.

Nonlinear examples

One can always add a term of the form

f1(t, x, u) + f2(t, x, u)

to A(u), provided u→ f1(t, x, u) is decreasing for all (t, x), and f2(t, x, u) is
Lipchitz in u, with a uniform Lipschitz constant independent of (t, x). Note
that a typical decreasing f1 is given by

f1(t, x, u) = −c(t, x)|u|p−2u, provided that c(t, x) ≥ 0.

Similarly, one can add to B(u) a term g(t, x, u), where g have the same
property as f2.

Another nonlinear example

The following operator (with p > 2)
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A(u) =

d∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi
∣∣∣∣p−2 ∂u∂xi

)
− |u|p−2u

possesses all the required properties, if we let H = L2(Rd),

V = W 1,p(Rd) = {u ∈ Lp(Rd), ∂u

∂xi
∈ Lp(Rd), i = 1, . . . , d}

and V ′ = W−1,q(Rd), where 1/p+ 1/q = 1.

2.4.3 Coercive SPDEs with compactness

We keep the assumptions (H1) and (H3) from the previous subsection, and
we add the following conditions.
Sublinear growth of B

(H5)

{
∃c, δ > 0 such that ∀u ∈ V,
|B(u)|H ≤ c(1 + ‖u‖1−δ)

Compactness

(H6) The injection from V into H is compact.

Continuity

(H7)

{
u→ A(u) is continuous from Vweak ∩H into V ′weak

u→ B(u) is continuous from Vweak ∩H into H

We now want to formulate our SPDE as a martingale problem. We choose

Ω = C([0, T ];Hweak) ∩ L2(0, T ;V ) ∩ L2(0, T ;H),

which we equip with the sup of the topology of uniform convergence with val-
ues in H equipped with its weak topology, the weak topology of L2(0, T ;V ),
and the strong topology of L2(0, T ;H). Moreover we let F be the associated
Borel σ–field. For 0 ≤ t ≤ T , let Ωt denote the same space as Ω, but with T
replaced by t, and Πt be the projection from Ω into Ωt, which to a function
defined on the interval [0, T ] associates its restriction to the interval [0, t].
Now Ft will denote the smallest sub–σ–field of F , which makes the projec-
tion Πt measurable, when Ωt is equipped with its own Borel σ–field. From
now on, in this subsection, we define u(t, ω) = ω(t). Let us formulate the

Definition 2.19 A probability P on (Ω,F) is a solution to the martingale
problem associated with the SPDE (2.6) whenever
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(i) P(u(0) = u0) = 1;
(ii) the process

Mt := u(t)− u(0)−
∫ t

0

A(u(s))ds

is a continuous H–valued P–martingale with associated increasing process

〈〈M〉〉t =

∫ t

0

B(u(s))B∗(u(s))ds.

There are several equivalent formulations of (ii). Let us give the formulation
which we will actually use below. Let {ei, i = 1, 2, . . .} be an orthonormal
basis of H, with ei ∈ V , ∀i ≥ 1.

(ii)’ For all i ≥ 1, ϕ ∈ C2
b (R), 0 ≤ s ≤ t, Φs continuous, bounded and

Fs–measurable mapping from Ω into R,

EP

(
(M i,ϕ

t −M i,ϕ
s )Φs

)
= 0, where

M i,ϕ
t = ϕ[(u(t), ei)]− ϕ[(u0, ei)]−

∫ t

0

ϕ′[(u(s), ei)]〈A(u(s)), ei〉ds

+
1

2

∫ t

0

ϕ′′[(u(s), ei)](BB
∗(u(s))ei, ei)ds.

This formulation of a martingale problem for solving stochastic differential
equations was first introduced by Stroock and Varadhan fo solving finite
dimensional SDEs, and by Viot in his thesis (1976) for solving SPDEs. It is
his results which we present here.

We first note that if we have a solution to the SPDE, its probability law
on Ω solves the martingale problem. Conversely, if we have a solution to
the martingale problem, then we have a probability space (Ω,F ,P), and
an H–valued process {u(t), 0 ≤ t ≤ T} defined on it, with trajectories in
L2(0, T ;V ), such that

u(t) = u0 +

∫ t

0

A(u(s))ds+Mt,

where {Mt, 0 ≤ t ≤ T} is a continuous H–valued martingale, and

〈〈M〉〉t =

∫ t

0

B(u(s))B∗(u(s))ds.

It follows from a representation theorem similar to a well–known result in
finite dimension that there exists, possibly on a larger probability space,
a Wiener process {W (t), t ≥ 0} such that (2.6) holds. A solution of the
martingale problem is called a weak solution of the SPDE, in the sense that



40 2 SPDEs as infinite dimensional SDEs

one can construct a pair {(u(t),W (t)), t ≥ 0} such that the second element is
a Wiener process, and the first solves the SPDE driven by the second, while
until now we have given ourselves {W (t), t ≥ 0}, and we have found the
corresponding solution {u(t), t ≥ 0}.

We next note that whenever a SPDE is such that it admits at most one
strong solution (i. e., to each given Wiener process W , we can associate at
most one solution u of the SPDE driven by W ), then the martingale problem
has also at most one solution.

We now prove the

Theorem 2.20 Under the assumptions (H1), (H3), (H5), (H6) and (H7),
there exists a solution P to the martingale problem, i. e. which satisfies (i)
and (ii).

Proof: We start with the same Galerkin approximation which we have used
before. Again {e1, . . . , en, . . .} is an orthonormal basis of H, with each en ∈ V ,

Vn = span{e1, . . . , en}
πn = the orthogonal projection operator in H upon V.

We first note that for each n ≥ 1, there exists a probability measure Pn on
(Ω,F) such that

(0)n Supp(Pn) ⊂ C([0, T ];Vn);
(i)n Pn(u(0) = πnu0) = 1
(ii)n ∀i ≤ n, ϕ ∈ C2

b (R), 0 ≤ s ≤ t ≤ T ,

En
(

(M i,ϕ
t −M i,ϕ

s )Φs

)
= 0, where

{M i,ϕ
t } and Φs are defined exactly as in condition (ii) and (ii)’ of Definition

2.19.

Indeed, the existence of each Pn is obtained by solving finite dimensional
martingale problems (or finite dimensional SDEs). This works without any
serious difficulty, and we take this result for granted.

Let us accept for a moment the

Lemma 2.21 The sequence of probability measures {Pn, n = 1, 2, . . .} on Ω
is tight.

We shall admit the fact (which has been proved by M. Viot in his thesis)
that Prohorov’s theorem is valid in the space Ω. This is not obvious, since Ω
is not a Polish space, but it is true. Hence we can extract from the sequence
{Pn, n = 1, 2, . . .} a subsequence, which as an abuse of notation we still
denote {Pn}, such that Pn ⇒ P. Now P satisfies clearly (i), and for each
0 < s < t, the mapping

ω → (M i,ϕ
t (ω)−M i,ϕ

s (ω))Φs(ω)
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is continuous from Ω into R. Moreover, it follows from the coercivity assump-
tion (H1) that the estimate

sup
n

En

[
sup

0≤t≤T
|u(t)|2 +

∫ T

0

‖u(t)‖2dt

]
<∞ (2.20)

from Lemma 2.17 is still valid. Now this plus the conditions (H3) and (H5)
implies that there exists some p > 1 (the exact value of p depends upon the
value of δ in condition (H5)) such that

sup
n

En
[
|M i,ϕ

t −M i,ϕ
s |p

]
<∞.

Hence
En
(

(M i,ϕ
t −M i,ϕ

s )Φs

)
→ E

(
(M i,ϕ

t −M i,ϕ
s )Φs

)
,

and condition (ii) is met. It remains to proceed to the
Proof of Lemma 2.21 (sketch): Let us denote by

• τ1 the weak topology on L2(0, T ;V ),
• τ2 the uniform topology on C([0, T ];Hweak),
• τ3 the weak topology of L2(0, T ;H).

It suffices to show that the sequence {Pn, n ≥ 1} is τi–tight successively for
i = 1, 2, 3.

1. τ1–tightness. We choose

K1 = {u,
∫ T

0

‖u(t)‖2dt ≤ k}.

K1 is relatively compact for the weak topology τ1, since it is a bounded
set of L2(0, T ;V ), which is a reflexive Banach space. But it follows from
(2.20) that there exists c ∈ R such that

En
∫ T

0

‖u(t)‖2dt ≤ c,

hence from Chebychef’s inequality

Pn(

∫ T

0

‖u(t)‖2dt > k) ≤ c

k
,

K1 possesses the required properties, provided we choose k large enough.
2. τ2–tightness. We want to find K2 in such a way that for h ∈ H with
|h| = 1, the set of functions

{t→ (u(t), h), u ∈ K2}
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is a compact subset of C([0, T ]). From (2.20), there exists c ∈ R such that

En
(

sup
0≤t≤T

|u(t)|2
)
≤ c.

So it is sufficient to get that for any v ∈ V with ‖v‖ = 1, the set of
functions

{t→ (u(t), v), u ∈ K2}

is a compact subset of C([0, T ]). Now sup0≤t≤T |(u(t), v)| is well controlled.
So, using Arzela–Ascoli’s theorem, it suffices to control the modulus of
continuity of {t→ (u(t), v)} uniformly in u ∈ K2. But

(u(t), v) = (u0, v) +

∫ t

0

〈A(u(s)), v〉ds+Mv
t , and

En
∣∣∣∣∫ t

s

〈A(u(r)), v〉dr
∣∣∣∣ ≤ ‖ei‖√t− s

√
En
∫ T

0

‖A(u(r))‖2∗dr

≤ c‖v‖
√
t− s,

En
(

sup
s≤r≤t

|Mv
r −Mv

s |2p
)
≤ cp|v|pEn

(∣∣∣∣∫ t

s

(BB∗(u(r))ei, ei)dr

∣∣∣∣p
)

≤ cp|v|p(t− s)pδ
(
En
∫ T

0

(1 + ‖u(r)‖2)dr

)p(1−δ)
,

for all p > 0, δ being the constant from the condition (H5).
3. τ3–tightness. We just saw in fact that we can control the modulus of con-

tinuity of {t→ u(t)} as a V ′–valued function under Pn. Recall the bound

En
∫ T

0

‖u(t)‖2dt ≤ c.

It remains to exploit the next Lemma.

Lemma 2.22 Given that the injection from V into H is compact, from any
sequence {un, n ≥ 1} which is both bounded in L2(0, T ;V )∩L∞(0, T ;H) and
equicontinuous as V ′–valued functions, and such that the sequence {un(0)}
converges strongly in H, one can extract a subsequence which converges in
L2(0, T ;H) strongly.

