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EXTINCTION TIME OF AN EPIDEMIC
WITH INFECTION-AGE-DEPENDENT INFECTIVITY

ANICET MOUGABE-PEURKOR, IBRAHIMA DRAMÉ, MODESTE N’ZI,
AND ÉTIENNE PARDOUX

Abstract. This paper studies the distribution function of the time of ex-
tinction of a subcritical epidemic, when a large enough proportion of the
population has been immunized and/or the infectivity of the infectious in-
dividuals has been reduced, so that the effective reproduction number is less
than one. We do that for a SIR/SEIR model, where infectious individuals have
an infection-age-dependent infectivity, as in the model introduced in Kermack
and McKendrick’s seminal 1927 paper. Our main conclusion is that simplify-
ing the model as an ODE SIR model, as it is largely done in the epidemics
literature, introduces a bias toward shorter extinction time.

1. Introduction

Consider an epidemic that is declining: the number M of infected individuals is
moderate and decreasing, while the total population size N is much larger. In such
a phase, the approximation by the deterministic model is no longer valid. Rather,
as the initial phase of an epidemic, the final phase can be well approximated by
a branching process, in this case a subcritical branching process. The extinction
time is thus random. It is of interest to have some information on the distribution
function of this extinction time. Indeed, if the subcriticality is due in part to some
rules imposed to the population, like mask wearing in public transport, classrooms,
workplace, theaters, etc., it is important to evaluate how long such rules must be
maintained.

Our epidemic model is a SIR/SEIR model, i.e., we assume that after having
been infected and having recovered, an individual remains immune to the disease
forever. This is not quite realistic. However, if the duration of the studied period
is not too long, then the number of individuals who lose their immunity during
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that period can be neglected. On the other hand, the stochastic SIR/SEIR model
upon which we base our analysis is non-Markov. Following the ideas of Kermack–
McKendrick [11] and Forien, Pang, Pardoux [6], we consider a model where the
infectivity of each infectious individual is infection-age-dependent (and random,
the realizations corresponding to various individuals being i.i.d., that is, indepen-
dent and identically distributed). We characterize the distribution function of the
extinction time of the approximating non-Markov branching process with a sin-
gle ancestor as the unique solution of a Volterra-type integral equation, for which
we give a converging numerical approximation. The derivation of the equation is
based upon a methodology introduced by Crump and Mode [4]. From this result,
we deduce in Theorem 3.4 a formula for the time we have to wait after t0 for the
epidemic to go extinct if at time t0 we have M infected individuals in a population
of size N , with M ≪ N .

With the help of a numerical scheme, we compute an approximation of the
distribution function of the time of extinction, and compare the result with the
distribution function of the extinction time of a Markov branching process which
approximates the classical Markov SIR model (whose law of large numbers limit is
the most standard SIR ODE model), which is known explicitly. This comparison
is done between two models which have both the same effective reproduction num-
ber Reff (the mean number of “descendants” one infectious individual has at this
stage of the epidemic), and the same rate ρ of continuous-time exponential decrease.
Our conclusion is that the usual ODE SIR model leads to an underestimation of
the extinction time.

Our work was inspired by the recent work of Griette et al. [8], where the authors
neglect the new infections during the final phase. Note that this approximation
is justified by the data, in the case of the end of the COVID epidemic in Wuhan
in 2020. Our work does not make such a simplifying assumption, and allows a
very general law for the varying infectivity, and a completely arbitrary law for the
duration of the infectious period.

The paper is organized as follows. We present our varying infectivity SIR model
in Section 2, together with its branching process approximation, and we give a
justification of this approximation. In Section 3, we study the distribution function
of the extinction time of the branching process. In Section 4, we present several
examples of SIR/SEIR models, including the classical ODE SIR model, ODE SEIR
model, and we specify the type of varying infectivity which we have in mind. In
Section 5, we compare the time of extinction of the branching approximations to
our varying infectivity model, and to the ODE SIR model. In Section 6, we discuss
the results obtained in that comparison. Finally in Appendix A, we establish the
convergence of a numerical approximation scheme of the equation established in
Section 3.

Notation. We shall use the following notations. Z = {. . . ,−2,−1, 0, 1, 2, . . . },
R = (−∞,∞), R+ = [0,∞) and R− = [0,∞). For x ∈ R+, [x] denotes the integer
part of x and ⌈x⌉ (resp., ⌊x⌋) denotes the ceiling function (resp., the floor function).
For x ∈ R, x+ (resp., x−) denotes the positive (resp., negative) part of x. For
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(a, b) ∈ R2, a < b, U([a, b]) denotes the uniform distribution on [a, b]. D([0,∞))
denotes the space of functions from [0,∞) into R that are right-continuous and
have left limits at any t > 0. We shall always equip the space D([0,∞)) with the
Skorohod topology, for the definition of which we refer the reader to Billingsley [2].

