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Exercise 1. Let Pi(t) and Ps(t) be two mutually idependent Poisson pro-
cesses, with rates resp. A\ and \s.
What is the law of the process P(t) = Pi(t) + Py(t) ¢

SoLUTION For any £ > 1, any 0 = tg < t; < .-+ < tg, The two se-
quences (Pl(tl), Pl(tg) — Pl(tl), ey Pl(tk) — Pl(tkfl)) and (P2<t1), Pg(tz) —
Py(ty),..., Pa(ty) — Pa(ty_1)) are mutually independent, and made of mutu-
ally independent r.v.’s, hence in particular the random vectors

Pi(t;) — Pi(tj-1) '
(PQ(tj) - PQ(tj_l)) , 1< <k

are mutually independent, and also P;(¢;) — P (t;_1) and Pa(t;) — Pa(t;—1) are
independent, so that P(¢;) — P(t;_1) is the sum of two independent Poisson
r.v.’s, hence it is a Poisson r.v., with parameter (A, + A\2)(t; —t;_1), and the
increments {P(t;) — P(t;—1), 1 < j <k} are clearly independent. Hence we
have characterized the law of {P(t), t > 0} as that of a Poisson process with
parameter \; + .

Note that one could also consider the jumps times of P(t). Let T} denote
the first jump time of P;(t) and Ty the first jump time of P(t). Clearly the
first jump time of P(¢) is inf(T}}, T3}). It is easy to see that

P(inf(T},T)) > t) = P(T} > t,T) >t)
=P(T! > t)IP(T, > t)

— e*)\ltef)\gt — e*()\1+)\2)t’

where we have used the independence of T} and Tj, hence the first jump of
P(t) follows the exponential law with parameter A; +Ao. However, we should

1



then prove that the further increments are mutually independent, with the
correct distribution, which requires to use the strong Markov property, hence
the other approach is simpler.

Exercise 2. Let P(t) be a rate A Poisson process. What is the behaviour, as
N — o0, of
P(Nt) — ANt 0
VN

SorLuTION If we follow the first step of the proof of Lemma 30 in the Notes,

we get that
P(Nt) — ANt
Xy = ————— = N(0,\t).
" VN (0,44

Let us give an alternative proof. For any r > 0, we consider
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if X ~ N(0, At).

Exercise 3. Consider a SEIRS model with constant population size N, where
the individuals jump from S to E upon contact with an I individual, from E
to I at rate o, from I to R at rate B, from R to S at rate ~y.

a. Write the ODE and the SDE corresponding to this model.

b. Can this model have a stable endemic equilibrium ? Same question in
case v =0 (model SEIR).

SOLUTION a. Let us first write the SDE for the numbers of individuals in the
various compartments, namely S(t), E(t), I(t), R(t). Pi(t), Ps(t), Ps(t), Pa(t)



being mutually independent standard Poisson processes,

S(t) = S(0) — Py (% /0 tS(u)[(u)du) + P (7 /0 t R(u)du) ,
E(t) = E(0) + P, (% /O tS(u)[(u)du) _ P, (a /0 tE(u)dru) ,
I(t) = 1(0) + P, (a /0 tE(u)du) _p (5 /0 t](u)du) |

R(t) = Py (5 /0 t[(u)du) - P, (7 /0 t R(u)dru) .

The equations for the proportions read

sn(t) = sx(0) — N-1P, (cpN / t sN(u)iN(u)du) + NP, (ny /0 t TN(u)du> |

Finally the ODE reads

b If o and v are very large, we are almost in the SIS model. Here Ry = cp/f.
If Ry > 1, the SIS model has a stable endemic equilibrium, and our SEIRS
model also has a stable endemic equilibrium, provided o and ~ are large
enough.

However, if v = 0, we are in the SEIR model, all those who become in-
fected become removed soon or later, and the worst thing that can happen is
that all susceptibles become exposed, but then there will be no more suscep-
tible and the epidemy will die out. There can’t be an endemic equilibrium
in that case.



