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242 U. G.  HAUSSMANN AND E. PARDOUX 

1. INTRODUCTION 

Since recent results (cf. Hazewinkel and Marcus [5], Chaleyat- 
Maurel and Michel [4], Ocone [12], among others) tend to indicate 
that there are very few non-linear filtering problems with optimal 
filters which depend only on a finite number of statistics, those classes 
of problems which admit such computable finite dimensional filters 
are very important in practice since they might be implemented 
without further approximation. 

Essentially three such classes have been discovered to date, and 
they are all modifications of the classical linear-Gaussian filtering 
problem solved by Kalman and Bucy [8]: 

where {X,:tzO) is the unobserved process which is to be filtered, 
{I ; : t lO) is the observed process, A, B, H, L are matrices, possibly 
depending on t ,  {&:tzO) is a standard multidimensional Wiener 
process independent of the Gaussian random vector X,, while Yo =O. 

The first class is the "conditionally Gaussian" problem of Liptser 
and Shiryayev [lo], where A, B, H, L in (1.1) are allowed at each 
time t to depend on the past of { Y , )  up to time t. 

The second class if the "BeneS problem", cf. BeneS [I, 21, in which 
the linear drift AX, is replaced by f(X,) where f satisfies a parti- 
cular condition, and in addition the signal (X,} and the observation 
noise are uncorrelated, i.e. B = (B,, 0), L= (0, L,). 

The last class consists of problems with the linear dynamics (1.1), 
but with non-Gaussian initial condition. It was studied by BeneS and 
Karatzas [3] and by Makowski [ I l l ,  again in the uncorrelated case. 

It has become apparent very recently that one can obtain new 
classes of explicitly solvable non-linear filtering problems by mixing 
the above cases. Kolodziej and Mohler [9] have considered "con- 
ditionally linear" filtering problems with non-Gaussian initial con- 
dition (see also a particular case of this situation in Rishel [13]) and 
Shukhman [14] has treated the "BeneS problem" with non-Gaussian 
initial condition. Note that Shukhman [14] as well as Zeitouni and 
Brobrovsky [I61 have generalized the "BeneS problem" to include 
the original Kalman-Bucy filter as a special case. 
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ALMOST LINEAR FILTERING 243 

The aim of our work is to generalize and to give a unified 
treatment of all of the above-mentioned results. In Section 2 we 
generalize the conditionally Gaussian result of Liptser and Shiryayev 
[lo]. In Section 3 we add to the system considered in the previous 
section a non-linear drift of the "Benei type", and in Section 4 we 
allow in addition a non-Gaussian initial condition. 

The class of problem which we can treat is rather particular and 
not as general as this introduction might lead one to think; in 
particular, as noted already by Zeitouni and Bobrovsky [I61 and by 
Shukhman [14], in the multidimensional case it does not seem 
possible to add an arbitrary linear drift to a non-linear one satisfying 
BeneS' condition and to obtain an explicit finite dimensional filter. 
Nevertheless we do generalize all previous work known to us, in 
particular because we allow correlation between the signal {X,) and 
the observation noise. The essential tool which permits us to do so is 
our generalized conditionally Gaussian filtering theorem, where in 
the (X,) dynamics we allow a term consisting of a linear function of 
X, multiplied by dI;. Our results do include for instance the 
conditionally linear filtering problem with non-Gaussian initial con- 
dition and with correlation between the signal {Xi) and the obser- 
vation noise. 

2. CONDITIONAL GAUSSIAN PROCESSES 

In this section we show under reasonable hypotheses on the data 
that if {X,), {I.;) are two processes satisfying 

dX, = [A(& Y)X, + a(t, Y)] dt + B(t, Y) d w  

+ DG'(~, Y)X, +gJ(t, Y)] d Yj, 
j =  1 

d I; = [H( t ,  Y)X, + h(t, Y)] dt + d U,, Yo = 0, (2.2) 

and Xo  is Gaussian, then X, is conditionally Gaussian given Y,, the 
a-algebra generated by {Y,:s l t ) .  We also compute equations satis- 
fied by the conditional mean ~ ,EE{X,IY, )  and by the conditional 
covariance R, r E{(x, - m , ) ( ~ ,  - m,)* 1 g,). Note that * denotes 
transpose. 

D
ow

nl
oa

de
d 

by
 [

A
ix

-M
ar

se
ill

e 
U

ni
ve

rs
ité

] 
at

 0
2:

01
 1

0 
A

pr
il 

20
13

 



244 U. G. HAUSSMANN AND E. PARDOUX 

Let us be more precise. We assume: 

(A,) {X,: t 2 0) is an adapted as .  continuous RN-valued process, 
{E;:t 2 0 )  is an adapted, a s ,  continuous Rd-valued process and 
{ w: t 2 0), {U,: t 2 0} are given independent RM and Rd-valued 
(respectively) standard Wiener processes on a given filtered 
probability space ( R , F ,  {Ft},Lo, P), such that (2.1) and (2.2) 
hold as .  Moreover X, is Gaussian with distribution 
Nmo, R0). 