2. The SIR model with varying infectivity

2.1. The epidemic model. Let {λj(t) : t ≥ 0}, j ∈ Z\{0}, be a collection of
mutually independent non-negative functions, which are such that the {λj}j≥1 are
identically distributed, as well as the {λj}j≤−1. We assume that these functions
belong a.s. to D([0,∞)). We consider a SIR model which is such that the j-th
initially infected individual has infectivity λ−j(t) at time t, while the j-th individual
infected after time 0 has at time t infectivity λj(t − τj) if 0 < τ1 < · · · < τℓ < · · ·
denote the successive times of infection after time 0 in the population. The quantity
t− τj is the age of infection of an individual j at time t. Note that we assume that
λj vanishes on R−. The newly infected individual is chosen uniformly at random in
the population, and if that individual is susceptible, then he/she jumps from the S
to the I compartment at its time of infection while nothing happens if the individual
is not susceptible. Examples of function λj(t) will be given below. That function
can be first 0 during the exposed period, then the individual becomes infectious,
and at age of infection ηj = sup{t : λj(t) > 0}, the individual recovers (i.e., jumps
into the R compartment) and is immune for ever. Clearly an important quantity
is the total force of infection in the population at time t: FN (t), which is the sum
of all the infectivities of the infected individuals at that time. Here N is the total
number of individuals in the population. The sum of the numbers of individuals
in the three compartments is constant in time: SN (t) + IN (t) + RN (t) = N for
all t ≥ 0. For X = S,F, I or R, we define the renormalized quantity X̄N (t) =
XN (t)/N . The main result of [6] is that asN → ∞, (S̄N (t), F̄N (t), ĪN (t), R̄N (t)) →
(S̄(t), F̄(t), Ī(t), R̄(t)) in probability locally uniformly in t, where the limit is the
unique solution of the following system of integral equations, which already appears
in the seminal paper of Kermack and McKendrick [11]:

S̄(t) = S̄(0) −
∫ t

0
S̄(s)F̄(s) ds,

F̄(t) = Ī(0)λ̄0(t) +
∫ t

0
λ̄(t− s)S̄(s)F̄(s) ds,

Ī(t) = Ī(0)F c
0 (t) +

∫ t

0
F c(t− s)S̄(s)F̄(s) ds,

R̄(t) = R̄(0) + Ī(0)F0(t) +
∫ t

0
F (t− s)S̄(s)F̄(s) ds,

(2.1)

where λ̄0(t) = E[λ−1(t)] and λ̄(t) = E[λ1(t)], F0 (resp., F ) is the distribution
function of η−1 (resp., of η1) and F c

0 (t) = 1 − F0(t), F c(t) = 1 − F (t). This
convergence holds true provided that λ ∈ D a.s. and, for some λ∗ > 0, 0 ≤ λj(t) ≤
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λ∗ a.s. for all j ∈ Z and t ≥ 0, see [7]. The original proof in [6] puts more restrictions
on λ.

2.2. The branching process approximation. We fix a moderate number M ≪
N and wait until the time t0 when the number of infected individuals in the
population equals M (or is of the order of M), while the mean number Reff =
S̄(t0)

∫∞
0 λ̄(t) dt of individuals which an infected individual infects satisfies Reff < 1.

Then the epidemic is declining. It can be well approximated by the following non-
Markovian continuous-time branching process. We will study its extinction time
in the next section, and deduce a good approximation of the time we have to wait
after t0 for the epidemic to go extinct. Note that we approximate the proportion
S̄(t) by S̄(t0) for any t ≥ t0. This is quite reasonable, since between time 0 and
the end of the epidemic, only a moderate number of individuals get infected, as
the branching process approximation (and also upper bound) tells us, see below.
Hence for large enough N , the proportion of susceptible individuals does not vary
significantly.

Let us now describe in detail the branching process approximation of the final
phase of the epidemic. We assume that there are M individuals who are infected
at time t0 and have been infected by someone who has recovered by time t0. We
arrange these M individuals in ascending order of their time of infection. This
produces a sequence (I1, τ1), . . . , (IM , τM ), where τ1 < τ2 < · · · < τM < t0 are the
times of infection.