We first prove the following

Lemma 2.23 To each ε > 0, we can associate c(ε) ∈ R such that for all
v ∈ V ,

|v| ≤ ε‖v‖+ c(ε)‖v‖∗.
Proof: If the result was not true, one could find ε > 0 and a sequence
{vn, n ≥ 1} ⊂ V such that for all n ≥ 1,
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|vn| ≥ ε‖vn‖+ n‖vn‖∗.

We define un = |vn|−1vn. Then we have that

1 = |un| ≥ ε‖un‖+ n‖un‖∗.

This last inequality show both that the sequence {un, n ≥ 1} is bounded in
V , and converges to 0 in V ′. Hence, from the compactness of the injection
from V into H, un → u in H strongly, and necessarily u = 0. But this
contradicts the fact that |un| = 1 for all n.
Proof of Lemma 2.22: From the equicontinuity in V ′ and the fact that
un(0) → u0 in H, there is a subsequence which converges in C([0, T ];V ′),
hence also in L2(0, T ;V ′), to u, and clearly u ∈ L2(0, T ;V ). Now from Lemma
2.23, to each ε > 0, we can associate c′(ε) such that∫ T

0

|un(t)− u(t)|2dt ≤ ε
∫ T

0

‖un(t)− u(t)‖2dt+ c′(ε)

∫ T

0

‖un(t)− u(t)‖2∗dt

≤ εC + c′(ε)

∫ T

0

‖un(t)− u(t)‖2∗dt

limsupn

∫ T

0

|un(t)− u(t)|2dt ≤ Cε,

and the result follows from the fact that ε can be chosen arbitrarily small.

2.5 Semilinear SPDEs

We want now to concentrate on the following class of SPDEs

∂u

∂t
(t, x) =

1

2

∑
ij

∂

∂xj

(
aij(t, x)

∂u

∂xi

)
(t, x) +

∑
i

bi(t, x)
∂u

∂xi
(t, x)

+ f(t, x;u(t, x))

+
∑
k

(∑
i

gki(t, x)
∂u

∂xi
(t, x) + hk(t, x;u(t, x))

)
dW k

dt
(t)

u(0, x) = u0(x)

(2.21)

Under the following standard assumptions
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• ∃α > 0 such that a = a−
∑
k

gk·gk· ≥ αI;

• 2[f(t, x; r)− f(t, x; r′)](r − r′) +
∑
k

|hk(t, x; r)− hk(t, x; r′)|2 ≤ λ|r − r′|2;

• r −→ f(t, x; r) is continuous;

• rf(t, x; r) +
∑
k

|hk(t, x; r)|2 ≤ C(1 + |r|2),

equation (2.21) has a unique solution with trajectories in C([0, T ];L2(Rd))∩
L2(0, T ;H1(Rd)), as follows from Theorem 2.13.

Let us now give conditions under which the solution remains non negative.

Theorem 2.24 Assume that u0(x) ≥ 0, for a. e. x, and for a. e. t and x,
f(t, x; 0) ≥ 0, hk(t, x; 0) = 0, for all k. Then

u(t, x) ≥ 0, ∀t ≥ 0, x ∈ Rd.

Proof: Let us consider the new equation (below u+(t, x) := sup(u(t, x), 0))
∂u

∂t
(t, x) =

1

2

∑
ij

∂

∂xj

(
aij(t, x)

∂u

∂xi

)
(t, x) +

∑
i

bi(t, x)
∂u+

∂xi
(t, x) + f(t, x;u+(t, x))

=
∑
k

(∑
i

gki(t, x)
∂u

∂xi
(t, x) + hk(t, x;u+(t, x))

)
dW k

dt
(t)

(2.22)
Existence and uniqueness for this new equation follows almost the same argu-
ments as for equation (2.21). We exploit the fact that the mapping r → r+ is
Lipschitz. Moreover, we can w. l. o. g. assume that the ∂bi/∂xi’s are bounded
functions, since from the result of the theorem with smooth coefficients will
follow the general result, by taking the limit along a converging sequence of
smooth coefficients. However, it is not hard to show that, with this additional
assumption, the mapping

u→
∑
i

bi(t, x)
∂u+

∂xi

is compatible with the coercivity and monotonicity of the pair of operator
appearing in (2.22). If we can show that the solution of (2.22) is non negative,
then it is the unique solution of (2.21), which then is non negative.

Let ϕ ∈ C2(R) be convex and such that
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• ϕ(r) = 0, for r ≥ 0;

• ϕ(r) > 0, for r < 0;

• 0 ≤ ϕ(r) ≤ Cr2 ∀r;
• − c|r| ≤ ϕ′(r) ≤ 0 ∀r;
• 0 ≤ ϕ′′(r) ≤ C ∀r.

Intuitively, ϕ is a regularization of (r−)2. Let now Φ : L2(R)→ R be defined
by

Φ(u) =

∫
Rd

ϕ(u(x))dx.

We have Φ′(h) = ϕ′(h(·)), which is well defined as an element of L2(Rd),
since |ϕ′(x)| ≤ c|x|, and Φ′′(h) = ϕ′′(h(·)), it belongs to L(L2(Rd)), since
|ϕ′′(x)| ≤ C. We let

Au =
1

2

∑
ij

∂

∂xj

(
aij

∂u

∂xi

)
+
∑
i

bi(t, x)
∂u+

∂xi
+ f(u+)

Bku =
∑
i

gki
∂u

∂xi
+ hk(u+)

It follows from the Itô formula from Lemma 2.15 that

Φ(u(t)) = Φ(u0) +

∫ t

0

〈A(u(s)), ϕ′(u(s))〉ds

+
∑
k

∫ t

0

(Bk(u(s)), ϕ′(u(s))) dW k
s

+
1

2

∑
k

∫ t

0

(Bk(u(s)), ϕ′′(u(s))Bk(u(s))) ds,

Now Φ(u0) = 0, and

EΦ(u(t)) = −1

2
E
∫ t

0

ds

∫
Rd

dx (ϕ′′(u)〈a∇u,∇u〉) (s, x)

+ E
∫ t

0

ds

∫
Rd

dxϕ′(u)[f(u+) +
∑
i

bi
∂u+

∂xi
](s, x)

+
∑
k

E
∫ t

0

ds

∫
Rd

dxϕ′′(u)hk(u+)[
1

2
hk(u+) + gkj

∂u

∂xj
](s, x)

≤ 0

where we have used the

Lemma 2.25 Whenever u ∈ H1(Rd), u+ ∈ H1(Rd), and moreover
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∂u+

∂xi
(x)1{u<0}(x) = 0, dx a. e. ,∀1 ≤ i ≤ d.

If we admit this Lemma for a moment, we note that we have proved that for
any t ≥ 0, EΦ(u(t)) = 0, i. e. Φ(u(t)) = 0 a. s., and in fact u(t, x) ≥ 0, dx a.
e., a. s., ∀t. It remains to proceed to the
Proof of Lemma 2.25: We define a sequence of approximations of the
function r → r+ of class C1:

ϕn(r) =


0, if r < 0;

nr2/2, if 0 < r < 1/n;

r − 1/2n, if r > 1/n.

Clearly, ϕn(r) → r+, and ϕ′n(r) → 1{r>0}, as n → ∞. For u ∈ H1(Rd), let

un(x) = ϕn(u(x)). Then un ∈ H1(Rd), and

∂un
∂xi

= ϕ′n(u)
∂u

∂xi
.

It is easily seen that the two following convergences hold in L2(Rd):

un → u+
∂un
∂xi
→ 1{u>0}

∂u

∂xi
.

This proves the Lemma. �
With a similar argument, one can also prove a comparison theorem.
Let v be the solution of a slightly different SPDE

∂v

∂t
(t, x) =

1

2

∑
ij

∂

∂xj

(
aij(t, x)

∂v

∂xi

)
(t, x) +

∑
i

bi(t, x)
∂v

∂xi
(t, x)

+ F (t, x; v(t, x))

+
∑
k

(∑
i

gki(t, x)
∂v

∂xi
(t, x) + hk(t, x; v(t, x))

)
dW k

dt
(t)

v(0, x) = v0(x)

Theorem 2.26 Assume that u0(x) ≤ v0(x), x a. e., that f(t, x; r) ≤
F (t, x; r), t, x a. e., and moreover one of the two pairs (f, (hk)) or (F, (hk))
satisfies the above conditions for existence–uniqueness. Then u(t, x) ≤ v(t, x)
x a. e., P a. s., for all t ≥ 0.

Sketch of the proof of Theorem 2.26: The proof is similar to that of
Theorem 2.24, so we just sketch it. We first replace v by u ∨ v in the last
equation, in the three places where we changed u into u+ in the proof of the
previous Theorem. The fact that
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u, v ∈ H1(Rd)⇒ u ∨ v ∈ H1(Rd)

follows from Lemma 2.25 and the simple identity u ∨ v = u + (v − u)+.
If v denotes the solution of that new equation, we can show (with the same
functional Φ as in the proof of Theorem 2.24) that EΦ(v(t)−u(t)) ≤ 0, which
implies that u(t, x) ≤ v(t, x), x a. e., P a. s., for all t ≥ 0. Consequently v
solves the original equation, and the result is established. �





Chapter 3

SPDEs driven by space–time white
noise

3.1 Introduction

The results of the previous chapter mainly apply to equations driven by
finite dimensional Brownian motion or space–time noise which is white in
time and colored in space. The aim of this chapter is to study equations
driven by space–time white noise. We shall first explain why we need to
restrict ourselves to the case of a one–dimensional space variable. Then we
shall present the basic existence–uniqueness result, together with the Hölder
continuity of the solution, following the by now classical St Flour notes of J.
Walsh [29].

We will then give sufficient conditions for the solution to be non-negative.
Next we shall present the application of Malliavin calculus to white noise
driven SPDEs, which allows to give sufficient conditions for the law of the
random variable u(t, x) (or of the random vector (u(t, x1), . . . , u(t, xn))) to
have a density w.r.t. the Lebesgue measure. We next discuss the connection
between SPDEs and the super Brownian motion, and finally reflected SPDEs.

3.2 Restriction to one–dimensional space variable

Let us consider the following linear parabolic SPDE
∂u

∂t
(t, x) =

1

2
∆u(t, x) + Ẇ (t, x), t ≥ 0, x ∈ Rd

u(0, x) = u0(x), x ∈ Rd.

The driving noise in this equation is the so called “space–time white noise”,
that is W̊ is a generalized centered Gaussian field, with covariance given by

49
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E[W̊ (h)W̊ (k)] =

∫ ∞
0

∫
Rd

h(t, x)k(t, x)dxdt, ∀h, k ∈ L2(R+ × Rd).