We write C(Rt,Rd) for the space of continuous functions 
[0, co)+Rd under the topology of uniform convergence on compact 
sets. Let {%,},2, denote the canonical Bore1 filtration on C(R+; Rd). 

(A,) A, a, B, ~ j ,  gj, H ,  h are all defined on R+ x C(Rt; Rd) and 
assume values (respectively) in RN Q RN, RN, RN Q RM, 
R N Q  RN, RN, Rd x RN, Rd. Moreover they are g, progressively 
measurable. 

(A,) For each T in Rt ,  EA,' = 1 where 

(A,) If a is any one of I A ~ ' ,  lal, I B I ' ,  I G J / ' ,  ] H I ,  
Lf,,(R+) for each y in C(R+; RN) where 1 .  

AT = exp j [H(s ,  Y)X, + h(s, Y)] * d Y, { : 

hi, then a(., y) is in 
denotes the norm 

It follows that ETAT= El  = 1, where ET is expectation under P T  and 
PT is defined by 

in the appropriate space. 

Remark 2.1 One might consider replacing dU, by L(t, Y)dU, in 
(2.2). However to make the method work, L(t, Y) would have to be 
non-singular and Lipschitz in Y; But in that case no generality is 
gained for we could define 
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ALMOST LINEAR FILTERING 245 

Then y satisfies an  equation of the form (2.2). Moreover from the 
definition of 7 we see that @, c tYr, and that 

The Lipschitz continuity of L implies that Y is a strong solution of 
this equation, hence tYt /,c @, and we conclude that @, = g,. 

Remark 2.2 We might take Yo random and replace the last part 
of (A,) by: 

The conditional law of X o  given go is Gaussian, N(mo(Yo), R,(Yo)). 
This extension is trivial and we leave it to the reader. 

Remark 2.3 Putting dY in (2.1) is just a convenient way of 
expressing correlation between the noise in (2.1) and (2.2). In this 
form it is obvious that (2.1) is conditionally linear given I: 
Moreover, even if no such term is present in the model of the next 
two sections, the method of solution will reduce the original system 
to one of the form (2.1), (2.2) with non-zero G and g. 

Let us now give two examples where the condition (A,) is 
satisfied. 

Example 2.1 Assume (A,)-(A,) and 

and for all T < oo 

where a is any one of IH,~, lhl or any of the coefficients appearing in 
the equation for X'. Now the equations for (XI, Y) can be rewritten 
as 
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246 U. G.  HAUSSMANN AND E. PARDOUX 

where H l j  is the jth column of HI .  They have drift with linear 
growth and bounded diffusion coefficients. Because of the special 
form of H, A;' is determined solely by (XI, Y), so that Corollary 
7.2.2 of Kallianpur [7] implies that (A,) holds. 

Example 2.2 Assume (A,)+A,) and 

and that all coefficients in the equation for X' are constant in the 
second variable (Y). Then X' does not explode. Assume also that 
(HI, Ihl and the coefficients in the equation for X 2  satisfy (2.4). Let 
Xt̂ : be the a-algebra generated by the past of X' and let W: be 
that generated by W1. Now { X : )  is only driven by {W:) 
so X c W v X and hence {( W:, U,):O 5 t 5 T} (respectively 
{W:, I.;):OSt5 T)) remains a Wiener process on (II, F, P) (respec- 
tively on ( R , F ,  P,)) given 3;. But given Xi, the equations for 
(X2, Y) have affine drift and bounded diffusion coefficients as., so for 
each sample path of X' we have 

and hence (A,) holds by integrating out X'. 
Observe that this example includes the case when X1 is a 

parameter, i.e. 

We will give now the main result of this section. 

THEOREM 2.1 Assume (Al)+A,). Then for any T <  cc the conditional 
distribution of X, given C?JT is Gaussian. 

Proof We need to show that for any z in RN 
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ALMOST LINEAR FILTERING 247 

where cr and p are YT measurable random variables assuming values 
in RN and in the N x N symmetric positive semi-definite matrices 
respectively. It will be easier to work with P ,  so observe that 

and hence we need to show that 

for some gT measurable scalar random variable k. The left side of 
(2.6) is ~,(tJg,)  with 

T 
[H(s,  Y ) X ,  + h(s, Y ) ]  * d Y, 

Now let @(t) be the unique strong matrix valued solution of 

It exists on ( R , 9 , P T )  by the result of Jacod [6] ,  and is invertible 
since 

det @(t) = det O(0) exp A(s, Y )  -4 C GJ(s, Y ) 2  ds 
j I 

STOCH G 
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248 U. G. HAUSSMANN AND E. PARDOUX 

where trA is the trace of A and det@ is the determinant of 0. It 
follows that 

If we define 

then we have 

xt=@(t){qt+~r) .  