We let (X1, θ1) = (I1, τ1), and associate to X1 a copy λ1 of the random func-
tion λ. At any time t > 0, the individual X1 gives birth (infects) at rate λ1(t−θ1),
i.e., its descendants are born at the points of the point process∫ t∨θ1

θ1

∫ ∞

0
1u≤λ1(s−θ1)Q1(ds, du),

where Q1 is a standard Poisson random measure (abbreviated PRM) on R2
+. Let

θ1,1 < θ1,2 < · · · be the points of this point process, and denote by I1,1, I1,2, . . .
the direct descendants of I1. Note that there are finitely many of those (possibly
none, in which case all the θ1,i are chosen to be equal to +∞), since our assumption∫∞

0 λ̄(t) dt < S̄(t0)−1 implies that
∫∞

0 λ(t) dt < ∞ a.s.
We let

θ2 = τ2 ∧ θ1,1 and X2 = I21τ2<θ1,1 + I1,11θ1,1<τ2 ,

and we attach to X2 a copy λ2 of the random function λ, and the point process of
the times of birth of the descendants of X2 are those of the point process∫ t∨θ2

θ2

∫ ∞

0
1u≤λ2(s−θ2)Q2(ds, du).

We let θ2,1 < θ2,2 < · · · be the points of this point process, and denote by
I2,1, I2,2, . . . the direct descendants of I2. We next consider the collection I2, . . . , IM ,
I1,2, . . . , I2,1, I2,2, . . . in case we had θ1,1 < τ2, and I3, . . . , IM , I1,1, I1,2, . . . , I2,1, . . .
in case we had τ2 < θ1,1 (note that the two random variables differ a.s.), and we
choose as X3 the first born individual in this last collection.

Rev. Un. Mat. Argentina, Vol. 67, No. 2 (2024)



EXTINCTION TIME OF AN EPIDEMIC WITH VARYING INFECTIVITY 421

We iterate, and define with this procedure a finite sequence. Indeed, since our
branching process is subcritical, it goes extinct in finite time a.s. Note that the
collection {(λi, Qi) : i ≥ 1} is i.i.d., and for each i ≥ 1, λi and Qi are independent.

Now, inspired by the description done in [3, Part I, Section 1.2] of the branching
process approximation of the initial phase of an epidemic, we couple this branching
process with the epidemic, starting from time θ1. For that, we first number from 1
to N0 = [S(t0)N ] all individuals in the population who were susceptible at time θ−

1 ,
and we let {Ui : i ≥ 1} be an i.i.d. sequence of U([0, 1]) random variables, which
is independent of the branching process. For each i ≥ 1, we now identify Xi with
the individual [UiN0] + 1. It is easy to see that the branching process is a correct
model of the succession of infections in the epidemic starting at time θ1, as long as
[UiN0] + 1 ̸∈ {[U1N0] + 1, . . . , [Ui−1N0] + 1}. Let M̆ denote the random number
of individuals in the above branching process. We note that the branching process
(and in particular the number M̆) does not depend upon the total population
size N .

The probability that the branching process and the epidemic starting from
time θ1 coincide is the probability of the event

∩M̆
i=2{[UiN0] + 1 ̸∈ {[U1N0] + 1, . . . , [Ui−1N0] + 1} .

We first compute

P
(

∩M̆
i=2 {[UiN0] + 1 ̸∈ {[U1N0] + 1, . . . , [Ui−1N0] + 1}|M̆

)
=

M̆−1∏
i=1

(
1 − i

N0

)

= exp
{

M̆−1∑
i=1

log
(

1 − i

N0

)}

= exp
{

−N−1
0

M̆−1∑
i=1

i+O(N−2
0 )
}

= exp
{

− M̆(M̆ − 1)
2N0

+O(N−2
0 )
}

= 1 − M̆(M̆ − 1)
2N0

+O(N−2
0 ).

It remains to take the expectation of this expression. Hence we need to compute
the first two moments of M̆ . For that, we consider the branching process as a
discrete-time Galton–Watson process. For n ≥ 1, let Zn denote the number of
individuals of generation n, descendants of a unique ancestor at generation 0, where
the number ξ of daughters of each individual follows the MixPoisson

(∫∞
0 λ̂(t) dt

)
distribution, that is, the conditional law of ξ, given that

∫∞
0 λ̂(t) dt = a, is Poi(a). It

follows from well-known results on Galton–Watson processes (see, e.g., Athreya and
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Ney [1, p. 4]) that E[Zn] = Rn
eff , Var(Zn) = σ2Rn−1

eff
1−Rn

eff
1−Reff

and for n ≥ 1, E[Z2
n] =

σ2Rn−1
eff

1−Rn
eff

1−Reff
+R2n

eff with σ2 = Var(ξ), while E[Z2
0 ] = 1. Our branching process is

the sum of M independent copies of this Galton–Watson process. Consequently,

E[M̆ ] = ME
∞∑

n=0
Zn

= M(1 +Reff +R2
eff + · · · )