Since the equation is linear, that is the mapping

W̊ → u

is affine, it always has a solution as a distribution, the driving noise being a
random distribution. But we want to know when that solution is a standard
stochastic process {u(t, x), t ≥ 0, x ∈ Rd}. Let

p(t, x) =
1

(2πt)d/2
exp

(
−|x|

2

2t

)
.

The solution of the above equation is given by

u(t, x) =

∫
Rd

p(t, x− y)u0(y)dy +

∫ t

0

∫
Rd

p(t− s, x− y)W (ds, dy),

at least if the second integral makes sense. Since it is a Wiener integral, it
is a centered Gaussian random variable, and we just have to check that its
variance is finite. But that variance equals∫ t

0

∫
Rd

p2(t− s, x− y)dyds =
1

(2π)d

∫ t

0

ds

(t− s)d

∫
Rd

exp

(
−|x− y|

2

t− s

)
dy

=
1

2dπd/2

∫ t

0

ds

(t− s)d/2
<∞

if and only if d = 1 ! When d ≥ 2, the solution is a generalized stochastic
process, given by

(u(t), ϕ) =

∫
Rd

∫
Rd

ϕ(x)p(t, x− y)u0(y)dxdy

+

∫ t

0

∫
Rd

(∫
Rd

ϕ(x)p(t− s, x− y)dx

)
W (ds, dy), t ≥ 0, ϕ ∈ C∞C (Rd).

Here the second integral is well defined. Indeed, let us assume that suppϕ ⊂
B(0, r). Then ∫

Rd

ϕ(x)p(t− s, x− y)dx = Eyϕ(Bt−s),

where {Bt, t ≥ 0} is a standard Rd–valued Brownian motion. For |y| > 2r,
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|Eyϕ(Bt−s)| = |Ey
[
ϕ(Bt−s)1|Bt−s|≤r

]
|

≤ ‖ϕ‖∞P0(|Bt−s| ≥ |y| − r)

≤ ‖ϕ‖∞
E0(|Bt−s|p)
(|y| − r)p

≤ c(d, p)‖ϕ‖∞
(t− s)p/2

(|y| − r)p

Choosing p > d, we conclude that∫ t

0

∫
Rd

(∫
Rd

ϕ(x)p(t− s, x− y)dx

)2

dsdy <∞.

We note that our goal is to solve nonlinear equations of the type
∂u

∂t
(t, x) =

1

2
∆u(t, x) + f(u(t, x)) + g(u(t, x))W̊ (t, x), t ≥ 0, x ∈ Rd

u(0, x) = u0(x), x ∈ Rd,

whose solution might not be more regular than that of the linear equation we
considered above. Since we do not want to define the image by a nonlinear
mapping of a distribution (which is essentially impossible, if we want to
have some reasonable continuity properties, which is crucial when studying
SPDEs), we have to restrict ourselves to the case d = 1 !

3.3 A general existence–uniqueness result

Let us consider specifically the following SPDE with homogeneous Dirichlet
boundary conditions
∂u

∂t
(t, x) =

∂2u

∂x2
(t, x) + f(t, x;u(t, x)) + g(t, x;u(t, x))W̊ (t, x), t ≥ 0, 0 ≤ x ≤ 1;

u(t, 0) = u(t, 1) = 0, t ≥ 0;

u(0, x) = u0(x), 0 ≤ x ≤ 1.
(3.1)

This equation turns out not to have a classical solution. So we first introduce
a weak formulation of (3.1), namely
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∫ 1

0

u(t, x)ϕ(x)dx =

∫ 1

0

u0(x)ϕ(x)dx+

∫ t

0

∫ 1

0

u(s, x)ϕ′′(x)dxds

+

∫ t

0

∫ 1

0

f(s, x;u(s, x))ϕ(x)dxds+

∫ t

0

∫ 1

0

g(s, x;u(s, x))ϕ(x)W (ds, dx)

P a. s., ∀ϕ ∈ C2(0, 1) ∩ C0([0, 1]),
(3.2)

where C0([0, 1]) stands for the set of continuous functions from [0, 1] into R,
which are 0 at 0 and at 1. We need to define the stochastic integral which
appears in (3.2). From now on, W (ds, dx) will be considered as a random
Gaussian “measure” (it is in fact not a measure for fixed ω) on R+ × [0, 1].
More precisely, we define the collection{

W̊ (A) =

∫
A

W (ds, dx), A Borel subset of R+ × [0, 1]

}
as a centered Gaussian random field with covariance given by

E[W̊ (A)W̊ (B)] = λ(A ∩B),

where λ denotes the Lebesgue measure on R+ × [0, 1].
We want now to sketch the construction of Itô type stochastic integrals

with respect to W (ds, dx), where the integrand is allowed to be random, with
a restriction of adaptedness in the s direction, but not in the x direction. We
refer to Walsh [29] for a more detailed construction.

We define for each t > 0 the σ–algebra

Ft = σ{W̊ (A), A Borel subset of [0, t]× [0, 1]},

and the associated σ–algebra of predictable sets defined as

P = σ{(s, t]× Λ ⊂ R+ ×Ω : 0 ≤ s ≤ t, Λ ∈ Fs}.

The class of processes which we intend to integrate with respect to the above
measure is the set of functions

ψ : R+ × [0, 1]×Ω → R,

which are P ⊗ B([0, 1])–measurable and such that∫ t

0

∫ 1

0

ψ2(s, x)dxds <∞ P a. s. ∀t ≥ 0.

In fact we could integrate progressively measurable (and not necessarily pre-
dictable) processes. For such ψ’s, the stochastic integral∫ t

0

∫ 1

0

ψ(s, x)W (ds, dx), t ≥ 0
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can be constructed as the limit in probability of the sequence of approxima-
tions

∞∑
i=1

n−1∑
j=0

(ψ,1An
i−1,j

)L2(R+×(0,1))W
(
Ani,j ∩ ([0, t]× [0, 1])

)
,

where

Ani,j =

[
i

n
,
i+ 1

n

]
×
[
j

n
,
j + 1

n

]
.

That stochastic integral is a local martingale, with associated increasing pro-
cess ∫ t

0

∫ 1

0

ψ2(s, x)dxds, t ≥ 0.

If moreover

E
∫ t

0

∫ 1

0

ψ2(s, x)dxds, ∀t ≥ 0,

then the stochastic integral process is a square integrable martingale, the
above convergence holds in L2(Ω), and we have the isometry

E

[(∫ t

0

∫ 1

0

ψ(s, x)W (ds, dx)

)2
]

= E
∫ t

0

∫ 1

0

ψ2(s, x)dxds, ∀t ≥ 0.

We introduce another formulation of our white–noise driven SPDE, namely
the integral formulation, which is the following
u(t, x) =

∫ 1

0

p(t;x, y)u0(y)dy +

∫ t

0

∫ 1

0

p(t− s;x, y)f(s, y;u(s, y))dyds

+

∫ t

0

∫ 1

0

p(t− s;x, y)g(s, y;u(s, y))W (ds, dy), P a. s. , t ≥ 0, 0 ≤ x ≤ 1;

(3.3)
where p(t;x, y) is the fundamental solution of the heat equation with Dirichlet
boundary condition

∂u

∂t
(t, x) =

∂2u

∂x2
(t, x); t ≥ 0, 0 < x < 1;

u(t, 0) = u(t, 1) = 0, t ≥ 0;

and u0 ∈ C0([0, 1]). We shall admit the following Lemma (see Walsh [29])

Lemma 3.1 The above kernel is given explicitly by the formula

p(t;x, y) =
1√
4πt

∑
n∈Z

[
exp

(
− (2n+ y − x)2

4t

)
− exp

(
− (2n+ y + x)2

4t

)]
,

and for all T > 0, there exists CT such that
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|p(t;x, y)| ≤ CT√
t

exp

(
−|x− y|

2

4t

)
, 0 ≤ t ≤ T, 0 ≤ x, y ≤ 1.

Moreover, there exists a smooth function H such that

p(t;x, y) =
1√
4πt

exp

(
−|x− y|

2

4t

)
+H(t;x, y) . (3.4)

We now state two assumptions on the coefficients

(H1− n) sup
0≤s≤t

∫ 1

0

(f2n(s, x; 0) + g2n(s, x; 0))dx <∞, t ≥ 0.

There exists a locally bounded function δ : R→ R+ such that

(H2) |f(s, x; r)−f(s, x, 0)|+|g(s, x; r)−g(s, x, 0)| ≤ δ(r), ∀t ≥ 0, 1 ≤ x ≤ 1, r ∈ R.

We can now establish the

Proposition 3.2 Under the assumptions (H1 − 1) and (H2), a continuous
P ⊗ B([0, 1])–measurable function u satisfies (3.2) if and only if it satisfies
(3.3).

Proof: Let first u be a solution of (3.2), and λ ∈ C1(R+). Then by integra-
tion by parts (we use (·, ·) to denote the scalar product in L2(0, 1))
λ(t)(u(t), ϕ) = λ(0)(u(0), ϕ) +

∫ t

0

(u(s), λ(s)ϕ′′ + λ′(s)ϕ)ds

+

∫ t

0

λ(s)(f(s, ·;u(s, ·)), ϕ)ds+

∫ t

0

∫ 1

0

λ(s)g(s, x;u(s, x))ϕ(x)W (ds, dx).

But any φ ∈ C1,2(R+× (0, 1))∩C(R+× [0, 1]) such that φ(t, 0) = φ(t, 1) = 0
is a limit of finite sums of the form

∑n
i=1 λi(t)ϕi(x). Hence we get that for

all φ as above and all t ≥ 0,
(u(t), φ(t, ·)) = (u(0), φ(0, ·)) +

∫ t

0

(u(s),
∂2φ

∂x2
(s, ·) +

∂φ

∂s
(s, ·))ds

+

∫ t

0

(f(s, ·;u(s, ·)), φ(s, ·))ds+

∫ t

0

∫ 1

0

φ(s, x)g(s, x;u(s, x))W (ds, dx).

Now, t being fixed, we choose for 0 ≤ s ≤ t, 0 ≤ x ≤ 1,

φ(s, x) =

∫ 1

0

p(t− s; y, x)ϕ(y)dy = p(t− s;ϕ, x),

where ϕ ∈ C∞0 ([0, 1]). We deduce that
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(u(t), ϕ) = (u(0), p(t;ϕ, ·)) +

∫ t

0

(f(s, ·;u(s, ·)), p(t− s;ϕ, ·))ds

+

∫ t

0

∫ 1

0

p(t− s;ϕ, y)g(s, y;u(s, y))W (ds, dy).

