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TIME REVERSAL OF DIFFUSIONS' 

BY U. G. HAUSSMANN AND E. PARDOUX 

University of British Columbia and Universit6 de Provence 
It is shown that if a diffusion process, {Xt: 0 < t < 1}, on Rd satisfies 

dXt = b(t, Xt) dt + a(t, Xt) dwt 
then the reversed process, {Xt: 0 < t < 1} where Xt = Xl t , is again a 
diffusion with drift b and diffusion coefficient a, provided some mild condi- 
tions on b, a, and p(, the density of the law of X(, hold. Moreover b and a 
are identified. 

1. Introduction. It is well known that a Markov process remains a Markov 
process under a time reversal. On the other hand, the strong Markov property is 
not necessarily preserved under time reversal [18] so it is of interest to see 
whether the diffusion property is preserved. Specifically if { Xt: 0 < t < 1) is a 
diffusion process in Rt d (hence a Markov process), solution of 
(1.1) dXt = b(t, Xt) dt + a(t, Xt) dwt, 
where { wt: 0 < t < 1) is a standard Brownian motion in l', and if Xt = XI-t is 
the reversed process, we ask whether there exist b, a, and a Brownian motion w 
such that 
(1.2) dXt = b(t, Xt) dt + a(t, Xt) dot 
and we seek to identify b, a, W. 

The problem has been of interest to physicists, most notably Nelson [15], who 
uses formally the reversibility of the diffusion property, as well as to control 
theorists, [1], [13], [16]. In [1] and [16] rather unverifiable conditions on the 
solution of the Fokker-Planck equation were given which guarantee the reversi- 
bility of the diffusion property, and b, a, W were identified. Another approach, 
related to the problem of the enlargement of a filtration (grossissement d'une 
filtration) is used in [4] and [7], but again with unverifiable hypotheses or with 
incomplete proofs. F6llmer [8] has an interesting approach to the problem in the 
non-Markov case (but with a = I), and in an infinite dimensional case. A related 
problem is treated in [19]. Finally, Azema (private communication) has pointed 
out that it seems likely that the reversibility of the diffusion property follows 
under similar hypotheses as ours from the general theory of time reversal of 
Markov processes [2]; see also the work of Kunita and Watanabe referenced in 
[2]. 

In Section 2 we give conditions which insure that X is again a diffusion. The 
hypotheses are rather mild, but are still implicit to the extent that they require a 
certain integrability of the density of Xt. The method of proof uses weak (i.e., 
H1-valued) solutions of the forward and backward Kolmogorov equations for Xt 
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to show that Xt solves the martingale problem corresponding to the generator of 
the solution of (1.2), i.e., the martingale problem (66*, b), (* denotes transpose) 
with a given fixed initial law. 

In Section 3 we give conditions only on b, a, and po, the density of the law of 
X0, which imply the hypotheses made in Section 2, and in the appendix we 
establish two technical lemmata. 

These results were announced in [11]; one can find related results concerning 
the boundedness of b in [10]. 

2. Time reversal. We are given a diffusion process { Xt: 0 < t < 1) on R d 

satisfying the differential equation 

(2.1) dXt = b(t, Xt) dt + a(t, Xt) dwt. 
We make the following hypotheses: 

(A)(i) b: [0, 1] x> R d a: [0, 1] XIP Rd ? R' are Borel measurable 
and satisfy 

(2.2) |bft, x) - bft, y) I + I (t, x) - ca(t, y) |< Kjx - yl, 

I b(t,x) I +Ia(t, x) < K(1 + jxj), 
for some constant K. 

(ii) For almost all t > 0, X(t) has a density p(t, x) such that for all to > 0, 

p E L2(to, 1; ftlp ). 

The notation here is that p E L2(t , 1; HRI) if for any open bounded set (9 

I p(t, X)12 + 2(t, X)p(t, X)xj 1Xdt < 0o, 

where p(t, x)X denotes the partial derivative of p(t, ) in the distribution sense, 
and where we use the convention that repeated indices are summed. The 
condition (A)(i) implies that the unique strong solution, {XtJ, of (2.1) is a Markov 
process with generator 

Ltv(x) = -ai'(t, x)vxx + b'(t, x)vX 

= 2aij(t, X)VX + bi(tX)VX 

if bt(t, x) = bt(t, x) - [atj(t, x)]x /2. We are denoting components by super- 
scripts. (tw: 0 < t < 1) is a standard Brownian motion on Ral and a(t, x) = 
a(t, x)a(t, x)*. Later we shall give some hypotheses involving only b, a, and po 
which imply (A)(ii). 