= M

1 −Reff

and

E[M̆2] = ME

( ∞∑
n=0

Zn

)2
+M(M − 1)

(
E

∞∑
n=0

Zn

)2

= ME
∞∑

n=0
Z2

n + 2ME
∞∑

n=0

∑
m>n

ZnZm + M(M − 1)
(1 −Reff)2

= M

(1 −Reff)2 + Mσ2

(1 −Reff)3 + M(M − 1)
(1 −Reff)2

= Mσ2

(1 −Reff)3 + M2

(1 −Reff)2 .

An easy computation yields

σ2 = E

[(∫ ∞

0
λ̂(t) dt

)2
]

+Reff(1 −Reff) . (2.2)

Putting together the above computations, we conclude the following statement.

Lemma 2.1. The probability that, starting with M individuals infected at time t0,
whose parents in the epidemic genealogy have recovered at time t0, while some of
the M individuals may have infected others before time t0, the epidemic evolves
exactly as the above continuous-time branching process equals

1 − M

2N0(1 −Reff)

(
M

1 −Reff
+ σ2

(1 −Reff)2 − 1
)

+O(N−2
0 ),

where N0 = [S(t0)N ] and σ2 is given by (2.2).

The above probability converges of course to 1 as N0 → ∞, and we know at
which speed this occurs. Unfortunately, we do not know how the terms of order
N−2

0 depend upon M . Note that, for large enough N0, when the epidemic and
the branching process do not coincide, we expect that their difference is minor.
Moreover, the extinction time of the branching process is an upper bound of the
extinction time of the epidemic.
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3. The extinction time of the branching process associated
to the varying infectivity model

For now on, t ≥ 0 stands for t−t0 (t ≥ t0). We define λ̂(t) := S̄(t0)λ(t). Let Z(t)
denote the number of descendants at time t of an individual born (i.e., infected) at
time 0, in the continuous-time branching process which approximates the number of
infected individuals at time t. This ancestor infects susceptible individuals during
the time interval [0, η], at the random and varying rate λ̂(t). His descendants have
the same behavior, each one independently from all the others.

In this paper, we make the following assumption on the infectivity function:

Assumption (H) We shall assume that there exists a constant λ∗ > 0 such that

λ(t) ≤ λ∗ almost surely for all t ≥ 0.

Let Text = inf{t > 0 : Z(t) = 0} denote the extinction time of the branching
process, G(s, t) = E

(
sZt
)
, |s| ≤ 1, denote the probability-generating function of

Z(t), and F (t) = G(0, t) the distribution function of the extinction time.

3.1. Distribution function of the extinction time. In this subsection, we will
characterize the distribution function of the extinction time of Z as the unique
solution of an integral equation. To this end, we imitate the computations done in
the proof of Theorem 4.1 in [5]. We first start by determining the generating func-
tion G(s, t) of Z in order next to deduce the distribution function of the extinction
time.

Denote by Z0(t) the descendants of the ancestor at time t, and for j ≥ 1, Zj(t)
the descendants of the j-th direct descendant of the ancestor at time t after his/her
birth. Then {Zj(·) : j ≥ 0} is a sequence of i.i.d. random processes which have the
law of Z. In order to simplify our notations, we will write λ̂0 (resp., η0) for the
value of λ̂ (resp., η) associated with Z0. Formula (3.1) from [4] reads

Z0(t) = 1η0>t +
Q0(t)∑
j=1

Zj(t− tj), (3.1)

where Q0(t) is the number of direct descendants of the ancestor born on the time
interval (0, t]. Moreover, Q0(t) is a counting process, which conditionally upon
λ̂0(·), is a non-homogeneous Poisson process with varying intensity λ̂0(t), and 0 <
t1 < t2 < · · · are the successive jump times of the process Q0(t).

We have the following result.

Proposition 3.1. The probability-generating function G satisfies the integral equa-
tion

G(s, t) = E
[
s1η>t exp

{∫ t

0

(
G(s, t− u) − 1

)
λ̂(u) du

}]
.
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Proof. Since Z has the same law as Z0, we first to compute E
[
sZ0(t)|λ̂0

]
in order

to deduce the value of G. From (3.1), we deduce that

E
[
sZ0(t)|λ̂0

]
=

∞∑
k=0

s1η0>tP(Q0(t) = k|λ̂0)E


k∏

j=1
sZj(t−tj)

∣∣∣Q0(t) = k, λ̂0


=

∞∑
k=0

s1η0>tP(Q0(t) = k|λ̂0)E


k∏

j=1
G(s, t− tj)

∣∣∣Q0(t) = k, λ̂0


=

∞∑
k=0

s1η0>tP(Q0(t) = k|λ̂0) k!( ∫ t

0 λ̂0(v) dv
)k

×
∫ t

0

∫ uk

0
. . .