If we now let ϕ tend to δx, we obtain (3.3).
Let now u be a solution of (3.3). Then for all ϕ ∈ C2(0, 1) ∩ C0([0, 1]),

t ≥ 0, we have, for all 0 ≤ s ≤ t,
(u(t), ϕ) = (u(s), p(t− s, ϕ, ·)) +

∫ t

s

(f(r, ·;u(r, ·)), p(t− r;ϕ, ·))ds

+

∫ t

s

∫ 1

0

p(t− r;ϕ, y)g(r, y;u(r, y))W (dr, dy).

We next define ti = it/n, for 0 ≤ i ≤ n, and ∆t = t/n.

u(t, ϕ)− (u0, ϕ) =

n−1∑
i=0

[(u(ti+1), ϕ)− (u(ti), ϕ)]

=

n−1∑
i=0

[(u(ti+1), ϕ)− (u(ti), p(∆t, ϕ, ·)) + (u(ti), p(∆t, ϕ, ·))− (u(ti), ϕ)]

=

n−1∑
i=0

[∫ ti+1

ti

∫ 1

0

p(ti+1 − s, ϕ, y)f(s, y;u(s, y))dyds

+

∫ ti+1

ti

∫ 1

0

p(ti+1 − s, ϕ, y)g(s, y;u(s, y))W (dy, ds)

+

∫ ti+1

ti

∫ 1

0

u(ti, y)
∂2p

∂y2
(s− ti, ϕ, y)dyds

]
If we exploit the fact that u is a. s. continuous and adapted, we obtain that
as n→∞, the last expression tends to∫ t

0

∫ 1

0

ϕ(y)f(s, y;u(s, y))dyds+

∫ t

0

∫ 1

0

ϕ(y)g(s, y;u(s, y))W (dy, ds)

+

∫ t

0

∫ 1

0

u(s, y)ϕ′′(y)dyds.

�
In order to prove existence and uniquenes of a solution, we need to replace

the assumption (H2) by the stronger assumption: there exists k > 0 such
that for all t, x, r, r′,

(H3) |f(t, x, r)− f(t, x, r′)|+ |g(t, x, r)− g(t, x, r′)| ≤ k|r − r′|.



56 3 SPDEs driven by space–time white noise

We have the

Theorem 3.3 Under the assumptions (H1 − n) for all n ≥ 1 and (H3),
if u0 ∈ C0([0, 1]), there exists a unique continuous P ⊗ B([0, 1])–measurable
solution u of equation (3.3). Moreover sup0≤x≤1, 0≤t≤T E[|u(t, x)|p] <∞, for
all p ≥ 1.

Proof: Uniqueness Let u and v be two solutions. Then the difference
u = u− v satisfies

u(t, x) =

∫ t

0

∫ 1

0

p(t− s;x, y)[f(s, y;u(s, y))− f(s, y; v(s, y))]dsdy

+

∫ t

0

∫ 1

0

p(t− s;x, y)[g(s, y;u(s, y))− g(s, y; v(s, y))]W (ds, dy).

Using successively the inequality (a+ b)2 ≤ 2(a2 + b2), Cauchy–Schwarz, the
isometry property of the stochastic integral, and (H3), we obtain

E[u2(t, x)] ≤ 2(t+ 1)k2
∫ t

0

∫ x

0

p2(t− s;x, y)E[u2(s, y)]dyds

Let H(t) = sup0≤x≤1 E[u2(t, x)]. We deduce from the last inequality

H(t) ≤ 2(t+ 1)

∫ t

0

[
sup

0≤x≤1

∫ 1

0

p2(t− s;x, y)dy

]
H(s)ds.

From the above estimate upon p, we deduce that

sup
0≤x≤1

∫ 1

0

p2(t− s;x, y)dy ≤ C2
T

t− s

∫
R

exp

(
−|x− y|

2

2(t− s)

)
dy ≤ C ′√

t− s
,

and iterating twice the estimate thus obtained for H, we deduce that

H(t) ≤ C ′′
∫ t

0

H(s)ds,

hence H(t) = 0 from Gronwall’s Lemma.
Existence We use the well known Picard iteration procedure

u0(t, x) = 0

un+1(t, x) =

∫ 1

0

p(t;x, y)u0(y)dy +

∫ t

0

∫ 1

0

p(t− s;x, y)f(s, y;un(s, y))dyds

+

∫ t

0

∫ 1

0

p(t− s;x, y)g(s, y;un(s, y))W (dy, ds).

Let Hn(t) = sup0≤x≤1 E[|un+1(t, x) − un(t, x)|2]. Then, as in the proof of
uniqueness, we have that for 0 ≤ t ≤ T ,
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Hn(t) ≤ CT
∫ t

0

Hn−2(s)ds.

Iterating this inequality k times, we get

Hn(t) ≤ CkT
∫ t

0

ds1

∫ s1

0

ds2 · · ·
∫ sk−1

0

Hn−2k(sk)dsk

≤ CkT t
k−1

(k − 1)!

∫ t

0

dsHn−2k(s).

But

H0(t) = sup
0≤x≤1

E
(∣∣∣∣∫ 1

0

p(t;x, y)u0(y)dy +

∫ t

0

∫ 1

0

p(t− s;x, y)f(s, y; 0)dyds

+

∫ t

0

∫ 1

0

p(t− s;x, y)g(s, y; 0)W (dy, ds)

∣∣∣∣2
)
<∞,

thanks to assumption (H1). Hence the sequence {un} is Cauchy in
L∞((0, T )×(0, 1);L2(Ω)); its limit u is P×B([0, 1])–measurable and satisfies
(3.3). We could have done all the argument with the exponent 2 replaced by
p, hence the p–th moment estimate. It remains to show that it can be taken
to be continuous, which we will do in the next Theorem.

Theorem 3.4 The solution u of equation (3.3) has a modification which is
a. s. Hölder continuous in (t, x), with the exponent 1/4− ε, ∀ε > 0.

In fact u is 1/4 − ε–Hölder continuous in t, and 1/2 − ε–Hölder continuous
in x.
Proof: It suffices to show that each term in the right hand side of (3.3) has
the required property. We shall only consider the stochastic integral term,
which is the hardest. Consider

v(t, x) =

∫ t

0

∫ 1

0

p(t− s;x, y)g(s, y;u(s, y))W (ds, dy).

We shall use the following well known Kolmogorov Lemma

Lemma 3.5 If {Xα, α ∈ D ⊂ Rd} is a random field such that for some k,
n and β > 0, for all α, α′ ∈ D,

E (|Xα −Xα′ |n) ≤ k|α− α′|d+β ,

then there exists a modification of the process {Xα} which is a. s. Hölder
continuous with the exponent β/n− ε, for all ε > 0.

Proof of Theorem 3.4 We follow Walsh [29]. It is not hard to show that
it suffices to prove the needed estimates with p(t − s;x, y) replaced by the
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first term on the right of (3.4). Hence in this proof we do as if the second
term on the right of (3.4) is zero. We first note that

E[|(v(t+ k, x+ h)− v(t, x)|n]1/n ≤ E[|(v(t+ k, x+ h)− v(t+ k, x)|n]1/n

+ E[|(v(t+ k, x)− v(t, x)|n]1/n.

We estimate first the first term (for simplicity of notations, we replace t+ k
by t). From Burkholder and Hölder,

E[|(v(t, x+ h)− v(t, x)|n]

≤ cE

(∣∣∣∣∫ t

0

∫ 1

0

g2(u; s, y)[p(t− s;x+ h, y)− p(t− s;x, y)]2dyds

∣∣∣∣n/2
)

≤ cE
(∫ t

0

∫ 1

0

gn(u; s, y)dsdy

)
×
(∫ t

0

∫ ∞
−∞
|p(s;x, z)− p(s;x+ h, z|2n/(n−2)dzds

)(n−2)/2

The first factor on the right is bounded by a constant depending upon n only,
thanks to Assumption (H1−n/2) and the estimate obtained in Theorem 3.3.

We next consider the second factor in the above right hand side. We have,
with h = hz, s = h2v,∫ t

0

∫ ∞
−∞
|p(s;x, z)− p(s; y, z)|2n/(n−2)dzds

= ch(n−6)/(n−2)
∫ t

0

∫ ∞
−∞

v−n/(n−2)
∣∣∣∣e− |z+1|2

4v − e−
|z|2
4v

∣∣∣∣2n/(n−2) dvdz
= Ch(n−6)/(n−2),

provided the integral converges, which is the case whenever n > 6. In this
case, we have proved that

E[|(v(t, x+ h)− v(t, x)|n] ≤ Cn|h|(n−6)/2,

and x→ v(t, x) is Hölder with any exponent < 1/2.
Analogously

E[|(v(t+ k, x)− v(t, x)|n]

≤ cE

(∣∣∣∣∫ t

0

∫ 1

0

g2(u; s, y)[p(t+ k − s;x, y)− p(t− s;x, y)]2dyds

∣∣∣∣n/2
)
(3.5)

+ cE

∣∣∣∣∣
∫ t+k

t

∫ 1

0

g2(u; s, y)p2(t+ k − s;x, y)dyds

∣∣∣∣∣
n/2
 .
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The first term on the right of (3.5) can be estimated as follows.

E

(∣∣∣∣∫ t

0

∫ 1

0

g2(u; s, y)[p(t+ k − s;x, y)− p(t− s;x, y)]2dyds

∣∣∣∣n/2
)

≤ cE
(∫ t

0

∫ 1

0

gn(u; s, y)dsdy

)
×
(∫ t

0

∫ ∞
−∞
|p(t+ k − s;x, y)− p(t− s;x, y|2n/(n−2)dyds

)(n−2)/2

≤ Cn
(∫ t

0

∫ ∞
−∞
|p(s+ k; 0, y)− p(s; 0, y|2n/(n−2)dyds

)(n−2)/2

= Cn

k 3
2−

n
n−2

∫ t

0

∫ ∞
−∞

e− z2

4(u+1)

√
u+ 1

− e−
z2

4u

√
u

 2n
n−2

dzdu


(n−2)/2

= C ′nk
n
4−

3
2 ,

where we have defined u = s/k, z = y/
√
k, and C ′n <∞ provided n > 6.