If we substitute this expression for Xt into 5 we see that we can 
factor ( into two parts, where 5 ,  is Y, measurable. 
Specifically if 

Q(s) = @(s)*H(s, Y)*H(s, Y)@(s) 

then 
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ALMOST LINEAR FILTERING 

Upon substituting for q in this last expression (except in the term 
which is quadratic in q), interchanging the order of integration d w  
dY in j(H@q)* dY which is permitted since W and Y are indepen- 
dent under Po (hence the integrands remain non-anticipating), and 
interchanging the order of integration dW ds, we obtain 

where al(T), a2(lT;s) are YT measurable random vectors. We can 
now apply Lemma 1 of the Appendix to obtain 
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250 U. G. HAUSSMANN AND E. PARDOUX 

where the 2N + 1 dimensional random vector b ( T )  is 

Hence 

where j 2 ( T )  = ( I ,  l,O)P,(T)(I, I ,  0)* 2 0 and 1 is the N x N identity 
matrix. Since 9 ,  has the form 

then the result follows. 0 

COROLLARY 2.1 AS functions of 7; a and P are a s .  locally bounded. 

Proof It is readily seen that all the a's and F s  in the above proof 
are continuous in T hence the result follows. 0 

Remark 2.4 We have only shown that X ,  given Y, is Gaussian 
since this is all that we require, but the same proof shows that the 
distribution of Xtl, X,2, . . . , X," given YT, t ,  < t ,  < . < t ,  < T, is 
Gaussian. 

Next we wish to compute the conditional mean m(t) and con- 
ditional covariance R(t)  of X,-they are of course a(t)  and 2P(t) of 
Theorem 2.1, but we want to obtain recursive formulae for m and R, 
i.e, we want to derive equations driven by the observation ): which 
are satisfied by m and R.  To do so we employ the Kushner- 
Stratonovich equation (cf. Liptser and Shiryayev [ lo ,  Theorem 8.11). 
However we must add new hypotheses: 

(A,) For each T < co, a(t, Y(w))  is in L2((0, T) x 0, dt x dP) where a 
is any one of 
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ALMOST LINEAR FILTERING 25 1 

(A,) For each T in R+ J H ( ~ ,  Y(w))X,(w)+h(t,  ~ ( o ) ) ]  is in 
LZ([O, T I  x R, dt x dP). 

Note that (A,) holds for our two examples if all coefficients satisfy 
(2.4). Moreover (A,)  can easily be guaranteed by requiring that all 
the terms appearing there satisfy (2.4). We write Hj(t, Y )  for the jth 
row of H(t ,  Y). 

THEOREM 2.2 Assume (A,)-(A,). Then the equations 

d 6 ,  = A(t, Y ) 6 ,  + a(t, Y )  - R , H ( ~ ,  Y)*[H(t ,  Y)&+ h(t, Y ) ]  { 

with 6,=m0, R,=R,, cf. (A,) ,  have an a s .  continuous unique strong 
solution which is a modification of(m,, R,). 

Remark 2.5 Since the pair (X , ,  Y) is not Gaussian in general it is 
not surprising that the conditional covariance matrix R, is random, 
just as in the conditionally Gaussian case treated by Liptser and 
Shiryayev [ lo ,  Chapter 121; however in contradistinction to that 
case, now (2.8) contains the stochastic differential dY On the other 
hand, a feature of the Kalman-Bucy filter which is preserved is the 
fact that (2.8) does not involve 6,. 0 

The proof of the theorem is divided into several lemmas. First we 
show that (2.7), (2.8) have a unique solution: so if m, R satisfy these 
equations then this fact identifies them uniquely. Then in Lemma 2.2 

D
ow

nl
oa

de
d 

by
 [

A
ix

-M
ar

se
ill

e 
U

ni
ve

rs
ité

] 
at

 0
2:

01
 1

0 
A

pr
il 

20
13

 



252 U. G.  HAUSSMANN AND E. PARDOUX 

we apply non-linear filtering theory to find the Kushner- 
Stratonovich equation satisfied by ~{$(x,) lq ,}  when $ is a smooth 
function of compact support. Next a limiting argument is used to 
obtain this equation for the cases $(x) = xi, $(x) = xixj, cf. (2.15). The 
last step, which is left to the reader, is to use the fact that for 
Gaussian random variables (and by Theorem 2.1 we know that X, is 
conditionally Gaussian) the third moments which appear in (2.15) 
can be expressed in terms of the first two moments. Now algebraic 
manipulation allows (2.15) to be reduced to (2.7), (2.8). 