∫ u2

0

k∏
j=1

G(s, t− uj)λ̂0(u1) . . . λ̂0(uk) du1 . . . duk

= s1η0>t exp
(

−
∫ t

0
λ̂0(v) dv

)
×

∞∑
k=0

∫ t

0

∫ uk

0
. . .

∫ u2

0

k∏
j=1

G(s, t− uj)λ̂0(u1) . . . λ̂0(uk) du1 . . . duk

= s1η0>t exp
(

−
∫ t

0
λ̂0(v) dv

) ∞∑
k=0

1
k!

(∫ t

0
G(s, t− u)λ̂0(u) du

)k

= s1η0>t exp
{∫ t

0

(
G(s, t− u) − 1

)
λ̂0(u) du

}
.

The third equality exploits the well-known result on the law of the times of the
jumps of a Poisson process on a given interval, given the number of those jumps
(see Exercise 6.5.4 in [12], which treats the case of a constant rate, the general case
follows via an obvious time change), and the fourth equality the conditional law of
Q0(t), given λ̂0. We thus obtain

G(s, t) = E
[
s1η0>t exp

{∫ t

0

(
G(s, t− u) − 1

)
λ̂0(u) du

}]
.

Since (λ̂0, η0) has the same law as (λ̂, η), we can drop the subindices 0 in the last
formula, yielding the formula of the statement. □

The term s1η>t can be written as follows: s1η>t = 1η≤t + s1η>t. From this, we
deduce readily the following corollary for F (t) = G(0, t).
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Corollary 3.2. The distribution function F of the extinction time of the branching
process with one unique ancestor born at time 0 satisfies the integral equation

F (t) = E
[
1η≤t exp

{∫ t

0

(
F (t− u) − 1

)
λ̂(u) du

}]
. (3.2)

The fact that (3.2) characterizes F follows from the next crucial result.

Proposition 3.3. Equation (3.2) has a unique [0, 1]-valued solution.

Proof. The distribution function of the extinction time solves this equation. Let us
show that this equation has at most one [0, 1]-valued solution. To this end, suppose
that the equation has two solutions F 1 and F 2 which are upper bounded by 1. We
have

F 1(t) − F 2(t) = E

[
1η≤t

(
exp

{∫ t

0

(
F 1(t− u) − 1

)
λ̂(u) du

}

− exp
{∫ t

0

(
F 2(t− u) − 1

)
λ̂(u) du

})]
.

From the fact that |e−x − e−y| ≤ |x− y| for all x, y > 0, we deduce that∣∣∣F 1(t) − F 2(t)
∣∣∣ ≤ E

[∫ t

0
λ̂(u)

∣∣∣F 1(t− u) − F 2(t− u)
∣∣∣ du]

≤ λ̂∗
∫ t

0

∣∣∣F 1(u) − F 2(u)
∣∣∣ du,

where we have used Assumption (H) and the notation λ̂∗ = S̄(t0)λ∗. The desired
result follows by combining this with Gronwall’s lemma. □

3.2. Epidemic with several individuals infected at the initial time. Now
we assume that several individuals have been infected before time 0 (or time t0
in our epidemic model). We assume that M individuals are infected at time 0,
whose parents in the epidemic genealogy have recovered by time 0, while some of
the M individuals may have infected others before time 0. As a result, the exact
number of infected individuals at time 0 is larger than M . However, since Reff < 1
and some of the M individuals may have been infected shortly before time 0 with
probability close to 1, that number is less than 2M , and in fact close to M . Note
also that, while those M individuals have been infected before time 0, i.e., before
t0 in our original epidemic model, we expect that when those individuals start
to infect susceptible individuals in the population, the proportion of susceptible
individuals is well approximated by S̄(t0). Since the dynamics of reproduction
remains the same for all infected individuals resulting from each ancestor, from the
branching property, we deduce the main result of this section.
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Theorem 3.4. The distribution function of the time we have to wait in order to see
the extinction of the epidemic, if at time t0 we have M infected individuals whose
parents in the epidemic genealogy have recovered by time 0, is well approximated
by

H(t) = (F (t))M
.