We define 

bt(t, x) = -b(1 - t, x) 

+p(f - t,x) +[a j(I - tx)pf() - tX)]XJ 
(2.3) 

a-jt x) =aljl-t x), a J(t, x) = a~~ - ,x), 
Ltf(X) =2a-jt fx()+ bi(t, X) fX (x), 
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with the convention that any term involving p -1(t, x) is taken to be zero if 
p(t, x) = 0. We have the following result. 

THEOREM 2.1. Assume (A). Then {Xt: 0 < t < 1} is a Markov diffusion 
process with generator Lt. 

Before proceeding with the proof, we remark that if in (A)(ii) we replace to > 0 
by 0 then X is a diffusion up to and including t = 1. 

PROOF. Since Lt is a second-order partial differential operator and since it is 
already known that X, is a Markov process, we need only show that Lt is its 
generator, or that {Xt: 0 < t < 1} is a solution of the martingale problem 
associated with Lt, i.e., with (a, b). If f, g are two arbitrary functions in C,(R d), 

i.e., Rd '- R infinitely differentiable with compact support, then we need to show 
that for 1 > t > s ? 0 

E f (Xt) - f (Xs) - to f(YO) dO ,: O < r < s) =0 

or, since X is Markovian, 

Et f ( - f (s) - JTLa f (X@) dO Xs} = 0 

or again, since g is arbitrary in Cc?(R d), 

E([f(XY) - f(Xs) - fLof(X6) dO]g(Xs)} = 0 

or, with the change of variable 1 - s -* t, 1 - t -* s (so 1 2 t > s > O), 

(2.4) E([ f (Xt) - f (X8) - |Lo f (Xe) dO]g(Xt)} =0 

if 

Lof(x) = -L1Of(x) 

= 2 ai(0, x)f.tx,(x) 

+ bi(0, x) - p(O, x)-1[a'j(O, x)p(O, x)]x,}fx(x). 

Recall the convention regarding the case p(0, x) = 0, and observe that 

E ft LT f (.XY) I dO = E tj L fi (Xo) I dO < x, 

so that despite the fact that b need not be locally bounded, f (Xt) - JstL9 f (X9) dO 
is integrable. Note also that it suffices to establish (2.4) for almost all t, s. 

Let us write 

(f,g) Ld (x).g(x)dx, 
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where we do not distinguish between the cases of vector and scalar valued f, g. 
We continue with this convention throughout. 

We shall now establish (2.4). Since the density p is assumed to exist, then local 
boundedness of b, a [implied by (A)(i)] and Ito's lemma imply that p satisfies 
the Kolmogorov forward equation 

-= L t*p, t>O0 at 
in a weak sense, i.e., for 4 E CX(Rd) 

(2.5) (p(t), () p(t), Lt), dt 
where p(t) is the function in L2 (Rd) with values p(t, x). Here L* is the formal 
adjoint of Lt. For 0 < s < t < 1 define 

v(s, x) = E{g(Xt)IXS = x} Esxg(Xt) 

so that 

(2.6) Ef (Xs)g(Xt) = Ef (Xs)v(s, Xs) = ( fp(s), v(s)). 

Formally v satisfies the Kolmogorov backward equation 

av 
(2.7) - + Lsv = O < s < t, v(t) = g, 

as 
so that 

( fp(s), v(s)) = ( fp(t), v(t)) - fs (jdfP(O), v(O)) + fp(o)q' (0)) 

= Ef(Xt)g(Xt) - ft( fLop, v(O)) - ( fp(O), Lov) dO 

= Ef(Xt)g(Xt) - ft(p(O)Lef , v(O)) + (L*( fp), v(O)) 
(2.8) 

-( fp(O), Lov(O)) dO 

= Ef(Xt)g(Xt) - tELef(Xo)v(O, X9) dO 

= E [f(Xt) jt|Lf(X)dO]g(Xt) 

and (2.4) is established provided (2.8) is justified. We proceed to do this. 
Since f e Cx(Rd) is fixed, we can choose f1, f2 E C,(D) such that f(x) = 

f1(X)f2(X). We let H = L2(Rd), and define the usual Sobolev spaces H', H-', cf. 
[3], Chapter 2. Observe that if F - L 2 (R d) then Ffi E H, i = 1, 2. Recall that 
s, t are fixed. Now we define the following spaces: 

)F= L2(s, t; H) = L2((s, t) x Rd) 

= L2(s, t; H'), 
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where the overbar denotes closure with respect to the norm 

IIUII ( ( df (0' ) | + |X(X)ua j(, X) U(O, X)x | 1 d O} 

where X is a fixed but arbitrarily chosen function in Cx(IRd) such that x(x) = 1 
for x in supp f 1 U supp f2. 