We finally estimate the second term on the right of (3.5). It is bounded
by a constant times (in the following computation, the value of the constant
C changes from line to line)

E
∫ t+k

t

∫ 1

0

gn(u; s, y)dyds×

(∫ k

0

∫ ∞
−∞

p
2n

n−2 (s; 0, y)dyds

)n−2
n

≤ Ck

(∫ k

0

∫ ∞
−∞

s−
n

n−2 e−
2n

n−2
y2

4s dyds

)n−2
n

= Ck

(∫ k

0

s−
1
2−

2
n−2 ds

)n−2
n

= Ck
n
4−

1
2

Hence t→ v(t, x) is a. s. Hölder with any exponent < 1/4. �

3.4 More general existence and uniqueness result

One can generalize the existence–uniqueness result to coefficients satisfying
the following assumptions (see Zangeneh [31] and Gyöngy, Pardoux [9])

(A1)

{
∀T,R, ∃K(T,R) such that ∀0 ≤ x ≤ 1, t ≤ T, |r|, |r′| ≤ R
(r − r′)[f(t, x; r)− f(t, x; r′)] + |g(t, x; r)− g(t, x; r′)|2 ≤ K(T,R)|r − r′|2
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(A2)

{
∃C such that ∀t ≥ 0, r ∈ R, 0 ≤ x ≤ 1,

rf(t, x; r) + |g(t, x; r)|2 ≤ C(1 + |r|2)

(A3) ∀t ≥ 0, , 0 ≤ x ≤ 1, r → f(t, x; r) is continuous.

Moreover, without the assumption (A2), the solution exists and is unique up
to some (possibly infinite) stopping time.

If one suppresses the above condition (A1), and adds the condition that

∀t ≥ 0, 0 ≤ x ≤ 1, r → g(t, x; r) is continuous,

then one can show the existence of a weak solution (i. e. a solution of the
associated martingale problem).

3.5 Positivity of the solution

Let us state the

Theorem 3.6 Let u and v be the two solutions of the two white–noise driven
SPDEs
∂u

∂t
(t, x) =

∂2u

∂x2
(t, x) + f(t, x;u(t, x)) + g(t, x;u(t, x))W̊ (t, x), t ≥ 0, 0 ≤ x ≤ 1;

u(t, 0) = u(t, 1) = 0, t ≥ 0;

u(0, x) = u0(x), 0 ≤ x ≤ 1.
(3.6)

∂v

∂t
(t, x) =

∂2v

∂x2
(t, x) + F (t, x; v(t, x)) + g(t, x; v(t, x))W̊ (t, x), t ≥ 0, 0 ≤ x ≤ 1;

v(t, 0) = v(t, 1) = 0, t ≥ 0;

v(0, x) = v0(x), 0 ≤ x ≤ 1.
(3.7)

Assume that u0, v0 ∈ C0([0, 1]) and the two pairs (f, g) or (F, g) satisfy the
conditions for strong existence and uniqueness. Then if u0(x) ≤ v0(x) ∀x and
f ≤ F , u(t, x) ≤ v(t, x) ∀t ≥ 0, 0 ≤ x ≤ 1, P a. s.

Proof: Let {ek, k ≥ 1} be an orthonormal basis of L2(0, 1). Formally,

W̊ (t, x) =

∞∑
k=1

W̊ k(t)ek(x),

where W̊ k(t) = (W̊ (t, ·), ek). For each N ≥ 1, let

W̊N (t, x) =

N∑
k=1

W̊ k(t)ek(x),
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and uN (resp. vN ) be the solution of (3.6) (resp. (3.7)), where W̊ has been
replaced by W̊N . We now prove

Lemma 3.7 For all n ≥ 1, T ≥ 0,

lim
N→∞

sup
0≤t≤T, 0≤x≤1

E[|(u(t, x)− uN (t, x)|n] = 0,

and the same is true for the difference v − vN .

Proof: We follow the argument from Lemma 2.1 in [5]. We have the decom-
position (we write f(u) and g(u) instead of f(t, x;u) and g(t, x;u))

u(t, x)− uN (t, x) = AN (t, x) +BN (t, x) + CN (t, x), where

AN (t, x) =

∫ t

0

∫ 1

0

[f(u(s, y))− f(uN (s, y))]p(t− s;x, y)dyds,

BN (t, x) =

N∑
k=1

∫ t

0

∫ 1

0

[g(u(s, y))− g(uN (s, y))]p(t− s;x, y)ek(y)dydW k(s),

CN (t, x) =

∫ t

0

∫ 1

0

[Ψ(t, x; s, y)− ΨN (t, x; s, y)]W (ds, dy), with

Ψ(t, x; s, y) = g(u(s, y))p(t− s;x, y),

ΨN (t, x; s, y) =

N∑
k=1

∫ 1

0

g(u(s, z))p(t− s;x, z)ek(z)dz ek(y) .

We shall use the following property of the kernel p(t;x, y), see Walsh [29]: if
0 < r < 3, for all T > 0,

sup
0≤x≤1

∫ T

0

∫ 1

0

pr(t;x, y)dydt <∞ . (3.8)

We shall also assume that f and g are globally Lipschitz, which we can do
by a localization argument. In the sequel, n will be an exponent satisfying
n > 6. Then the conjugate exponent m = n

n−1 < 3. Below Cn will denote a
constant which depends only upon n, and may change from line to line. We
set

FN (t) = sup
0≤x≤1

E[|u(t, x)− uN (t, x)|n] .

Form Hölder’s inequality and (3.8),

E[|AN (t, x)|n] ≤ Cn
(∫ t

0

∫ 1

0

pm(s;x, y)dyds

)n/m
E
∫ 1

0

|u(s, y)− uN (s, y)|ndyds

≤ Cn
∫ t

0

FN (s)ds . (3.9)
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Next

E[|BN (t, x)|n] ≤ CE

{ N∑
k=1

∫ t

0

(∫ 1

0

[g(u(s, y))− g(uN (s, y))]p(t− s;x, y)ek(y)dy

)2

ds

}n/2 .
But, denoting H := L2(0, 1),

N∑
k=1

(∫ 1

0

[g(u(s, y))− g(uN (s, y))]p(t− s;x, y)ek(y)dy

)2

=

N∑
k=1

([g(u(s, ·))− g(uN (s, ·))]p(t− s;x, ·), ek)2H

≤ ‖[g(u(s, ·))− g(uN (s, ·))]p(t− s;x, ·)‖2H .

Consequently, with m′ = n/2
n/2−1 , noting that 2m′ < 3,

E[|BN (t, x)|n] ≤ CnE

[{∫ t

0

∫ 1

0

[g(u(s, y))− g(uN (s, y))]2p2(t− s;x, y)dyds

}n/2]

≤ Cn
(∫ t

0

∫ 1

0

p2m
′
(s;x, y)dyds

)1/2m′

E
∫ t

0

∫ 1

0

|g(u(s, y))− g(uN (s, y))|ndyds

≤ Cn
∫ t

0

FN (s)ds . (3.10)

Finally

E[|CN (t, x)|n] ≤ CnE

[{∫ t

0

∫ 1

0

[Ψ(t, x; s, y)− ΨN (t, x; s, y)]2dyds

}n/2]
.

We note that

ΨN (t, x; s, y) =

N∑
k=1

(Ψ(t, x; s, ·), ek)ek(y), hence

∫ 1

0

[Ψ(t, x; s, y)− ΨN (t, x; s, y)]2dy = ‖Ψ(t, x; s, ·)− ΨN (t, x; s, ·))‖2H

↓ 0 a.s., as N →∞ .

Moreover

‖Ψ(t, x; s, ·)−ΨN (t, x; s, ·))‖2H ≤ ‖Ψ(t, x; s, ·)‖2H , and E

[{∫ t

0

‖Ψ(t, x; s, ·)‖2Hds
}n/2]

<∞ .
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Hence by the dominated convergence theorem, E[|CN (t, x)|n] → 0, as N →
∞.

Set

γN (t, x) := E

[{∫ t

0

∫ 1

0

[Ψ(t, x; s, y)− ΨN (t, x; s, y)]2dyds

}n/2]
.

This is a sequence of continuous functions on the compact set [0, T ]× [0, 1],
which decreases pointwise to 0, as N → ∞. Hence, by Dini’s theo-
rem1, γN converges uniformly to 0, and sup0≤x≤1 E[|CN (t, x)|n] → 0, as
N → ∞. For any ε > 0, there exists Nε ≥ 1 such that, if N ≥ Nε,
sup0≤x≤1 E[|CN (t, x)|n] ≤ ε. From this, combined with (3.9) and (3.10), we
deduce that

FN (t) ≤ Cn
∫ t

0

FN (s)ds+ Cnε .

The result now follows from Gronwall’s Lemma. �
We now conclude the proof of Theorem 3.6. From Theorem 2.26, P a.s.

uN (t, x) ≤ vN (t, x) for all t ≥ 0, x ∈ [0, 1], N ≥ 1. Theorem 3.6 then follows,
since uN (t, x)→ u(t, x) and vN (t, x)→ u(t, x). �

Corollary 3.8 Let u0(x) ≥ 0, assume (f, g) satisfies the conditions for strong
existence–uniqueness of a solution u to equation (3.3). If moreover

f(t, x; 0) ≥ 0, g(t, x; 0) = 0, ∀t ≥ 0, 0 ≤ x ≤ 1,

then u(t, x) ≥ 0, ∀t ≥ 0, 0 ≤ x ≤ 1, P a. s.

Proof: Let v0 ≡ 0 ≤ u0(x), F (t, x; r) = f(t, x; r) − f(t, x; 0) ≤ f(t, x; r).
Then v ≡ 0 solves (3.7), and the result follows from the comparison theorem
(reversing the orders).

3.6 Applications of Malliavin calculus to SPDEs

We consider again equation (3.3). Our assumptions in this section are the
following

(M1)

{
∀0 ≤ x ≤ 1, t ≥ 0, r → (f(t, x; r), g(t, x; r)) is of class C1,

uniformly in t and x, and the derivatives are locally bounded.

(M2)

{
∃C such that ∀t ≥ 0, r ∈ R, 0 ≤ x ≤ 1,

rf(t, x; r) + |g(t, x; r)|2 ≤ C(1 + |r|2)

1 see e.g. https://en.wikipedia.org/wiki/Dini’s theorem
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(M3) ∃y ∈ (0, 1) such that g(0, y;u0(y)) 6= 0.

The aim of this section is to show the following result from [26]

Theorem 3.9 Under conditions (M1), (M2) and (M3), for any t > 0, 0 <
x < 1, the law of the random variable u(t, x) is absolutely continuous with
respect to Lebesgue measure on R.

Let us first state and prove one Corollary to this result

Corollary 3.10 Under the conditions of Theorem 3.9, if moreover u0(x) ≥ 0,
u0 6≡ 0, f(t, x; 0) ≥ 0, g(t, x; 0) = 0, then u(t, x) > 0, ∀t > 0, x a. e., P a. s.