LEMMA 2.1 Assume (A,)  and (A,). Then (2.7), (2.8) have a unique 
strong solution {(f it ,  8,): t 2 0 ) .  

Proof Fix M < w .  In Eq. (2.8) replace the term R , H * H ~ ,  for 
(I?,(> M by R,H*HR,M/I~,~. Now a result of Jacod [6] allows us to 
conclude that the modified Eq. (2.8) has a unique solution. Letting 
M-+m we find that (2.8) has a unique strong solution on [O,z,) 
where z, is the explosion time of 8,. We shall see shortly that this 
solution is the conditional covariance of X,, hence z,= + co by 
Corollary 2.1. 

Now the result of Jacod [6] can be applied to (2.7) to conclude 
again that a unique strong solution exists on [0, a). 

Let C(RN) denote the continuous real valued functions defined on 
RN and let Ci(RN) be the subset of those functions which have 
compact support and which are twice continuously differentiable. 
Note that if q5 is in C(RN) and if there exist constants c and k such 
that 

then by Theorem 2.1 we have 

and we can define 6,: = E($(X,)JtV,}. This is also true if for each x, 
$(x)=$,(x) is a CY, measurable random variable. The constant c in 
(2.9) may now depend on Y 

LEMMA 2.2 Assume (A,), (A,). If 4 E C2(RN) then 

D
ow

nl
oa

de
d 

by
 [

A
ix

-M
ar

se
ill

e 
U

ni
ve

rs
ité

] 
at

 0
2:

01
 1

0 
A

pr
il 

20
13

 



ALMOST LINEAR FILTERING 

where pj(x) =x i  Hji(t ,  Y )x i  + hj(t, Y )  and 

Proof The result is an immediate consequence of Liptser and 
Shiryayev [ l o ,  Theorem 8.11, since + ( X I )  is a bounded semimartingale 
and since (A, ) ,  (A,) and the fact that + has compact support imply 
that the coefficients of dt in the semimartingale decomposition of 
+ ( X I )  and of belong to L2((0, T) x Q, dt x dP)  for all T <  co. 

We complete the proof of Theorem 2.2 with the following lemma. 

LEMMA 2.3 Assume (A , ) - (A , ) .  A modification of (m,, R,) satisfies 
(2.7), (2.8). 

Proof For i ,  j = 1,2,  . . . , N introduce sequences (4"') c Cz(IWN), 
Wij) 4 ( R N )  such that I + n i ( ~ ) I  5 1x1, I + : ' ( x ) ~  r 1x1, 5 1x1, 
x x 2 ,  x 2 ,  I+?; (x ) l~ lxI~  and @'(x)-,xi, 
( b " ' J ( ~ ) + ~ i ~ j  as n + m .  According to Lemma 2.2 D
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254 U. G.  HAUSSMANN AND E. PARDOUX 

which we rewrite as 

where each of an', a;', anij, P",j is a finite sum of terms of the form 
M(s, Y ) P ( ~ , ) $ , "  with M{CY8}-progressively measurable, M in 
L1((O, T) x Q, d t  x dP) for all T <  cc if the term occurs in a, M in 
L2((0, T) x Q, d t  x dP) for all T <  m if it occurs in 8, and with P(x) a 
monomial of order 0, 1 or 2 in the xi. Moreover 

We wish to pass to the limit in (2.10) as n-rm. 
Let us define a sequence of gt-stopping times 

with the convention that z,(o) = + cc if sup,,, - E { I ~ , ( ~ l q ~ } ( w )  <m. It 
follows from Theorem 2.1 that 

for some continuous function F, and hence from Corollary 2.1 that 
z,+cc as .  as m + a .  

Now from (2.10) we obtain 

We shall first pass to the limit in (2.12) as n+m. Note that by (2.11) 
and Holder's inequality 
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Now (2.11) and (2.14) allow us to apply the dominated convergence 
theorem for conditional expectations to conclude that as n+cc 

$:l(ssr,j+$sl(ssr,) a.s.3 a.e. 

But this fact and (2.13) now imply similarly that 

in L1((O,t) x R ,  d t x d P )  if the term occurs in an an, and in 
L2((0, t )  x a, dt x dP)  if it occurs in a P", Hence we can pass to the 
limit in (2.12). 