On XF1 we have the norm 

1/2 

IIu I { (fd|0 Xu ) + I|)+ u(6 XX )1 2l dxd6 

We define Y as the dual of X1l and A` as the dual of X1', so that 
= L2(s, t; H- 1). Observe that we can identify Xr with it dual and hence we 

have 

(2.9) t1 c Y1 C ) A C '1 C )1 

with continuous injections. We use here the fact that Xa is bounded. Let us now 
define a distribution on (s, t) x Rd i.e., a linear functional on C,((s, t) x Rd) 

by 

Af1(p, p) = - 2(u*(O)Vp(6), *(O)v( flp(O))) 
(2.10) 

+ (p(O), b(O) v flo(O)})] dO, 

where p E C?((s, t) x R d), V represents gradient with respect to x, and 4(0) is 
the function x -> (p(0, x) (similarly for a*, b, etc.). Then 

(2.11) Af1(p, p) I < K,1IIXpII - 1I1II1 

where the constant KfI depends on the essential supremum over Es, t] x supp f1 
of Ia*1, Ibi, Ia'I, I f1i, Ivf 1, all of which are finite. 

Since (A)(ii) implies that I IXpI I < X, then A1(p, ) can be extended to be an 
element of "1. 

Next we define 

(2.12) Bf2(V, ) = ]j- 2(a*(O)VV(O) a*(O)V( f2+(O))) 

+ (b(o) Vv(O) f2k(o)) dO 
so again there exists a constant Kf2 such that 

(2.13) |Bf2(V, ) < Kf2IIXVII1IIII 
According to Lemma 2.1 below xv E X1 so that Bf2(v, *) can be extended to be 
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in . The same lemma also gives 

( fp(t), v(t)) -( p(s), v(s)) = Af(p, f2v) -Bf2(v, f1p) 

= fI -(a *Vp, va*Vf ) + (a *vV, pC*Vf) 
S~~~~~~~~~~~ 

(2.14) + (bvf, pv) d 

= f- (a *vp,v*vfa ) - 2 (aif X~jpv) S 

+ (b' - axe) fxl pv) dO 

= f(Lat. p(O)v(O)) dO, 

where for the last equality we have used Lemma A.2 and for the next to last we 
used 

(a*vf, va*VP) + (a*vf, pa*vv) = -(ajfX, pv) - (aiifxtx,I pv) 

which formula can be established with the aid of the smooth approximations Pm 
introduced in the appendix, Lemma A.1. We point out that the convention of 
taking p-'[a pX]. 0 on the set where p vanishes is completely arbitrary. 
Whatever convention is used, the dx d6 integral over A = {(x, 6): p(x, 6) = 0) 
of (Lfpv)(x, 6) is zero. We have thus established (2.8) and hence the theorem. l 

We have made use of the following 

LEMMA 2.1. Assume (A). Then 

(a) xv E X1 
(b) ( fp(t), v(t)) -( fp(s), v(s)) = Af(p, f2v) - Bf2(v, f1p). 

REMARK 2.1. The right side of (b) makes sense because f2v = f2Xv E Xl1 
according to (a); fIp = fxp E X1, so the right side is well defined. The fact 
that the left side makes sense is established in the proof. 

PROOF. We wish to show that xv E X1, or equivalently that v E 
L2(s, t; Ha ). We begin by considering the case where b and a are C1 in x. 
Observe that if (i is the solution of 

(2.15) dt= vb(6, X9) *- A d? + Vaj(O, X9) - Gi dwj, 

where a i is the jth column of a and where et is the ith column of I, 0 < r < t, 
then the global Lipschitz condition on b, a implies 

(2.16) Erxjfi12<K, 0<r<t<1 xE ld. i=1,... d, 
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where the constant Ko depends only on the Lipschitz constant for b, a. Now 

(2.17) 1v~.(r, x) I = IErx{vg(Xt) * C1} I < lIvg11L.K0. 

It follows that VX E L?((s, t) x Rd), and hence xv E X1. 
The case when b, a are not C1 but only globally Lipschitz (in x) is treated by 

regularization. We shall at the same time show that v satisfies the Kolmogorov 
backwards equation (in a weak sense) since this is needed in the proof of (b). Let 
an(x), f3n(t) be regularization kernels, i.e., nonnegative CQ functions whose 
support converges to {0}, with L1 norm equal to 1. Extend b, a to be zero outside 
0 < t < 1. Let bn = b * (a'/3'), a, = a * (a'3') where * denotes convolution. Then 
bi, J, are in Cx with respect to t, x and satisfy (A)(i) uniformly in n. Moreover 
for any N < m, any i, j 

sup {|bi(r, x) - b'(r, x) 12 +I aj(r, x) - aij(r x)12} dr 0. 