4. Several examples of random function λ(t)

Our varying infectivity model is in fact a SIR/SEIR, in the sense that it allows
an exposed period just after infection, during which λ(t) = 0. However, we do not
introduce the E compartment (E for exposed, the status of an infected individual
who is, just after being infected, in a latent period, not yet infectious), the I
compartment including all infected individuals, whether latent or infectious. In
all most used models, λ(t) is piecewise constant, the jump times being random,
following most classically an exponential distribution so that the stochastic model
is Markovian and its law of large numbers limit is a system of ordinary differential
equations (in contrast with the integral equation (2.1)).

We now review two classical examples of piecewise constant λ(t), which corre-
spond respectively to the SIR and the SEIR models and finally present the example
of varying infectivity λ(t) which we shall use in the next section for our comparison
with the more classical SIR ODE model.

4.1. The classical SIR model. The simplest commonly used example of the
infectivity λ(t) is λ(t) = λ1t≤η, where λ is a positive constant and η is the random
duration of the infectious period. In that case equation (3.2) takes the form

F (t) =
∫ t

0
exp

{
λ

∫ r

0

(
F (t− u) − 1

)
du

}
Pη(dr).

In the particular case of a deterministic η (i.e., Pη = δa with a ∈ R+), we have

F (t) = 1t≥a exp
{
λ

∫ a

0

(
F (t− u) − 1

)
du

}
with F (0) = 0 and F (a) = exp(−λa). The most commonly used model corresponds
to η following an exponential distribution with parameter µ. In this case, the
system of integral equations (2.1) simplifies as follows:

dS(t)
dt

= −λS(t)I(t),

dI(t)
dt

=
(
λS(t) − µ

)
I(t),

dR(t)
dt

= µI(t).

If we linearize the second equation for t ≥ t0 by replacing S(t) by S(t0), we obtain

I(t) = I(t0) exp
[(
λS(t0) − µ

)
(t− t0)

]
.
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From this, it is easy to see that
ρ = λS(t0) − µ. (4.1)

The fact that this formula is correct, although the deterministic model is not valid
for t ≥ t0, is explained in [6]. Note also that solving equation (4.5) below gives
the same result, as the reader can easily verify.

Let us now compute Reff . An infected individual has infectious contacts at rate
λS(t0). This means that the expected number of infectious contacts equals

Reff = λS(t0) × E[η] = λS(t0)
µ

. (4.2)

The approximating branching process is the continuous-time Markov branching
process (X(t))t≥0 which describes the number of descendants alive at time t of a
unique ancestor born at time 0. Every individual in this population, independently
of the others, lives for an exponential time with parameter µ, and during his/her
lifetime he/she gives birth at rate λS(t0). His/her descendants reproduce according
to the same procedure. We consider the subcritical case µ > λS(t0). Let G(s, t) =
E
(
sX(t)), |s| ≤ 1, be the probability-generating function of X(t). On page 109 of

Athreya and Ney [1], or in formula (5) of Iwasa, Nowak, and Michor [10], we find
the explicit form

G(s, t) = µ(s− 1) − e−ρt(λS(t0)s− µ)
λS(t0)(s− 1) − e−ρt(λS(t0)s− µ)

,

with ρ as defined in (4.1). Let us define Text = inf{t > 0 : X(t) = 0}. We notice
that F (t) = G(0, t) = P(Xt = 0) = P(Text ≤ t) is the distribution function of the
extinction time. From the expression for G(s, t), we deduce the value of F (t).

Proposition 4.1. When starting with a single ancestor at time 0, the distribution
function of the extinction time is given as

F (t) = 1 − eρt

1 −Reff × eρt
,

with Reff as defined in (4.2).

4.2. The classical SEIR model. In this model, upon infection, an individual is
first exposed (compartment E) for a period ξ, during which the individual is not
infectious; then, he/she becomes infectious and remains so for a duration η, during
which he/she infects susceptibles at a rate λ, and finally recovers. In that case, we
have λ(t) = λ1ξ≤t<ξ+η, and equation (3.2) takes the form

F (t) =
∫ t

0

∫ t−r

0
exp

{
λ

∫ s+r

s

(
F (t− u) − 1

)
du

}
P(ξ,η)(ds, dr).

When ξ and η are deterministic, that is, P(ξ,η)(ds, dr) = δa(ds)δb(dr) with (a, b) ∈
R2

+, we have

F (t) = 1t≥a+b exp
{
λ

∫ a+b

a

(
F (t− u) − 1

)
du

}
with F (u) = 0 for all u ∈ [0, a].
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In case ξ and η are independent and follow exponential distributions with param-
eters γ and µ, respectively, the deterministic model obeys the ODE



dS(t)
dt

= −λS(t)I(t),

dE(t)
dt

= λS(t)I(t) − γE(t),

dI(t)
dt

= γE(t) − µI(t),

dR(t)
dt

= µI(t).