We can now pass to the limit as m+oo to obtain 

A Note that again ( a j ) , ,  etc. are all functions of a(t) ,  p(t) and 
hence are locally bounded in t  as.  by Corollary 2.1, hence the 
passage to the limit as m+oo is justified by the fact that a.s. M(., Y) 
is in L;,,(R+) or in L,2,,(Rf) as the case may be. 
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256 U. G. HAUSSMANN AND E. PARDOUX 

Some tedious but elementary algebra allows us to deduce from 
(2.15) that (m,, RJ satisfy (2.7), (2.8). N o t e 2 t  since the conditional 
law of X, given Y, is Gaussian then ( X ~ X ~ X ~ ) ~  = Rij(-%Jt + Rjk(%), + 
R k i ( 2 j ) l + ( a i ) f ( ~ j ) t ( R k ) r  

3. SYSTEMS WITH "BENES" TYPE NON-LINEARITIES 

In the preceding section we saw that the conditional distribution of 
X, given Yl is Gaussian, and we computed the two sufficient 
statistics m,,R,.  This was done under the assumption that (X,, Y,) 
satisfied (2.1), (2.2), specifically that, given I: the drift of X, is linear 
in X,. We shall now relax this linearity hypothesis to a certain 
extent, following the ideas of BeneS [I] and Shukhman [14]: in 
essence we shall transform the non-linear problem into one to which 
Theorems 2.1 and 2.2 can be applied. Since we cannot allow 
correlation between the observation noise and the noise in that part 
of the signal which involves the non-linear dynamics, we split the 
signal X, into two parts, X: and X:. We assume 

On some underlying filtered space (a, F ,  {F,), P), (X,: t 2 0) is 
an adapted, as .  continuous RN-valued process, {I;:tZO) is an 
adapted, a s ,  continuous Rd-valued process, {W,:tzO), 
{V:t 101,  (U,:  t 2 0) are independent N , ,  M and d dimensional 
(respectively) standard Wiener processes such that X: = 
(Xt*, X:*), X: E RN1, Xf2 E RN2, and 

d ~ :  = [A(t, Y)X: + a(t, Y) + f (t ,  K x:)] dt + B(t, Y) d fl (3.1) 

dx: = [C(t, Y)X, + c(t, Y)] dt + D(t, Y) dV 

+ C [Gi(t, Y)X, + gi(t, Y)] d ~f 
i 

(3.2) 

dY, = [H(t, Y)X, + h(t, Y)] dt + dU,, Yo = 0. (3.3) 

A, a, B, C, c, D, Gi, gi, H, h are all defined on R+ x C(R+; Rd) 
and are progressively measurable and bounded, and f is 
defined on R+ x C(R+; Rd) x RN1 and is B Q BN1 measurable 
(9 is the a-algebra of progressively measurable subsets of 
Rf x C(Rf; Rd) and BN1 is the Bore1 a-algebra on RN1). 
Moreover f (., y, x) is in L:,,(R +)  for each (y, x). 
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ALMOST LINEAR FILTERING 257 

(B,) There exists a Y Q ~ ? ~ '  measurable function @: 
R + x C ( R + ;  Rd) x RN1 + R  which is C1s2 in ( t ,  x )  for each y, 
such that for each y, x ,  @(t, y, x )  = @(O, y, x )  +So &(s, y, x )  ds ,  
and that (1  +/XI)-'@,(t, y, x)  is bounded, and there exist 
progressively measurable, bounded functions Z, T, 6 defined 
on R+ x C ( R f ;  Rd) with values in R N ' O R N 1 ,  RN1, R with X 
symmetric such that ( 1  + lxl)-'@,(t, y, x )  is bounded and such 
that for all ( t ,  y ,x)  

where (@x)i = 8 0 f l x i ,  ( @ x x ) i j =  a2@/8xi axj  and 6 = 2@/dt. Note 
that since @ is adapted then @(O, y, x )  is a function of x only 
which we indicate by @,(x). 

The main idea is to perform a Girsanov transformation which 
changes f into BB*JX1  where J is a matrix valued process to be 
defined below. Unfortunately in doing so we introduce a Radon- 
Nikodym density into the conditional expectation, but the hypo- 
thesis (B,) allows us to express this density as a function of a new 
variable X3 such that ( X 1 ,  X2, X3) satisfy a conditionally linear 
system to which the results of Section 2 can be applied. 

In the following examples (B,) is satisfied. 

Example 3.1 Let B = I and a,(t, y), u,(t, y) be progressively 
measurable functions mapping R+ x C ( R + ;  Rd) into R, which are 
continuously differentiable in t in the sense that a,(t,y)= 
ai(O, y) +So i i (s ,  y) ds, oii(., y) continuous, and are bounded on 
[0, T ]  x C ( R + ;  [ w ~ )  for any T <  a, such that a2(t, y)a,(t, y) > O  for all 
( t ,  y). Let p,, p,, p2 be similarly measurable, differentiable and 
bounded with p, assuming values in R, p ,  in RN1 and p2 in 
RN1 Q RN1. We suppose that they satisfy 
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Now suppose 

where 

The above example is a generalization of those found in [I, 2) where 
f(x)=tanhx, A=O, a=O so that a l=a2=1 ,  p2=po=0, p1=1. 