This last claim is established as follows: 

| bn(r, x) - b(r, x) I < ff b(r - T, x - - b(r, x) lan(t)/n3(T) dTdt 

< Il + I2 

with 

I,= ff| b(r - T, x- -b(r - Tx) xn(()3Qn(T) dTdt < KfItIa n( ) df 

by the Lipschitz continuity of b which is uniform in the time variable, and with 

I2 =f fb(r- ,x) -b(r x) lan(()#n(T) dTdt 

=f b(r - T, x) - b(r, x) ln/(T) dT. 

The (uniform in t) Lipschitz continuity of b implies that on {IxI < NJ, b(O, x) 
can be approximated uniformly in 0 by b(0, y) for some y E {y1, y2,. .., yM}, a 
fixed finite set depending on the Lipschitz constant and the degree of approxima- 
tion desired. But for each yt 

f b(r - T, yi) - b(r, yi) IZn3(T) dT -> 0 

in L2(O, 1), and also JIIa n( ) dt -> 0 so that the claim is established for b. a is 
treated in the same manner. 

Next let ib be a standard Brownian motion on R d independent of w (we may 
have to enlarge the underlying probability space) and let X n be the solution of 

dX4n = bn(0, Xmn) dO + an(0, Xan) dWo + n1 diy0, 
=n X0 

We set 
vn(r, x) = Erxg(X n). 
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According to a slight variation of [9], Chapter 2, Section 7, Theorem 2, for each 
r,x 

lim Erx{lXtn - Xt1} = 0 
fl - oo 

so that vn(r, x) -> v(r, x). Since we already know that Iv1(r, x)l < I1gIIL', then 
vn - > v in L2(s, t; H1o). On the other hand, (2.17) implies that Vvn lies in a 
bounded set of L2(s, t; L2(D)d) for any bounded domain D, i.e., Vvn lies in a 
weakly compact set. Hence a subsequence, again denoted by {Vvn}, converges 
weakly to a limit in L2(s, t; L2(D)d). Since we already know that Vvn -> Vv in 
the distribution sense, then we can identify the L2 limit as vv. This procedure 
can be done for a sequence of domains .DTRId, so that a diagonalization 
argument yields a subsequence Vn such that vn -> vx weakly in L2(s, t; HI.,), 
and hence v E L2(s, t; H1 ). This establishes (a). 

We will now show that dv-/dt E V- 1 where v- = f2v. This amounts to show- 
ing that for 4 E C??(s, t), the map 

t 
(0)v(0) dO E- H 

(4,' is the derivative of 4) can be extended as a bounded linear map of L2(S, t) 
H- 1, c.f. [3]. We begin by observing that Ito's lemma and the uniqueness of the 
classical solution of 

dv 
da+ LanV = o1 0 < t, 

dO 

v(t) = g, 

where Ln is the generator of X n(hence a uniformly elliptic operator with smooth 
coefficients), imply that n is this solution. Hence for E C?(Rd), v - f2v 
and Bfn defined by (2.12) with aiji bt replaced by an, bn - (a<ngn*)1/2, we have 

(ftol (9) -n(9) d@, 4) = ft4'(0)(Vn(o), 124) da 

v~~~~~ l dO,> 6 4Y Lst fl4) d 8 
= t4(O)(Lovn 124) dO 

= B/2(vn, ,+)n- 2n jt(vv,v( f24'4)) dO. 

Now (2.13), the strong convergence in L2(s, t; H1 ) of (anan*)ij and of bn, and the 
weak convergence of Vvn imply 

(2.18) (jt?(O)0() dO 4') = Bf2(v, 4,), 

VB12(V 4+) I< K/2"11XV11111IIH1II411+L2, 

where II0IIH1 = {(by 4') + (x', x' ))1/2. Hence indeed v- E 9f 2, dv3/dt E- 1, or 
v E W(s, t) in the notation of [3], Chapter 2. 



1196 U. G. HAUSSMANN AND E. PARDOUX 

Let us set f = Ilp. Then (A)(ii) implies that p E X1. Next we show that 
df5/dt E 1. Using (2.5) and p, 4 as above we find 

(Is 0 d(O,) 4') t I(0)(p(O), fjf) dO 

(2.19) = -ft| 0)(P(O),L0(fl4))dO 

=-Af (pi A) 

and 

IAfl(p, A+4) ?< Kf1jjXp - 1 IIHII11111L2 

so that indeed dji/dt E 1. 
To establish (b) we wish to apply an integration by parts formula which is 

valid in W(s, t). This requires us to approximate - by something in W(s, t). Let 
Pm = I. m *j be as given by Lemma A.1 with p replaced by p. Thus Pm E 
L2(s, t; Cl(supp f)) and Pm P in X1. Clearly Pm E A1 and for k Ee Cc*(s, t), 
4 E H1, 

