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What are the questions to which an evolutionary
theory of ageing could be (part of) the answer?

1. Why are organisms allowed to fall apart after
being painstakingly built up?

2. Given that substantially longer life is possible in
many organisms, sometimes from simple mutations,
why are these not prevalent?

"It is indeed remarkable that after a seemingly miraculous
feat of morphogenesis a complex metazoan should be
unable to perform the much simpler task of merely
maintaining what is already formed.”" - George Williams



The answers might not be the
same, or even compatible.

Question 1: Why does optimality fail?

Question 2: Why is longer life (or potential
immortality) not optimal?



Evolution of Aging

General idea goes back to A. Weismann (late
19th C.), P. Medawar and G. Williams (1950s):

Late-acting deleterious mutations are
subject to less stringent selection control
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The nature of age—depengiéﬁ+ mutations




Mutation-Selection Equilibrium

Intuitive single-locus model: Mutant allele arises
at rate v. Selective cost s.

Evolution equation: Let pr be the frequency of
the mutant allele at time t.

d
oticl v — sp; when p; small.

dt

Equilibrium when frequency of mutant is about
v/s (when v/s is small).



Mutation-Selection Equilibrium

Intuitive single-locus model: Mutant allele arises
at rate v. Selective cost s. Equilibrium when
frequency of mutant is v/s.
B. Charlesworth (2001):
constant reproduction rate A
high "background mortality” p
mutation increases mortality by m at age x
constant mutation rate v

cost = Ame M of total reproduction
1%
Expect equilibrium frequency —)\ew°
m



Haldane's principle

"the loss of fitness to the species depends
entirely on the mutation rate and not at all on
the effect of the gene upon fitness of the
individual carrying it ..." -- Haldane (1936)

In our model, overall loss of fitness in population
is (v /s)*s, so does depends only on mutation

rate V.



How do we extend this to multiple sites?
Kimura-Murayama model:

Individual with k mutations has fitness (1-s)X.
Each newborn gets extra Pois( v ) mutations.

Evolution equation: Population defined at
generation t as distribution on number of
mutations. This is always Poisson with mean ps,

satisfying pra=pt(1-S) + V.

Equilibrium when frequency of mutant is v/s.



Hamilton (1966): Study evolution of ageing
by considering "mutations” that raise mortality
at one age.

What is the "cost” of mortality?

Simple model: Cost=lost future reproduction.
Decrease in Net Reproduction Ratio (NRR)

NRR(g / ) Ted “dr,

where fx(g)=fertility at age x, /x(g)=survivorship
to age x, r=population growth rate



Wairt a minute! Isn’t selective
costgiven by Lotka’sr? 5

O
Lotka’s r= unique solution to K= / €$ fx 6_m dil?
0

Answer: No.

Why not!

Answer:The populations in individual mutation
classes are never in demographic equilibrium.

Reference: Wachter, Steinsaltz, Evans “Vital rates from the action of
mutation accumulation”. Big source for this material B. Charlesworth,
Evolution in age-structured populations




Problems:

Mathematical framework for single
locus, applied to infinite-locus setting.

Selective cost of multiple mutations
non-additive.



Problems:

Mathematical framework for single
locus, applied to infinite-locus setting.
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Linear version of Hamilton's formula:

sa) 201
M) @) T T ew (= JE o) fado

Nonlinear version of Hamilton's formula:

>
T[T e (- Jy A + h(y)dy) fda



Improved model (S. Evans, K. Wachter, and DS):
Mutation space M
Mutation rate v = o-finite measure on M

Genotype space G = {integer measures on M}
State of system P = probability on G

Selection cost S : GoR™

State of the population at time t is described by
a probability distribution P+ on genotypes.

%PtF — P, (/ F(-+6m) — F(*)]dV(m)>

— P8 (T (1, 5)



Coupling Time scales

Currently linear (fitness purely

function of individual genotype)

but could substitute a nonlinear
process here.

Selective cost

Determine vital rates

—————————————————————————————————
Faster



A

Fitness
cost
|(pos. real)

Measure v determines Population state
rate of arising iS measure on
genotypes



Quantitative genetics:
Compare and contrast

@ "Genotype" in QG is mortality function
@ Heritable "mutations” are point changes

@ Different ages connected only by covariance
of transmission (only two-point link)

@ Is this the only difference? We're working
to explore the connections



Solution: Define an operator A by

AF = [ [F(- + 0m) — F(:)] dv(m) — S(-)F ().

A is the generator of a sub-Markovian
semigroup I'+. By Feynman-Kac,

I F(g) = [exp ( Jo S(g + Xu — Xo) du) F(g+ Xt — Xo)}



What is the solution? Let X, be a Poisson point
process with intensity v. Then

i [exp (— fg S(X.) du) F(Xt)}
D [exp (— fg 90X du)} |

PtF:

When S is linear ("non-epistatic”), the solution
reduces to a Poisson random measure with

iIntensity | S mt

S(m)
In this case, the solution is unique.

dv(m).



What does this tell us?

1. Series expansion for P+ and limiting
distribution: Let Y,,Y,,....Y, be an increasing

random choice of n mutations (from
distribution v.) Then

| Yoo vODRE [ (S() .- S(Y¥a)) T F(Y,)]
lim P F = :

i S p(M)"E {(S(Yl) o S(Yn))_l}

There is a corresponding finite-time formula.



What does this tell us?