Example 3.2 Suppose B = I and 

w ,  Y ,  x) =lnCM(t, Y ,  x) + k(t, y)l 

where (1 + l x J ) - l ( ~ , ( I ~ + k l - l  is bounded and 

2~+2k+V~M+2M:(Ax+a)=O,  

(for example if M is a suitable quadratic in x), then (B,) holds with 
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ALMOST LINEAR FILTERING 259 

f (t, Y, 4 = M A 4  Y, x ) [ M ( t ,  Y, x) + k(t ,  y ) l -  ' 
and Z=0,  r = 0 ,  6=O. 

We return to the general case. For y in C ( R t ;  Rd) let J(t ,  Y )  
denote the unique symmetric, positive semi-definite solution of 

Let us partition C = ( C 1  C 2 )  corresponding to X 1 ,  X 2 ,  and similarly 
Gj=(G', a). Also we write Hi for the ith row of HI. Now let 

and write 

R=(o H2 0). We write p( . ;  m, R) for the distribution of a Gaussian 
random Nf 1 dimensional vector, mean m and covariance R. Now 
we have 

THEOREM 3.1 Assume (Bl)-(B,)  and one of 

i) H,=O, 

ii) GJ(t,y)=O,Vt, y, j=1,  ..., d, 
iii) a, A,  B,f, J are constant in the second variable y, and Gj, =O. 
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260 U. G. HAUSSMANN AND E. PARDOUX 

Then an unnormalized conditional distribution of X ,  given gT and 
X o  = xo is given by 

exp{@(T l: x l ) - i x l * ~ ( ~  Y ) x l  +x3)p(dx1dx2dx3; m,, R,) 
s x a  

where S is a Bore1 set in RN, x* =(x l* ,  x2*, x3)  and m, R satisfy 

dm, = A(t, Y)m, + ii(t, Y )  - R,R(t, y )*[R( t ,  Y)mt  + h(t, Y ) ]  1 
+ C Gj(t, y ) ~ , R j ( t ,  Y)* dt 

j 1 
+ C {Gj(t, Y)m,  +i j ( t ,  Y )  + R,Rj(t, Y )*}  d Y{ ,  

j 

Observe that the above equations for m, R are just (2.7), (2.8) for 
the process 2. 

Proof The first step is to change the non-linearity f into a linear 
term using a Girsanov transformation. We let 
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Under our hypotheses we may define PT by dPT=A;'  dP as a 
probability measure, and for some independent standard Wiener 
processes R I! 0 on (R, 9, {&}ts  T ,  pT) X 1  and Y satisfy 

dI :  = {H,(t, Y )X:  + h(t, Y ) ]  dt + d o , ,  t 5 T (3.9) 

Note that 

d D , = d ~ , +  H , X :  dt. 

The next step is to manipulate AT so that it can be written as a 
functional of the process x. From (B,) and Itb's formula (for each 
fixed sample path of Y )  it follows that 

d[@(t, x X:) - i X :  * ~ ( t ,  Y ) X : ]  

=(Ox- JX:)* dX:  + {(&-+x:*~x:)  +$ tr[(Q,,- J )BB*])  dt 

+X:*XX: + r * X :  + 8 - x : * ~ x :  - tr(JBB*)} dt. 

Using this result to substitute for I (@,-JX1)*dX1 in AT we have 
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U. G. HAUSSMANN AND E. PARDOUX 

where we have used (3.7). Now it follows from the definition of X3 
that 

T 

hT = exp f $(tr [ ~ ( t ,  Y)B(t ,  Y)B(t ,  Y)*] - 6(t, Y ) }  dt exp ( @ ( I T ;  I: Xi)  
0 

The final step is to express an unnormalized conditional distri- 
bution of XT under P as a conditional distribution of XT under the 
measure PT, since under PT, X. is the solution of a conditionally 
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ALMOST LINEAR FILTERING 263 

linear system, cf. (3.13), (3.14) below, so the results of Section 2 can 
be applied. 

If S is any Bore1 set in RN we need to compute 

or indeed, we need to compute an unnormalized conditional 
distribution-for example the numerator in the above expression, or 
again using (3.10), simply 

d I: = [B(t, Y)X, + h(t, Y)] dt + d D  (3.14) 

with To= . The system (3.13), (3.14) has the form (2.1), 

(2.2). Moreover (A,) is satisfied with mo = f O ,  Ro =O. Our hypothesis 
(B,) implies (A,), (A3), (A5). In addition any of the conditions (i), (ii) 
or (iii) imply that (3.13), (3.14) is a special case of either Example 2.1 
or Example 2.2, hence (A,) and (A,) also hold. The result now 
follows from Theorems 2.1 and 2.2. 

Remark 3.1 (B,) is satisfied if H has the structure H =(HI Hz) 
with 
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264 U. G. HAUSSMANN AND E. PARDOUX 

On the other hand if in (B,) we have CZO (which is stronger than 
(3.6)) then we may omit (B,). Indeed in (3.7) and in the definition of 
2, G', X: and A we replace H,  by 0, and we replace fl by 
(HI Hz 0). 