(j| k)(O)Pm(O)dOI4') =f|' (0)(P(O),4Am) dO, 

where Am = f#m * 4' so that IImIlL2 < I fimIILlI4'1L2 = II41L2. But 

(jtI (0)j(O)dO,4'm) ?< 
f' 

(O)P(O) dO 

< II?IIL2|| dt |II4'mIIH' 
dji~ 

since t-If~'(O)j-i(O) dO is a bounded linear map of L2(s, t) -> H 1 because 
dj5/dt E 1. It follows that dpm/dt E 1 and I I dpm/dtI AI < ? I dp-/dt I I j. 
Thus Pm E W(s, t). We proceed to show that dpm/dt -> dji/dt weak * in A- 

(2.20) (f0~did dpj II4'11 M4'IIH' | (dt dt ) |dt 1. 

But 4 E H1 so Am = vim * -/ 4' in H1. Finally since any v E X1 can be written 
as the limit in X1 of v,, of the form Vn = EilA(t)4' with {' Ee H1, and since 
I dpm/dt - dp/dtjj -l < 2jjdp/dtjj -l < x, then (2.20) suffices to establish the 
claim. 

Now 

(Pm(t),(t)) -(pm(S), V(S)) 

(2.21) j( dt PM ) (O)) + (Pm(O), dt(0)d 

by the product rule in W(s, t). Since (see Lemma A.1) Pm(0) -> j(O) in Ll(R d) 
for all 0, and since v3(O) E L?(R d) for all 0, then the left side of (2.21) converges, 
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as m -> o, to 

(P p(t), (0) - (P p(s), v (s)).- 
On the other side, the weak * convergence of dpm/dt gives 

Jidt I) dOS ( - dO 
and 

(2.22) jt(pm ) dO t ) dO 

because on the left side of (2.22) the duality 1, 1 can be replaced by the 
duality X1, ai`, c.f. (2.9), since by (2.18) di3/dt = -Bf2(v, *) E 3Y?. But (2.19) 
implies that dji/dt = Af1(p, *), so that (b) now follows by passing to the limit in 
(2.21). 

This completes the proof of Lemma 2.1 and hence of the theorem. El 

We conclude this section with some remarks. 

REMARK 2.2. Condition (A)(i) was given in global form because it seems to be 
most useful as such, cf. Section 3, but it can be relaxed slightly to local form. We 
can replace (2.2) by: 

(2.23) b, a are locally bounded, and are locally Lipschitz in x uniformly in t. 

However, this does not guarantee that the process {Xt} does not explode so we 
must add 
(2.24) Xt does not explode on [0,1]. 

In addition, we no longer have the bound (2.16) which can, however, be estab- 
lished as follows, at least locally in x, which suffices. 

EIl0I2 < k{1 + [ j EIvb'I2 dp + /OEIVaiiI2 dP]jOEI(PI2dP} 

since 

E fvai. * d | < ?lEEfivaj *. 12 dt. 

By Gronwall's lemma Erx I1t02 < K 2 provided for each compact set B there 
exists a constant c such that 

(2.25) ftErx{ |bt(P Xp) 
2 + I Va j(p, Xp) 

2 dp < < o, 

where c is independent of i and of r E [s, t], x E B. Thus (2.2) can be replaced 
by (2.23), (2.24), (2.25). 

There is one other point in the proof of Lemma 2.1 which must be altered. 
Since b, a hence bn, an may not satisfy a linear bound then Xn may not exist. 
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Instead first alter b, a outside {X IX < m} to be bounded (call them bm, am), and 
proceed with the proof. This can be done so that (2.25) holds uniformly in m. The 
nonexplosion of X implies that vm(O, x) -> v(O, x) pointwise, hence in X, if vm 
is defined in the obvious manner. Since (2.25) holds uniformly in m we have weak 
compactness of Vvm and so for a subsequence we can go to the limit to obtain 
again Lemma 2.1. 

REMARK 2.3. We observe that we had a tradeoff in the foregoing derivation: 
p E X1, I E X1. This seems to be the natural way to proceed because we can 
give simple conditions to imply p E X (or we might say p E - cf. Section 
3, but if we know by some other means that the stronger condition p E X1, 
holds, then we can work with the case where v- E X1 only. The definitions of 
A1, Bf2 have to be changed slightly so as to eliminate b * vv in Bf2 by 
introducing div(bp) in A11. The advantage here is that we can prove by p.d.e. 
methods that v- E X1 rather than introduce the e gs; hence, the global Lipschitz 
condition on b, a is avoided. This is the result announced in [11]. The precise 
hypotheses are: 