In this model, again Reff = λS(t0)
µ . Solving equation (4.5) below for ρ, we find

ρ = 1
2

[√
(γ − µ)2 + 4γS(t0)λ− (µ+ γ)

]
.

4.3. Our varying infectivity model. We again define λ̂(t) = S(t0)λ(t). The
infectivity λ̂(t) is first zero (corresponding to the latency period) followed by a
gradual increase for some days, and then λ̂(t) starts decreasing down towards zero,
hitting it when the individual has recovered (see Figure 1).

Figure 1. Example of trajectory of λ̂(t).

In the computations of Section 5 below, we use a piecewise linear λ̂(t), which
allows the function to depend upon a small number of parameters (see Figure 2).
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Figure 2. Trajectory of λ̂(t) used for the comparisons below.

Here τ is the duration of the exposed period, η that of the infectious period. We
have arbitrarily fixed the length of the period of increase to 1.5 days, and taken the
maximum value a to be a deterministic quantity at our disposal. In other words,
in this case we have

λ̂(t) =



0 if t < τ,

a

1.5 (t− τ) if τ ≤ t < τ + 1.5,

a
τ + η − t

η − 1.5 if τ + 1.5 ≤ t < τ + η,

0 if τ + η < t.

(4.3)

Let J be the joint law of τ and η. From Corollary 3.2, we deduce that

F (t) = E
[
1ζ≤t exp

{
a

1.5

∫ τ+1.5

τ

(F (t− u) − 1)(u− τ) du

+ a

η − 1.5

∫ τ+η

τ+1.5
(F (t− u) − 1)(τ + η − u) du

}]
with ζ = τ + η. Thus, we obtain

F (t) =
∫ t

0

∫ t

0
1s+r≤t exp

{
a

1.5

∫ s+1.5

s

(F (t− u) − 1)(u− s) du

+ a

r − 1.5

∫ s+r

s+1.5
(F (t− u) − 1)(s+ r − u) du

}
J (ds, dr).

The effective reproduction number is defined by

Reff = E
[∫ ∞

0
λ̂(t) dt

]
, (4.4)
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and the rate of decrease ρ of the number of infected individuals is the unique
solution of

E
[∫ ∞

0
e−ρtλ̂(t) dt

]
= 1 (4.5)

(see [6, Theorem 2.3]).

5. Comparison between our varying infectivity model and a
Markovian SIR model

In this section, we compare the distribution function of the extinction time
in our varying infectivity model with that of a Markovian SIR model with the
same Reff , which is the effective reproduction number at time t0, and the same
rate of decrease ρ of the number of infected individuals. The law of large numbers
limit of such a Markovian SIR model is a system of ODEs. The approximating
branching process is a continuous-time Markov branching process.

In the following, we assume that the random variables τ and η defined in (4.3)
are independent, τ ∼ U (1.5, 2.5) and η ∼ U (7, 13). These values are somewhat
arbitrary. They are compatible with the results in [9] concerning the COVID
epidemic.

5.1. Approximation of the distribution function of the extinction time
in the varying infectivity model. Since it is not possible to obtain an explicit
solution of (3.2), then we will use the approximation made in Appendix A. In other
words, we will consider the following approximate solution (whose convergence is
established in Appendix A below):

Fn

(
k

n

)
= E

[
1τ+η≤ k

n
exp

{
k∑

ℓ=1

(
Fn

(
k − ℓ

n

)
− 1
)∫ ℓ

n

ℓ−1
n

λ̂(u) du
}]

.

Let us define ξn,ℓ =
∫ ℓ

n

ℓ−1
n

λ̂(u) du. It is easy to see that ξn,ℓ ≈ λ̂( ℓ
n )

n . Combining

this with (4.3), we deduce that

ξn,ℓ ≈ a

1.5

(
ℓ

n
− τ

)
1τ≤ ℓ

n <τ+1.5 + a

(
τ + η − ℓ

n

η − 1.5

)
1τ+1.5≤ ℓ

n <τ+η.