Remark 3.2 In connection with (iii) observe that in Examples 3.1 
and 3.2, J is constant in Y if a, A, B, H,  are (if C 2 0  then only a, A, 
B need be constant). Moreover G;=O simply states that when we 
transform (3.2) into an It6 equation by substituting for dY from 
(3.3), the the equation is linear in X2 (but not necessarily in the pair 
(X:, X;), i.e. in XJ. 

On the other hand the condition (ii), i.e. Gj=O, implies that the 
It6 equation for X: is linear in X,. A special case of this situation is 
treated in [14]. As for (i), in this case (X:, Y,) constitutes a signal- 
observation pair with no input from Xf.  

Note also that (i), (ii) or (iii) could be replaced by: 

(iv) P,(R) = 1 and the system (3.13), (3.14) satisfies (A,) and (A,). 

Remark 3.3 Wong [15] considers a system of the form 

If we set X: =0, X: =(x,(t), x2(t)), we obtain the form (3.1)-(3.3) but 
clearly (3.4) must fail. However, f satisfies further hypotheses. In fact 
in [15] examples of "class A" can be put into the form (3.1)-(3.3) 
with k; = y(t), X: =0, X:* = (Sl(t), tT(t)) where <,it) = x,(t) and (,it) is 
a 2m dimensional vector with components 

~ 2 0 )  X Z V )  

cos [ii/g(r)] dr, sin 1 ri..,/g(r)] dr, i = 1 . . . , m (3.16) 
0 0 

and the ii are given. Moreover f = 0, a* = ( r ,  0*), B* = (1, O*) and 
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ALMOST LINEAR FILTERING 265 

for a given scalar a and 2m dimensional vector p. Clearly this case is 
covered by Theorem 3.1. 

Examples of the "class B" of [I51 can be put into the form (3.1)- 
(3.3) with Y,=y(t),  X: =0, X:* = tl(t), tT(t), 5,(t) where 5, and 5,  
are as above and 

Here c2(r) has components defined by (3.16) with upper limit of 
integration being r rather than x,(t). Moreover a* =(0, O*, 1/2), 
B* = (1, 0*), 

i.e. we can take X = 0, r = 0, 6 = 0. Hence the result is again covered 
by Theorem 3.1, which thus includes all the results of [15]. 

4. NON-GAUSSIAN INITIAL CONDITION 

So far we have only obtained the conditional distribution of X, 
given GYT and X,. If (X,, -@,(XA)) is Gaussian, e.g. X, is Gaussian 
and @, is an affine function, then the proof of Theorem 3.1 can be 
used to give a formula for the conditional distribution of X, given 
gT only. In general if Po is the distribution of X,, one can proceed 
as in Theorem 3.1 up to (3.11): 
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266 U. G. HAUSSMANN AND E. PARDOUX 

E ( ~ S ( X T ) I ~ T }  =ET{lS(xT)xTIqT}/ET{xTIqT) 

but now we do not know p0(.lYT),  the conditional distribution of X o  
given qT, and we do not wish to find it as the solution of an 
interpolation problem since this would not give a recursive scheme. 
Instead we apply the method of Makowski [ I l l ,  that is we split off 
the initial condition and find a new measure relative to which X, 
and YT are independent sc :hat P, ( . J~ , )=P, (* )  (at least under the 
new measure). Moreover the corresponding Radon-Nikodym density 
will be a function of the variables X 1  . . . X 5  which satisfy a con- 
ditionally linear system so that Theorem 2.2 can be applied. 

The model is again (3.1)-(3.3). 

THEOREM 4.1 Assume (Bl)-(B4) and one of 

i) H2=0,  

ii) G j ( t , y )=OVt ,y , j= l ,  ..., d, 

iii) f, a, A, B, J are constant in the second variable y and Gj, =O. 

Let Po be the distribution of X,. Then an unnormalized conditional 
distribution of X given %, is given by 

where S is any Bore1 set in RN, x*=(x'*,x2*),  z*= 
(z l* ,  z2*, z3*, z4*, z5*),  
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ALMOST LINEAR FILTERING 

dm, = &t, Y)m, + d(t, Y )  - R,fi(t, Y)*[f?(t ,  Y)m, + h(t, Y ) ]  I 
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U. G.  HAUSSMANN AND E. PARDOUX 

0 

c2 

0 

i 0 

Proof We define 5 ,  E RN1 + N2+1, X: E RN1, X: E KlN2 by 
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+Z j [H~(s ,  Y)Y,,(s, Y)]VY:. 
j 0 