(A') b, a are Borel measurable; (2.23) holds; (2.24) holds; the distributional 
derivatives a'j exist as locally bounded functions on [0,1] x Rd for all 
i, j, k, 1; and for almost all t > 0, X(t) has a density p(t) such that for all 
to > 0 

pE L2(to,1; HlC) 

REMARK 2.4. We have now found that for X the drift is b and the diffusion 
is a, but since b need not be locally bounded we should check that Jfob(s, X,) ds 
makes sense, i.e., that b(s, X,) E L1(O, t) for any t < 1. This point is related to 
the integrability of Lf established after (2.4). Let 1n(x) be the characteristic 
function of {IxI < n} and let Tn = inf s ? 0: IXsI ? n}. The nonexplosion of {Xj 
implies that T-, T 1 w.p.1. Now with to = 1 - t, avp E L 2 ([to, 1] x R d), cf. 
(A)(i), implies that 

Ef Ip(s, Xs) [ati(s, X.)p(s, xs)I xj i.(X.) ds < co, 
to 

so that 
1' t T.})- |il 

7nI b( - s, Xj I ds < oo w.p.1, 
n fi to, T.)n 

or after n -> xo, 

b(s, X)ds < so w.p.1. 

REMARK 2.5. To identify a), we set I = - _. Rewriting the equations for X 
and X in Stratonovich form it follows as in [16], Section 3, if a is continuous in t, 
that 

a(t, Xt)od2t = a(t, Xt)odwt +p(t, Xt)1a(t, Xt)[p(t, Xt)a*(j)(t, Xt)]xdt, 
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where o denotes the Stratonovich integral and a *(i) denotes the ]th column of 
a*. If for each (t, x), a(t, x) is 1-1, i.e., ranka(t, x) = 1 < d, then 

et; = wt, - al - J p(s, Xj Y[p(s, Xj)a '(s, Xj)I Ij ds. 

Using a different approach one can show that this equality holds even when a is 
not 1-1, but (C) of Theorem 3.1 below holds, cf. [17]. 

3. Locally integrable densities. We will now give explicit conditions which 
guarantee the implicit condition (A)(ii). First observe that smoothness of p 
implies local boundedness, so that regardless of the law of X0, if 

a 
(B) -a + Lt is hypoelliptic 

then (A)(ii) holds. The conditions of Hbrmander's theorem, which imply (B), can 
be found in [12]. We point out that these conditions include the assumptions that 
b and a be Cx in (t, x). A version of Hdrmander's theorem which does not 
require smoothness in t can be found in [5]. 

Let us now turn to cases where b, a have much less regularity, but where an 
initial density po satisfying some growth conditions is assumed. 

THEOREM 3.1. Assume (A)(i) and 

(C)(i) the law of X0 has a density p0 such that for some X < 0, 

po0EL (Rd ,(1 + IxI2)' d), 

(C)(ii) either 
(a) there exists a > 0 such that a(t, x) 2 aI, or 
(b) at' E L??((0, 1) X R d). 

xtxj 

Then (A)(ii) holds. 

PROOF. We follow Menaldi [14] in introducing the following Sobolev spaces 
with weights. Let 

A0(x) = (1 + IXI2)x/2 A(x) = (1 + IX2)(X1)/2, y(x) = x(j + IX12)l/2, 

6(t, x) = a(t, x)(1 + 1X12) l/2 1i(t, x) = (t, x)(1 + IX12) /2, 

H {v: 130v E L2(Rd)) = L2(Rd, (1 + IxI2)R dx) 
Observe that 6, a^ 66*, b are bounded due to (A)(i). On H introduce the inner 
product 

(u, V)O = (IAou, /3ev) 
with corresponding norm IuIo. We also define X= L2(O, 1; H), 1 = L2(O, 1; H1), 
where v E H1 if lvii A = JJ0vIo + (fl3xv, flvxv) dt1"2 < X, and finally we let X1 
be the closure of Cc((O, 1) X Rd) under 

11u~ = [f| l U2 + (131a*Vu,Ala *Vu)clt] 
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Let e I, d 1 be the dual spaces. Then 
,f1 ,f1c ,~,fIC 31C )r- 

Let us define 

A(t uv) f a a (fi0bufiv P ) 
0 

?X(/36*vu,136*yv) + 2X(bu, yv)o d0 
so that 

A u, v) < kollull - lvii A' 

Moreover for v e C,?((O, 1) x R d) we have 

ft(-Ls*u, v)ocds = u, v). 
0 

Hence A(t, u, *) is an extension of Jot(-L*u, *)O ds to ye- 

Let us consider the case (a). Now y = -y1 and the norms are equivalent, so 
we work only on Ye. Choose b, an such that bn = b, an = a on Ix < n}, 
bn, a.(,)x are in L?([O,1] X Re), an = anan* > aI, and bn, 6,n bounded uni- 
formly in n (since b and a are). Let Pn be the unique solution in L2(O, 1; H1) of 

dp 
dt =ntp t P p(?) = qn , 

where qn E L2(Rd), qn ->Po in H and qn =Po on {IxI < n}. N.b. nLt is the 
generator corresponding to bn, an. Since Po, PoIp 1, v130 e LO" then fOpn E 
L2(0, 1; H1), d(fopj)/dt E L2(0, 1; H-1) so that 