Proof: From Corollary 3.8, we already know that u(t, x) ≥ 0 for all t, x, P
a. s. Moreover P(u(t, x) = 0) = 0, hence for each fixed (t, x), u(t, x) > 0 P a.
s. The result follows from the continuity of u. �

Let us recall the basic ideas of Malliavin calculus, adapted to our situation.
We consider functionals of the Gaussian random measure W̊ . We first consider
the so–called simple random variables, which are of the following form :

F = f(W̊ (k1), . . . , W̊ (kn)),

where f ∈ C∞b (Rn), k1, . . . , kn ∈ H = L2(R+ × (0, 1)). For any h ∈ H, we
define the Malliavin derivative of F in the direction h as

DhF =
d

dε
f(W̊ (k1) + ε(h, k1), . . . , W̊ (kn) + ε(h, kn))|ε=0

=

n∑
i=1

∂f

∂xi
(W̊ (k1), . . . , W̊ (kn))(h, ki),

and the first order Malliavin derivative of F as the random element of H
v(t, x) = DtxF given as

DtxF =

n∑
i=1

∂f

∂xi
(W̊ (k1), . . . , W̊ (kn))ki(t, x).

Note that

DhF =

∫ ∞
0

∫ 1

0

Dt,xFh(t, x)dxdt,

which makes sense with h random. This will allow us below in the proof of
Theorem 3.9 to write Dhu(t, x) with h random.

We next define the ‖ · ‖1,2 norm of a simple random variable as follows

‖F‖21,2 = E(F 2) + E(|DF |2H).

Now the Sobolev space D1,2 is defined as the closure of the set of simple ran-
dom variables with respect to the ‖·‖1,2 norm. Both the directional derivative
Dh and the derivation D are closed operators, which can be extended to el-
ements of the space D1,2. It can even be extended to elements of D1,2

loc, which
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is defined as follows. X ∈ D1,2
loc whenever there exists a sequence {Xn, n ≥ 1}

of elements of D1,2, which are such that the sequence Ωn = {X = Xn} is
increasing, and P(Ω\ ∪n Ωn) = 0. We note that for X ∈ D1,2

loc, which is Ft
measurable, DsyX = 0 whenever s > t. One should think intuitively of the

operator Dsy as the derivation of a function of W̊ with respect to W̊ (s, y),
the white noise at point (s, y).

We shall also use the space Dh, which is the closure of the set of simple
random variables with respect to the norm whose square is defined as

‖X‖2h = E(F 2 + |DhF |2).

A simple consequence of a well–known result of Bouleau and Hirsch is the

Proposition 3.11 Let X ∈ D1,2
loc . If ‖DX‖H > 0 a. s., then the law of the

random variable X is absolutely continuous with respect to Lebesgue’s mea-
sure.

Proof: We follow the proof in Nualart [20]. It suffices to treat the case
where X ∈ D1,2 and |X| < 1 a. s. It now suffices to show that whenever
g : (−1, 1)→ [0, 1] is measurable,∫ 1

−1
g(y)dy = 0⇒ Eg(X) = 0.

There exists a sequence {gn} ⊂ C1
b ((−1, 1); [0, 1]) which converges to g a. e.

both with respect to the law of X and with respect to Lebesgue’s measure.
Define

ψn(x) =

∫ x

−1
gn(y)dy, ψ(x) =

∫ x

−1
g(y)dy.

Now ψn(X) ∈ D1,2 and D[ψn(X)] = gn(X)DX. Moreover, ψn(X) → ψ(X)
in D1,2. We observe that ψ(X) = 0, and D[ψ(X)] = g(X)DX. Finally from
the assumption of the Proposition follows that g(X) = 0 a. s. �

Proof of Theorem 3.9: We shall prove that for fixed (t, x), u(t, x) ∈ D1,2
loc,

then compute the directional Malliavin derivative Dhu(t, x), and finally prove
that ‖Du(t, x)‖H > 0 a. s.

Step 1. By the localization argument, it suffices to prove that whenever
f , f ′r, g and g′r are bounded, u(t, x) ∈ D1,2. We first show that a directional
derivative exists in any direction of the form h(t, x) = ρ(t)e`(x), where ρ ∈
L2(R+), and e` is an element of an orthonormal basis of L2(0, 1). This is done
by approximating (3.3) by a sequence of finite dimensional SDEs indexed
by n, driven by a finite dimensional Wiener process. The derivative of the
approximate SDE is known to solve a linearized equation, which converges
as n→∞ to the solution v(t, x) of the linearized equation
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∂v

∂t
=
∂2v

∂x2
+ f ′(u)v + g′(u)vW̊ + g(u)h

v(0, x) = 0,

(3.11)

and the fact that Dh is closed (which means that if {Xn} ⊂ Dh, Xn → X
in L2(Ω), DhXn → Y in L2(Ω;H), then X ∈ Dh and Y = DhX), allows
us to deduce that u ∈ Dh, and v = Dhu. The fact that u ∈ D1,2 is proved
by showing that, whenever {hn, n ≥ 1} is an orthonormal basis of H =
L2(R+ × (0, 1)),

E
(
‖Du(t, x)‖2H

)
=
∑
n

E
(
|Dhn

u(t, x)|2
)
,

which can be shown to be finite using classical estimates of the kernel of the
heat equation.

Step 2 Let y be such that g(0, y;u0(y)) 6= 0, and suppose for example
that g(0, y;u0(y)) > 0. Then there exists ε > 0 and a stopping time τ such
that 0 < τ ≤ t, such that

g(s, z;u(s, z)) > 0, ∀z ∈ [y − ε, y + ε], 0 ≤ s ≤ τ,

and we have

‖Du(t, x)‖H > 0⇔
∫ t

0

∫ 1

0

|Ds,zu(t, x)|dzds > 0 .

A sufficient condition for this to be true is that∫ τ

0

∫ y+ε

y−ε
|Ds,zu(t, x)|dzds > 0 .

But, ∀h ∈ L2(Ω × R+ × [0, 1],P ⊗ B([0, 1]),P × λ) (λ denoting the
Lebesgue measure on [0,+∞) × [0, 1]) such that h ≥ 0 and supph ⊂
{(s, y); g(s, y;u(s, y)) ≥ 0}, Dhu(t, x) ≥ 0, as a consequence of Corollary
3.8, applied to (3.11). Hence a sufficient condition for ‖Du(t, x)‖H to be
positive is that∫ τ

0

∫ y+ε

y−ε
Ds,zu(t, x)dzds =

∫ τ

0

v(s; t, x)ds > 0,

where we have defined v(s; t, x) =
∫ y+ε
y−ε Ds,zu(t, x)dz. Let us just show that

v(t, x) = v(0; t, x) > 0. It is not hard to verify that v solves the linearized
SPDE 

∂v

∂t
=
∂2v

∂x2
+ f ′(u)v + g′(u)vW̊

v(0, x) = g(0, x;u0(x))1[y−ε,y+ε](x).

(3.12)
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Now there exists β > 0 such that g(0, x, u0(x)) ≥ β, for x ∈ [y − ε, y + ε],
then by the comparison theorem it suffices to prove our result with the initial
condition of (3.12) replaced by β1[y−ε,y+ε](x), and by linearity it suffices to
treat the case β = 1. In order to simplify the notations, we let a = y− ε, and
b = y+ ε. Since v = ectv satisfies the same equation as v, with f ′(u) replaced
by f ′(u) + c, it suffices, again by the comparison theorem, to treat the case
f ′(u) ≡ 0. Finaly we need to examine the random variable

v(t, x) = v1(t, x) + v2(t, x)

=

∫ b

a

p(t;x, z)dz +

∫ t

0

∫ 1

0

p(t− s;x, z)g′(u)(s, z)v(s, z)W (ds, dz).

Assume that x ≥ a (if this is not the case, then we have x ≤ a, and we can
adapt the argument correspondingly). Let d be such that x ≤ b+ d < 1, and
define

α =
1

2
inf

1≤k≤m
inf

a≤y≤b+dk/m

∫ b+d(k−1)/m

a

p(
t

m
; y, z)dz.

We have that α > 0. We now define, for 1 ≤ k ≤ m, the event

Ek =

{
v

(
kt

m
, ·
)
≥ αk1[a,b+kd/m](·)

}
.

Let us admit for a moment the

Lemma 3.12 For any δ > 0, there exists mδ ≥ 1 such that for any m ≥ mδ,

sup
0≤k≤m−1

P(Eck+1|E1 ∩ · · · ∩ Ek) ≤ δ

m
.

Now

P(v(t, x) > 0) ≥ lim
m→∞

P(E1 ∩ · · · ∩ Em) ≥ lim
m

(1− δ

m
)m = e−δ,

hence the result, since we can let δ → 0.
Proof of Lemma 3.12: Proving the Lemma amounts to prove that P(Ec1) ≤
δ/m. By the definition of α,

v1

(
t

m
, ·
)
≥ 2α1[a,b+d/m](·).

Hence it suffices to show that for any δ > 0, there exists mδ ≥ 1 such that if
m ≥ mδ,

P

(
sup

a≤y≤b+d/m

∣∣∣∣v2( t

m
, y

)∣∣∣∣ > α

)
≤ δ

m
.

For this to be true, it suffices that there exists n, p > 1 and c > 0 such that
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E
(

sup
0≤y≤1

|v2(t, y)|n
)
≤ ctp.

But

E(|v2(t, y)|n) ≤ c
(∫ t

0

∫ 1

0

p2(t− s; y, z)dzds
)n/2

≤ c
(∫ t

0

∫ 1

0

pr(t− s; y, z)dzds
)n/2

tn/q,

if 2
r + 2

q = 1. Since we need r < 3 for the first factor to be finite, we get that
for q > 6,

E(|v2(t, y)|n) ≤ ctn/q.

Moreover, from the computations in the proof of Theorem 3.4,

E (|v2(t, x)− v2(t, y)|n) ≤ c|x− y|n2−1tn/q.

This allows us to conclude, if we choose n > q > 6. �
In the case where g does not vanish, and the coefficients are smooth, for

any 0 < x1 · · · < xn < 1, the law of the random vector

(u(t, x1, u(t, x2), . . . , u(t, xn))

has a density with respect to Lebesgue measure on Rn, which is everywhere
strictly positive. It is an open problem to show the same result under a
condition similar to that of Theorem 3.9.