2. Explosion: If B is a set s.t. S(g+b)-S(g)<v(B)
when beB, then the number of mutations in B

goes to infinity.

Implies "wall of death” rather than Gompertz.



Recombination

viability and

viability
selection mating
+ mutation selection

meiosis
with
recombination

Barton-Turelli model




Recombination: Pick a random subset of
mutations A from a distribution r. New
genotype gets A mutations from one
parent, and A° mutations from the other.

If we iterate this process, the genotypes
get completely reshuffled.

End up with a Poisson random measure,
with the same marginal intensities as the
genotype distribution we start with.






Parent 1

Parent 2




Recombination set




Parent 1

Parent 2‘ l . -







Definition: The recombination measure R is the
distribution on subsets of M, defining which
sites come from the same parent. R is
shattering if there is a positive constant «

such that E{v(AN R)?| < 2v(A)? — av(A)?.

Intuitively, shattering means that points get
separated. For example, if mutation space is a
line segment, and R is chosen by splitting at a
single point it's shattering if

P{N([a,b]) = 1} > Cv([a,b]).



Definition: The recombination measure R is the
distribution on subsets of M, defining which
sites come from the same parent. R is
shattering if there is a positive constant «

such that E{v(AN R)?| < 2v(A)? — av(A)?.

Definition: A distribution P on genotypes is
dispersive if there is a constant 5 such that

for any Borel set A,
J 9(A)1g(a)y>21dP(g) < BuP(A)*.



Easy part: Repeated recombination without
mutation or selection (or linear selection)
converges to Poisson distribution.

Theorem: If P is dispersive and R is shattering,
then H%kp ik ;BP‘ b
< (38 +2) (Iv]? v 2alu]) (k+ 1),

This is a process version of Le Cam's Theorem on
convergence to Poisson distribution.

This justifies defining a dynamical system
concentrated only on Poisson random measures.



Since mutation and selection are much
slower, this converges to a process that is
always Poisson.

Let sp(m) be the average cost of mutations
m, averaged over the genotype dist. P.

If P is Poisson, then

sp(m) = [ [S(g+ ) - S(g)]aP(9)




Let o+ be the Poisson intensity at time f.

dpt
dt

= o1 (m)pt

Theorem (Evans, DS, Wachter): If v is finite,

this equation has a unique solution, which
remains finite for all t.



Does this poissonization
really work?

Partial
hdissonization

viability and
viability . fecundity meiosis
selecthn mating _ with
+ mutation selection recombination

Away from Poisson
(if selective cost
oriinear




Main result

Let Qk be the distribution after k rounds of
mutation, selection, and recombination.

If the initial Po is Poisson and R is shattering,
then for any positive T,

nh—{go ?;1’_112 HHpt 5 QLth HWCLS s

LI, is the Poisson measure with intensity o.



Example: Gamma profiles

%(m,x) i / F(in) ¢m(y - a)m—le—qb(y—oz)dy.

mean age of action a+ m/ @
standard deviation v/m /.

1=
= .‘
S
o 20 40 60 80 100
age

Figure 1: Gamma profiles for increments to the hazard function for four
selected values of the mutation index m.




Take background mortality constant A =.05

Gamma parameter ¢=.05

total mutation rate v =.12,.15,.17
Mutations uniform on [0, £ ] where £=7,65.5

Age at first reproduction a=15



equilibrium equilibrium
log hazard survival rate




Example: Polynomial
Fitness cost

“Mutation-selection balance with recombination: Convergence to equilibrium for
polynomial selection costs.”" A Clayton, S Evans. STAM J Applied Math.

S(g) = Z arg’

T
Sum over ordered subsets of mutations.

Theorem: Unique equilibrium if minimum cost
of a mutation bounded away from O. This
equilibrium is globally stable.



General Implication I:
Unraveling

@ Hamilton/Charlesworth setting: Point-mass
mutation effects on mortality, mutation rate
constant across all ages, constant fertility

@ Increasing mortality erases selective
pressure against mortality at ever younger
ages.

@ No equilibrium. In the limit, survivorship at
all ages goes to O.

@ Different from no-recombination case.



Implication 2:
Equilibrium condition
va) = pla) [ (1= OONE, [£,1,(G)] o

Mutations labelled by "age of effect” a, producing
increment to mortality n (a) «x (a,x) at age x.

Classical: k =step function at age a. Define

"remaining life expectancy”

T(a) = / i (- /a b h(y)]dy) /

Then at equilibrium, v(a) = h(a) f T(a)



Implication 3: Haldane's
Principle generalised

Note that the equilibrium formula v(a) = h(a) fT'(a)
doesn't depend on 1.

In general, at equilibrium

/(da) = plda) | (1= e @R B[ £,1,(G) ) do

Integrate both sides. If F is any linear function of
genotypes F(g)= ¢ g, we have the Fourier transform

log

4

R o / {1 — e_gb(a)} dp(a).
M



Implication 3: Haldane's

Principle generalised
/(M) = [ (=108 B, 6a(G)/x(O) 2B [t(G)] o

This is not the total loss of fithess in the
population. Changing the size of mutations
leaves the "aggregate” survivorship unchanged,
not the expected survivorship.

Total loss of fitness is not invariant under
changes in the age-pattern of effects.



Conclusions

@ Evolutionary theory of ageing requires
recognition of nonlinear fitness effects

@ Recombination produces qualitative changes
in behaviour
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