2 Pn( t ) l -q = f(I0nLs*pn(s), I0Pn(s)) ds 

- -An(t, Pn, Pn) 

< -(_ /vPn, I3vPn) + kolPnI ] ds 

< kojt p(s) 'S 

Then 

IPn(t) 1 < Kjq jo < Ko, 

,7 lP.( t ) 12 dt < 
A 12 

Anlo<K 

so that for a subsequence Pn -> P weakly in L2(, 1; Hf) for some p. 
It remains only to show that p(t) is the requisite density. Let 4 e C??(R d) 

and let Xn satisfy 

dXt = bnt t, Xt) dt + an( t Xt) dw, XO - qn dx. 
Then by regularizing bn, an it follows that 

(Pn( t) ) = E4p( Xn)l. 
But we can now let n -- o in this last equation to observe that for almost all t, 
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p(t) is the density of Xt. Thus Xt has a density p(t) which lies in L2(0, 1; H1) c 
L 2(01 1; H1 C). 

Now consider the case (b). With an = a + 1/nI, we obtain 

jPn(t)j- - -An(t p Pn) 

< 1 , 7pn 2 dX dS + l d - 4JJ 1 'VnIk"''1P nO ' 

where we have used the fact that 

A 31,I30pvp) = 1 + x12, 2PVP) 

= (, b 2V(/3op)2 - /3oV/op2) 

= (be2v(/Op)2 - (3Op)2yX(1 + 1X12)-1/2) 

= -(V * b (op)2) - X(Ab* (3Op)2) 

and by hypothesis div b E Lx((O, 1) x R d). Now the result follows as in the case 
(a). [1 

APPENDIX 

We give here two lemmata required above. The first concerns the approxima- 
tion of p, or more precisely of p multiplied by a C??l(R d) function. Let us then in 
fact take p to have support in the open set DO c D with D compact. 

LEMMA A.1. Assume a is Borel measurable, locally Lipschitz with respect to 
x uniformly in t, and locally bounded. If p E X) 1 and supp p c DO c D compact 
then there exists a sequence {Pm} C L2(s, t; C1(D)) such thatpm -p p in ft1 and 
Pm(0) - 6p(O) in Ll(R d) if p(O) E L'(R) 

PROOF. Let yE G C1(R), Jy(x) dx = 1, supp y e [-1,1], y(x) ? 0. Let 
d 

Am(Y) = H my(myi), y E Rd 
i=1 

Pm = m * P. 

Then 
VPm(t, X) = Vm * P 

and Pm --> p in L2(s, t; H) since p lies in this space. 
We shall require a weak compactness argument so we begin by showing that 

a {*Vpm} is bounded in L2(s, t; L2(D)). In fact 

J*(t, x)Vpm(t, x) = fa*(t, x)V/m(X - y)p(t, y) dy 

= fa*(t, y)v/m(x - y)p(t, y) dy + Rm(t, x) 

= /im*V(a *p)(t,x) + Rm(tx)- 
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But 

I 1Pm * V( *P) IIL2(S, t;H) < IfimILl(R d)117 (a P) 1 L2(s, t; H) < x 
since v(a*p) = a*vp + (V a*)p E L2(s, t; L2(D)) for each component. Note 
that in the definition of 11 * 11 we take x(x) = 1 on D0, and that we have used 
the local Lipschitz property of a*. As for Rm 

(1) IRm(t, x) < Kfix-yjiV/3m(x-y) jp(y) dy. 

If we set am(x) = lxi iV/3m(x)i, &m(x) = am(x)/iiamiiLl(Rd), then 

0 < am(x) < ixiVd2mdl 

and 

suppam = {x: lxil ? m-1 V i) c {x: lxi < V4/m} 

so that 

(2) iiamiiLl(Rd) ? Vi2md?1Kdf/mrddr Kd. 

It follows that &m is again a regularization kernel and by (1) 

(3) Rm(t, x) I< K& * p(x) Kp(x) 
iiamiil(R d) 

- 
Km*()-Kpx 

in L2(s, t; H). (2) and (3) imply that {Rm} is bounded in L2(S, t; D), and hence 
that ta *Vpm} is bounded. 