In the case of the 2D Navier–Stokes equation driven by certain low di-
mensional white noises, Mattingly and Pardoux [15] have shown that for any
t > 0, the projection of u(t, ·) on any finite dimensional subspace has a den-
sity with respect to Lebesgue measure, which under appropriate conditions
is smooth and everywhere positive.

3.7 SPDEs and the super Brownian motion

In this section, we want to study the SPDE
∂u

∂t
=

1

2

∂2u

∂x2
+ |u|γẆ , t ≥ 0, x ∈ R

u(0, x) = u0(x),

(3.13)

where u0(x) ≥ 0. We expect the solution to be non negative, so that we can
replace |u|γ by uγ . The behavior of the solution to this equation, which has
been the object of intense study, depends very much upon the value of the
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positive parameter γ. The case γ = 1 is easy and has already been considered
in these notes. If γ > 1, then the mapping r → rγ is locally Lipschitz, and
there exists a unique strong solution, up possibly to an explosion time. C.
Mueller has shown that the solution is strictly positive, in the sense that

u0 6≡ 0⇒ u(t, x) > 0, ∀t > 0, x ∈ R, P a. s.

We shall consider here the case γ < 1.

3.7.1 The case γ = 1/2

In that case, the SPDE (3.13) is related to the super Brownian motion, which
we now define. For a more complete introduction to superprocesses and for
all the references to this subject, we refer the reader to [6]. Let Md denote
the space of finite measures on Rd, and Cdc+ the space of C2 functions from
Rd into R+, with compact support. We shall use 〈·, ·〉 to denote the pairing
between measures and functions from Cdc+.

Definition 3.13 The super Brownian motion is a Markov process {Xt, t ≥
0} with values inMd which is such that t→ 〈Xt, ϕ〉 is right continuous for all
ϕ ∈ Cdc+, and whose transition probability is caracterized as follows through
its Laplace transform

Eµ[exp(−〈Xt, ϕ〉)] = exp(−〈µ, Vt(ϕ)〉), ϕ ∈ Cdc+,

where µ ∈ Md denotes the initial condition and Vt(ϕ) is the function which
is the value at time t of the solution of the nonlinear PDE

∂V

∂t
=

1

2
(∆V − V 2)

V (0) = ϕ.

Let us compute the infinitesimal generator of this diffusion.

If F (µ) = e−〈µ,ϕ〉,

lim
t→0

1

t
(EµF (Xt)− F (µ)) = lim

t→0

1

t

(
e−〈µ,Vt(ϕ)〉 − e−〈µ,ϕ〉

)
= −e−〈µ,ϕ〉 lim

t→0
〈µ, Vt(ϕ)− ϕ

t
〉

= −1

2
e−〈µ,ϕ〉〈µ,∆ϕ− ϕ2〉

= GF (µ).

From this we deduce that if F has the form F (Xt) = f(〈Xt, ϕ〉), then



70 3 SPDEs driven by space–time white noise

GF (µ) =
1

2
f ′(〈µ, ϕ〉)〈µ,∆ϕ〉+

1

2
f ′′(〈µ, ϕ〉)〈µ, ϕ2〉.

Consequently, the process defined for ϕ ∈ Cdc+ as

Mϕ
t = 〈Xt, ϕ〉 − 〈X0, ϕ〉 −

1

2

∫ t

0

〈Xs, ∆ϕ〉ds

is a continuous martingale with associated increasing process

〈Mϕ〉t =

∫ t

0

〈Xs, ϕ
2〉ds.

We just formulated the martingale problem which the super Brownian motion
solves. Let us show how this follows from our previous computations. We have
that whenever F (Xt) = f(〈Xt, ϕ〉),

F (Xt) = F (X0) +

∫ t

0

GF (Xs)ds is a martingale.

If we choose f(x) = x, we get that the following is a martingale

Mx
t = 〈Xt, ϕ〉 − 〈X0, ϕ〉 −

1

2

∫ t

0

〈Xs, ∆ϕ〉ds.

If we choose now f(x) = x2, we get another martingale

Mx2

t = 〈Xt, ϕ〉2 − 〈X0, ϕ〉2 −
∫ t

0

〈Xs, ϕ〉〈Xs, ∆ϕ〉ds

−
∫ t

0

〈Xs, ϕ
2〉ds.

Now applying Itô’s formula to the first of the two above formulas yields

〈Xt, ϕ〉2 = 〈X0, ϕ〉2 +

∫ t

0

〈Xs, ϕ〉〈Xs, ∆ϕ〉ds

+ 〈Mx〉t + martingale.

Comparing the two last formulas gives

〈Mx〉t =

∫ t

0

〈Xs, ϕ
2〉ds.
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Existence of a density and SBM–related SPDE

If d ≥ 2, one can show that the measure Xt is a. s. singular with respect
to Lebesgue measure. On the contrary, if d = 1, the law of Xt is absolutely
continuous w.r.t. Lebesgue’s measure. Define u(t, ·) as the density of Xt. The
formula for 〈Mx〉t implies that there exists a Gaussian random measure on
R+ × R such that

Mx
t =

∫ t

0

∫
R

√
u(s, x)ϕ(x)W (ds, dx),

hence u(t, x) is a (weak) positive solution of the SPDE
∂u

∂t
=

1

2

∂2u

∂x2
+
√
uẆ , t ≥ 0, x ∈ R

u(0, x) = u0(x).

(3.14)

Uniqueness in law

We now show that the law of the super Brownian motion is uniquely deter-
mined, which implies uniqueness in law for the SPDE (3.14).

From the Markov property, and the semigroup property of {Vt}, we deduce
that

Eµ
(
e−〈Xt,VT−t(ϕ)〉|Fs

)
= EXs

(
e−〈Xt−s,VT−t(ϕ)〉

)
= e−〈Xs,Vt−s(VT−t(ϕ))〉

= e−〈Xs,VT−s(ϕ)〉.

We have just proved that {e−〈Xt,VT−t(ϕ)〉, 0 ≤ t ≤ T} is a martingale. Hence
in particular

Eµe−〈XT ,ϕ〉 = e−〈µ,VT (ϕ)〉,

which characterizes the transition probability of {Xt}, hence its law.

A construction of the SBM

We start with an approximation by a branching process.

• At time 0, let N particles have i. i. d. locations in Rd, with the common
law µ.

• At each time k/N , k ∈ N, each particle dies with probability 1/2 and gives
birth to 2 descendants with probability 1/2.

• On each interval [k/N, (k + 1)/N ], the living particles follow mutually
independent Brownian motions.
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Denote by N(t) the number of particles alive at time t, and Y it the position
of the i–th particle (1 ≤ i ≤ N(t)). Let {XN

t } denote theMd–valued process

XN
t =

1

N

N(t)∑
i=1

δY i
t
, 〈XN

t , ϕ〉 =
1

N

N(t)∑
i=1

ϕ(Y it ).

Theorem 3.14 XN ⇒ X, as N → ∞, where X is a SBM with initial law
µ.

We shall not prove this theorem. We refer the reader to Etheridge [6].

Corollary 3.15 There exists a stopping time τ , with τ <∞ a. s., such that
Xτ = 0.

Proof: The extinction time T of a branching process as described above
satisfies, from a result due to Kolmogorov,

P(T > t) = P(NT > Nt) ' C

Nt
.

Now with N independent such processes

P( sup
i≤i≤N

Ti ≤ t) =

N∏
i=1

P(Ti ≤ t) ' (1− C

Nt
)N → e−C/t,

as N →∞. In other words, P(τ > t) ' 1− e−C/t. �
We will now show that whenever u0 has compact support, the same is true

with u(t, ·), ∀t > 0. This follows from the

Theorem 3.16 Let µ ∈ Md be such that suppµ ⊂ B(0, R0). Then, for all
R > R0,

P(Xt(B(0, R)c) = 0, ∀t ≥ 0) = exp

(
−〈µ, u(R−1·)〉

R2

)
,

where u is the positive solution of the PDE{
∆u = u2, |x| < 1;

u(x)→∞, x→ ±1.

Corollary 3.17 Under the assumptions of the theorem,

Pµ (∪t≥0suppXt is bounded) = 1.

Proof: We have
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Pµ (∪t≥0suppXt is bounded)

= Pµ (∪r>R0
{Xt(B(0, r)c) = 0, ∀t ≥ 0})

= lim
r→∞

exp

(
−〈µ, u(r−1·)〉

r2

)
≥ lim
r→∞

exp

(
− 1

r2
[ sup
|y|≤R0/r

u(y)]µ(Rd)

)
= 1,

where we have used the Theorem for the second equality. �
Before we prove the Theorem, we need one more Lemma.

Lemma 3.18 ∀t ≥ 0, ϕ ∈ Cdc+, we have

Eµ exp

(
−
∫ t

0

〈Xs, ϕ〉ds
)

= exp (−〈µ, ut(ϕ)〉) ,

where {ut(ϕ), t ≥ 0} is the positive solution of the nonlinear parabolic PDE
∂u

∂t
=

1

2
(∆u− u2) + ϕ, t ≥ 0;

u(0) = 0.

Proof: Let n ∈ N, h = t/n, ti = ih.

exp

(
−
∫ t

0

〈Xs, ϕ〉ds
)

= lim
n

exp

(
−

n∑
i=1

〈Xti , hϕ〉

)
.

Now

Eµ
(
e−〈Xtn ,hϕ〉|Ftn−1

)
= e−〈Xtn−1

,Vh(hϕ)〉,

Eµ
(
e−〈Xtn ,hϕ〉−〈Xtn−1

,hϕ〉|Ftn−2

)
= Eµ

(
e−〈Xtn−1

,Vh(hϕ)+hϕ〉|Ftn−2

)
= e−〈Xtn−2

,Vh(Vh(hϕ)+hϕ)〉,

and iterating this argument, we find that

Eµ exp

(
−

n∑
i=1

〈Xti , hϕ〉

)
= exp (−〈µ, vh(t)〉) ,

where vh solves the parabolic PDE
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∂vh
∂t

=
1

2
(∆vh − v2h), ih < t < (i+ 1)h;

vh(ih) = vh(ih−) + hϕ

vh(0) = 0.

In other words (here P (t) stands for the semigroup generated by 1
2∆)

vh(t) = −1

2

∫ t

0

P (t− s)v2h(s)ds+ h
∑

0≤i: ih≤t

P (t− ih)ϕ

→, as n tends to +∞

u(t) = −1

2

∫ t

0

P (t− s)u2(s)ds+

∫ t

0

P (t− s)ϕds.