It follows that 

d5, =A(t, Y)5, dt +C GJ(t, Y)(,dYj, to = Wo, 
J 

and if we define 

then 

If we define pT by d p T  =A; ' dPT, then under our hypotheses pT is a 
probability measure under which I; - yo [A(W - 5) + h] ds is a stan- 
dard Wiener process. Now if Rf = 2:- t f ,  i =  1,2,3, then 

where % 0 are independent standard {el Wiener processes under 
pT.  Let QT be the probability measure obtained from pT by a 
Girsanov transformation such that (% Y) is a standard {Pt} Wiener 
process under QT. Then R ,  the solution of (4.4), is adapted to (I?, Y), 
and hence Xo and (R, Y) are independent under QT. It follows from 
the Girsanov representation for d p , / d ~ ,  that Xo  and (Xdp, /d~,)  
are independent under QT and hence X, and Y are independent 
under pT. 
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270 U. G. HAUSSMANN AND E. PARDOUX 

If S is a Bore1 set then as in (3.11) 

and it suffices to compute, cf. (3.12), 

ET{ls(XT) exp[@('I; E: Xi)  -$h*J('I; Y)Xi + X;] I ~ T )  

=BT{ls(~ , )  exp[O('I: k: Xi)  -$X$*J(T, Y)X$ +x%]h,JgT)  

/gT{hTI@T}, 

Let us compute the numerator in the last expression (the denomi- 
nator is irrelevant). N.B. Y12 SO. 

since X',=X',+&, i =  1,2,3 and tT satisfies (4.1). Now (4.4) has the 
form 

since the distribution of Xo under pT is still Po and since 
independent of Y under pT. But Theorems 2.1 and 2.2 applied to 
X, Y, which satisfy (4.4), (4.9, now allow us to compute the last 
integrand in (4.5) to obtain the result. 

Remark 4.1 In the special case f = O  we can omit the hypotheses 
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ALMOST LINEAR FILTERING 27 1 

(B,) and (B,) and the variable X:. Further simplifications allow 
Theorem 4.1 to be rephrased as: 

Assume (B,), (B,), f =0, and one of (i), (ii) or 
(iii)' a, A, B are constant in the variable y and Gj, =O. 

Then 

where z* = (zl', z2*, z3*), 

T 

N(7: Y) = J Y(t, Y)*H(t, Y)*H(t, Y)Y(t, Y) dt, 
0 

and m, R satisfy (4.1)-(4.2) with 

A 0 

c2 
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Appendix 

We establish here a minor variant of a result due to Liptser and 
Shiryayev [lo, Lemma 11.61. 

LEMMA 1 Let { W,: t 2 0) be a standard Wiener process on (0, F, P) 
with values in Rd, and let X ,  be an independent Gaussian random 
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ALMOST LINEAR FILTERING 273 

variable in RN. Let B(.), Q(.), y ( - )  be respectively R N @  Rd, RN@ RN, 
R'Q Rd-valued measurable functions of t such that Q(t)  is symmetric, 
positive semi-definite and for T <  cc 

Let b ( T ) =  be a CNi'-valued vector and let 

where 

Then there exists a constant k ,  a vector a ( T )  and a positive semi- 
definite symmetric matrix b(T)  such that 

Moreover as functions of 17; ci and P are continuous. 

Proof Let T ( t )  be the positive semi-definite symmetric solution of 

dl- 
-= -2Q(t) + T(t)B(t)B(t)*T(t) ,  T ( T )  =0. 
dt 

Let P be defined by 

It is a probability measure as in Liptser and Shiryayev [lo, Lemma 
11.61, and by Girsanov's theorem 
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274 U. G. HAUSSMANN AND E. PARDOUX 

t 

= + j B(s)*T(s)q, ds 
0 

is a standard Brownian motion on (Q9, P), independent of Xo.  

f t 

ilt = X o  + j B(s) d K -  j B(s)B(s)*T(s)q, ds, 
0 0 

and for any bounded measurable 4 

so that X o  is also Gaussian under P. Hence under P, (q ,  W) are 
Gaussian and hence so are (q,  P )  and consequently also (q,, P,), 
i.e. (X,, P T )  N(m, R). 

Now 

so that 

I = E exp {bo(T)*Xo + b l (T )* jT  - 6,) 

T 

= exp { - 3 tr [B(t)B(r)*T(t)]  dt } J 
0 
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ALMOST LINEAR FILTERING 275 

J = Eexp{-+~;T(0)X, + bo(T)*Xo + b,(T)*&} 

where 

The last equality follows by direct computation. 
It remains only to establish the continuity. Since T(s) is con- 

tinuous as a function of ?; and since m, R, the mean and covariance 
(under P )  of (Xo,P,), are also continuous in T, then this last 
conclusion also follows. 

D
ow

nl
oa

de
d 

by
 [

A
ix

-M
ar

se
ill

e 
U

ni
ve

rs
ité

] 
at

 0
2:

01
 1

0 
A

pr
il 

20
13

 