Since a* > a *vp in the sense of distribution, then the weak compactness 
(i.e., boundedness) implies that the convergence is weak in L2(S, t; H). Since this 
space is reflexive then for each m there exist constants Aim ?0, i =1, ... Im < 0?, 
such that 

Im 

E Ai = 1, 
i=m 

Im 

E imaJ*VpA -- UJ*Vp 
i=m 

strongly in L2(S, t; H), cf. [6], page 439, Section 43. If 
Im 

PM = Eimpi 
i=m 

then a *Vpm a* *p strongly and 
Im 

11Pm P11L 2(S' t; H) < StEIfi 
- P1L 2(S' t; H) 

t=m 

< sup1|| Pi-i L2(S, t; H) 
i>m 

0. 

Thus Pm -- p in Y1. Clearly Pm E L2(S, t; C1(D)). 
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It remains to show that Pm(8) -- p(O) in Ll(R d ). But if p(O, -) is in Ll(Rd), 
then f (m * P() --p(0) in Ll(R d), where f jm = i2mpifi. ? 

Let us now turn to the second result. We wish to show that a*Vp = 0 a.e. on 
the set A = {(t, x): p(t, x) = O}. This follows because on A, p is a minimum so 
that any (directional) derivative which may exist must be zero a.e. But the 
columns of a *vp are directional derivatives, and they exist since p E X1-except 
we do not know that these derivatives in the distributional sense are necessarily 
derivatives in the absolutely continuous sense. We show this in the next lemma. 
To minimize the regularity assumptions we use a certain localization. 

LEMMA A.2. Assume a is as in Lemma A.1 and assume (A)(ii). Then 
a*(t, x)Vp(t, x) = 0 a.e. on A = {(t, x): p(t, x) = O}. 

PROOF. We need only give the proof for the case when a consists of only one 
column, and then it suffices to show that for each fixed t E (0,1], each compact 
set K C Rd, and each n, a(t, x)* vp(t, x) = 0 a.e. (x) on 

Kn = f x: |a(x) 1 > n- 1, p(t, x) = O} . 
Let us suppress the argument t. 

We let (,(x) be the unique solution of 

(4) ds(X) = 0(4(xS)), U(X) = X, ds 
which exists locally by the Lipschitz continuity. From the compactness of Kn and 
the fact that la(x)l ? n-1 on Kn, it follows that there exists a finite covering of 
Kn by domains Dnt with the properties that for each Dn 

(i) there exists a domain Dhn D Dn, such that the distance between Dnt and the 
complement of Dnt is positive, 

(ii) there exists a unit vector v and a constant a > 0 such that 
v * a(x) ? a, VX De 

(iii) there exists a hyperplane A orthogonal to v such that 

D hn=Dnt n U U U~x) . 
x e bnn A s eR 

It now suffices to prove that a * Vp = 0 a.e. on AD = {x e D: p(x) = 0} with 
D = Dn, for any i, n. By (ii) and the local boundedness of a we can renormalize 
a(x) such that v * a(x) = 1 on D -Dn. This does not change the curve (, only its 
parameterization, so that (iii) is preserved under the renormalization (as are the 
properties of a). 

On the Borel sets of D, we define a measure 

tB) = jdy f__1B(S(O, y)) ds 

after changing variables so that A = {0} x A', A' c Rd-i. We shall show that p 
is equivalent to Lebesgue measure. If (D is the flow of the differential equation in 
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(4), then for any B' c A' define 

^s(Bf) = | dy, 
ji~(B')is (~{s} XB') 

where r is the projection of A on A'. The Lipschitz continuity of a and the 
boundedness of D imply that there exists k such that 

a 0 < k-1 < -y(0, y) ? k 
ay 

for all s, y such that ,(s( y) E D; hence jis is equivalent to Lebesgue measure, 
uniformly in such s. 

Since 

p(B) = f S(B') ds 

for B of the form [a, b] x B', then the equivalence of I and Lebesgue measure 
follows. 

Let 4 E CcO(Rd), 4(x) = 1 on D, A(x) = 0 off D. Replacing p by 4p we 
obtain a function (again called p) of compact support equal to the original p on 
D. We shall now establish 

(5) p(~(0(, y)) = f (a vp)(O(O, y)) dO 
00 

a.e. (s, y). Since a * Vp is in L2(D, M), the right side of (5) is well defined a.e. y. 
Since (5) is true for Pm as given by Lemma A.1 then the result follows on passing 
to the limit. 

Finally a.e. y, s -- pts(O, y)) is absolutely continuous, hence a.e. differentia- 
ble, and 

d 
(6) dS(S? y)) = (a. *vp)((S(O, y)), (S, y)Hi a.e. 
But on AD, p is a minimum, so that the left side of (6) is zero a.e. The conclusion 
follows by (6) and the equivalence of p and Lebesgue measure. E 
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