Proof of Theorem 3.16: Approximating the indicator function of the
closed ball B(0, R) by regular functions ϕ, and exploiting the fact that t →
〈Xt, ϕ〉 is a. s. right continuous, as well as the monotone convergence theorem,
we get that

Pµ(Xt(B(0, R)c) = 0, ∀t ≥ 0) = Pµ
(∫ ∞

0

Xt(B(0, R)c)dt = 0

)
= lim
θ→∞

Eµ
(

exp

[
−θ
∫ ∞
0

Xt(B(0, R)c)dt

])
= lim
θ→∞

lim
n→∞

lim
m→∞

lim
T→∞

Eµ

(
exp

[
−
∫ T

0

〈Xt, θϕR,n,m〉dt

])
= lim
θ→∞

lim
n→∞

lim
m→∞

lim
T→∞

exp [−〈µ, un,m(T, ·;R, θ)〉] ,

where ϕR,n,m is zero outside [−m − 1,−R] ∪ [R,m + 1], 1 on the interval
[−m,−R − 1/n] ∪ [R + 1/n,m], increases and decreases linearly between 0
and 1; and un,m(t, ·, R, θ), by the preceding Lemma, solves the parabolic PDE

∂v

∂t
=

1

2
(∆v − v2) + θϕR,n,m, 0 ≤ t ≤ T,

v(0) = 0.

Now as T →∞, un,m(T, ·, R, θ)→ un,m(·, R, θ), which solves the PDE

−∆un,m + u2n,m = 2θϕR,n,m,

and as n,m→∞, un,m(·, R, θ)→ u(·, R, θ), solution of

−∆u+ u2 = 2θ1|x|>R,

hence as θ →∞, u(·, R, θ)→ u(·, R), solution of



3.8 Reflected SPDE 75{
−∆u+ u2 = 0, |x| < R;

u(x)→∞, x→ ±R.

Since u(x,R) = 1
R2u( xR ), we finally get that

P(Xt(B(0, R)c) = 0, ∀t ≥ 0) = exp

(
−〈µ, u(R−1·)〉

R2

)
.

3.7.2 Other values of γ < 1

Mytnik [19] has proved that uniqueness in law holds if 1/2 < γ < 1. Mueller
and Perkins [17] have proved that the compact support property is still true
if 0 < γ < 1/2.

3.8 Reflected SPDE

In this section, we want first to study the following SPDE with additive white
noise and reflection

∂u

∂t
=
∂2u

∂x2
+ η + Ẇ ,

u(0, x) = u0(x), u(t, 0) = u(t, 1) = 0,

u ≥ 0, η ≥ 0,

∫ ∞
0

∫ 1

0

u(t, x)η(dt, dx) = 0,

(3.15)

where u0 ∈ C0([0, 1];R+). Without the measure η, the sign of the solution
would oscillate randomly. The measure η is there in order to prevent the
solution u from crossing 0, by “pushing” the solution upwards. The last con-
dition says that the pushing is minimal, in the sense that the support of η is
included in the set where u is zero. We formulate a precise

Definition 3.19 A pair (u, η) is said to be a solution of equation (3.15)
whenever the following conditions are met:

1. {u(t, x), t ≥ 0, 0 ≤ x ≤ 1} is a non negative continuous and adapted
process, such that u(t, 0) = u(t, 1) = 0, ∀t ≥ 0.

2. η(dt, dx) is an adapted random measure on R+ × [0, 1].
3. For any t > 0, any ϕ ∈ C∞C ([0, 1]), we have
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(u(t), ϕ) = (u0, ϕ) +

∫ t

0

(u(s), ϕ′′)ds+

∫ t

0

∫ 1

0

ϕ(x)W (ds, dx)

+

∫ t

0

∫ 1

0

ϕ(x)η(ds, dx).

We have the (see [21])

Theorem 3.20 If u0 ∈ C0([0, 1];R+), equation (3.15) has a unique solution.

Proof: Step 1 We first reformulate the problem. Let v denote the solution
of the heat equation with additive white noise, but without the reflection, i.
e. v solves 

∂v

∂t
=
∂2v

∂x2
+ Ẇ ,

v(0, x) = u0(x), v(t, 0) = v(t, 1) = 0.

Defining z = u − v, we see that the pair (u, η) solves equation (3.15) if and
only if z solves

∂z

∂t
=
∂2z

∂x2
+ η,

z(0, x) = 0, z(t, 0) = z(t, 1) = 0,

z ≥ −v, η ≥ 0,

∫ ∞
0

∫ 1

0

(z + v)(t, x)η(dt, dx) = 0,

(3.16)

This is an obstacle problem, which can be solved path by path.
Step 2 We construct a solution by means of the penalization method. For
each ε > 0 let zε solve the penalized PDE

∂zε
∂t

=
∂2zε
∂x2

+
1

ε
(zε + v)−,

zε(0, x) = 0, zε(t, 0) = zε(t, 1) = 0.

It is easily seen that this equation has a unique solution in
L2
loc(R+;H2(0, 1)) ∩ C(R+ × [0, 1]). Moreover, clearly zε increases, when ε

decreases to 0. If zε and ẑε are solution to the same equation, corresponding
to v and v̂ respectively, it is easy to show that

sup
0≤t≤T,0≤x≤1

|zε(t, x)− ẑε(t, x)| ≤ sup
0≤t≤T,0≤x≤1

|v(t, x)− v̂(t, x)| (3.17)

Let us show that
w = zε − ẑε − ‖v − v̂‖∞,T ≤ 0,

the same being true if we replace zε − ẑε by ẑε − zε. w solves
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∂w

∂t
=
∂2w

∂x2
+

1

ε
(zε + v)−,

w(0, x) = −k, w(t, 0) = w(t, 1) = −k,

where k = ‖v − v̂‖∞,T . If w reaches 0, it means that zε ≥ ẑε + k, hence
zε + v ≥ ẑε + v̂ and (zε + v)− ≤ (ẑε + v̂)−. In that case, the drift in the
equation pushes w downwards, i. e. w remains negative between t = 0 and
t = T . This intuitive argument can be justified by standard methods.
Step 3 We let z = limε→0 zε. We want to prove that z is continuous. If we
replace v by a smooth obstacle vn, then the difference between zε and zn,ε is
dominated by ‖v − vn‖∞,T , and in the limit as ε→ 0,

‖z − zn‖∞,T ≤ ‖v − vn‖∞,T .

But it is known that when the obstacle vn is smooth, zn is continuous. Conse-
quently z is the uniform limit of continuous functions, hence it is continuous.
Step 4 Define

ηε(dt, dx) = ε−1(zε + v)−(t, x)dtdx.

Since ηε = ∂zε
∂t −

∂2zε
∂x2 , by integration by parts we deduce that for any smooth

function ψ of (t, x) which is zero whenever x = 0 or x = 1,

〈ηε, ψ〉 = −
∫ ∞
0

(zε,
∂ψ

∂t
+
∂2ψ

∂x2
)dt,

hence ηε → η in the sense of distributions, as ε → 0. The limit distribution
is non negative, hence it is a measure, which satisfies

〈η, ψ〉 = −
∫ ∞
0

(z,
∂ψ

∂t
+
∂2ψ

∂x2
)dt.

Now the support of ηε is included in the set {zε + v ≤ 0} which decreases
as ε → 0. Hence the support of η is included in {zε + v ≤ 0} for all ε > 0.
Consequently for all T > 0,∫ T

0

∫ 1

0

(zε + v)dη ≤ 0.

The same is true with zε replaced by z by monotone convergence. Hence∫ T

0

∫ 1

0

(z + v)dη = 0.

Step 5 If the solution would be in L2
loc(R+;H1(0, 1)), then the uniqueness

proof would follow a very standard argument, since if (z, η) and (z, η) are
two solutions,
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0

∫ 1

0

(z − z)d(η − η) ≤ 0.

Since the above regularity does not hold, one needs to implement a delicate
regularization procedure, which we will not present here. �

The reflected white noise driven SPDE is related to the following SPDEs
with singular drift

∂u

∂t
=
∂2u

∂x2
+

c

uα
+ Ẇ ,

u(0, x) = u0(x), u(t, 0) = u(t, 1) = 0.

It has been shown that the solution of such an equation remains strictly
positive if α > 3, and has positive probability of hitting 0 if α < 3. The case
α = 3 is the most interesting, since the solution might touch zero at isolated
points, and one can define the solution for all time. Now, consider the SPDE
with singular drift

∂u

∂t
=
∂2u

∂x2
+

(δ − 1)(δ − 3)

8u3
+ Ẇ ,

u(0, x) = u0(x), u(t, 0) = u(t, 1) = 0,

where δ > 3. It can be shown that the solution of this SPDE converges to
the above reflected SPDE, as δ → 3. L. Zambotti has shown in [30] that
the solution to those equations are ergodic, and computed explicitly their
invariant measure (including in the case δ = 3), with respect to which the
process is reversible. It is the law of the δ Bessel bridge, i. e. that of the δ
Bessel process, conditioned to be at 0 at time 1. The δ Bessel process is the
solution of the one dimensional SDE

dXδ(t) =
δ − 1

2Xδ(t)
dt+ dW (t), Xδ(0) = 0.

In the case where δ is an integer, it has the same law as the norm of the
δ–dimensional Brownian motion.

Moreover, Dalang, Mueller and Zambotti [3] have given precise indications
concerning the set of points where the solution hits zero. This set is decreasing
in δ. For δ = 3, with positive probability there exists three points of the form
(t, x1), (t, x2), (t, x3) where u is zero, and the probability that there exists
5 points of the same form where u hits zero is zero. For 4 < δ ≤ 5, there
exists one such point with positive probability, and two such points with zero
probability. For δ > 6, the probability that there exists one point where u
hits zero is zero.

Finally, let us mention that white noise driven reflected SPDEs with a so-
lution dependent diffusion coefficient multiplying the noise have been studied
by Donati–Martin, Pardoux [5].
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et applications, Dunod, 1969.
14. P.L. Lions, P.E. Souganidis, Fully nonlinear stochastic partial differential equations:

non-smooth equations and applications, Comptes Rendus de l’Acad. Sciences, Série
1, Mathematics 327, 735–741, 1998.

15. J. Mattingly and E. Pardoux, Malliavin calculus for the stochastic 2D Navier–Stokes
equation, Comm. Pure and Appl. Math 59, 1742–1790, 2006.

16. M. Métivier, Semimartingales, de Gruyter 1982.
17. C. Mueller, E. Perkins, The compact support property for solutions to the heat equa-

tion with noise, Probab. Theory and Rel. Fields 93, 325–358, 1992.
18. C. Mueller and E. Pardoux, The critical exponent for a stochastic PDE to hit zero,

Stochastic analysis, control, optimization and applications, 325–338, Birkhäuser 1999.
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