Now, using the fact that the random variables τ and η are independent, τ ∼
U (1.5, 2.5) and η ∼ U (7, 13), we deduce that

Fn

(
k

n

)
≈ 1

6

∫ 2.5

1.5

∫ 13

7
1x+y≤ k

n
exp
{

k∑
ℓ=1

(
Fn

(
k − ℓ

n

)
−1
)
a

1.5

(
ℓ

n
− x

)
1x≤ ℓ

n <x+1.5

}

× exp
{

k∑
ℓ=1

(
Fn

(
k − ℓ

n

)
− 1
)
a
x+ y − ℓ

n

y − 1.5 1x+1.5≤ ℓ
n <x+y

}
dxdy
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≈ 1
6

1
n2

13n∑
j=7n

2.5n∑
i=1.5n

1i+j≤k exp
{

i+1.5n∑
ℓ=i

(
Fn

(
k − ℓ

n

)
− 1
)

(ℓ− i) a

1.5n2

}

× exp
{

i+j∑
ℓ=i+1.5n

(
Fn

(
k − ℓ

n

)
− 1
)
i+ j − ℓ

j − 1.5n
a

n

}
. (5.1)

5.2. Computation of Reff. Recall (4.4). We first compute the random quantity∫ ∞

0
λ̂(t) dt. This is the surface below the curve λ̂(t), i.e., the surface of the union

of two triangles, and
∫ ∞

0
λ̂(t) dt = aη

2 . Therefore, we have

Reff = a

2E[η] = a

2 × 10 = 5a.

5.3. Resolution of equation (4.5). From (4.3), we have

E
[∫ ∞

0
e−ρtλ̂(t) dt

]
= a (Aρ +Bρ)

with

Aρ = E
(∫ τ+1.5

τ

e−ρt t− τ

1.5 dt

)
and Bρ = E

(∫ τ+η

τ+1.5
e−ρt τ + η − t

η − 1.5 dt

)
.

Using the fact that τ and η are independent, τ ∼ U (1.5, 2.5), η ∼ U (7, 13), it is
easy to check that

Aρ = 1
ρ

(
e−1.5ρ − e−2.5ρ

) [ 1
1.5ρ2 − e−1.5ρ

(
1
ρ

+ 1
1.5ρ2

)]
and

Bρ = 1
ρ

(
e−1.5ρ − e−2.5ρ

){
e−1.5ρ

(
1
ρ

− 1
6ρ2 log

(
11.5
5.5

))
+ 1
ρ2E

[
e−ρη

(η − 1.5)

]}
.

Note that the mapping ρ 7→ E
∫∞

0 e−ρtλ̂(t) dt is decreasing. Consequently, it is easy
to compute an approximate solution of equation (4.5).

5.4. Comparison of the distributions and the expectations of the extinc-
tion time between our varying infectivity model and a Markovian SIR
model. In what follows, we compare the extinction time in our varying infectivity
model and in the Markovian SIR model with the same Reff and ρ. Note that we
compare F ’s and not H’s (see the notations in Section 3). Of course the relevant
quantities are rather the H’s. It is easy to deduce from our results the correspond-
ing comparison of the H’s for various values of M . We compare the distribution
of the extinction time of our varying infectivity model given in (5.1) and of the
extinction time of the Markovian SIR model given in Proposition 4.1 (see Figures
3 and 4).
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Figure 3. Comparison of models with the same Reff = 0.66 and
ρ = −0.0683.

Figure 4. Comparison of models with the same Reff = 0.8 and
ρ = −0.03816.

We also compare the expectations of the extinction times of our varying infec-
tivity model and of a Markovian SIR model. To this end, recall that the extinction
time can be rewritten in the form Text = inf{t− t0 : I(t− t0) = 0}. Thus, for the
ODE SIR model, we obtain

E[Text] =
∫ ∞

0
P(Text > t) dt =

∫ ∞

0
(1 − F (t)) dt = (1 −Reff)

ρReff
ln(1 −Reff),

where we have used the formula of Proposition 4.1 for F (t).
For the varying infectivity model, we obtain

E[Text] =
∫ ∞

0
P(Text > t) dt =

∫ ∞

0
(1 − Fn(t)) dt ≈ 1

n

nΛ∑
k=1

(
1 − Fn

(
k

n

))
,
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where Λ is the point where we stop the calculation of the integral of 1−Fn(t). The
next table displays the comparison of those expectations.

Reff = 0.66 Reff = 0.8

ρ = −0.0683 ρ = −0.03816

Varying infectivity model E[Text] ≈ 18.7854 E[Text] ≈ 22.6568

Markov SIR model E[Text] = 8.1369 E[Text] = 10.544

6. Conclusion

Our comparison shows that in the final phase of the epidemic, the varying in-
fectivity SIR model (in fact, its branching process approximation) tends to take
more time to extinct than the branching process approximation of the Markovian
SIR model. This is not too surprising, since the varying infectivity model has a
memory, contrary to the Markovian and ODE SIR models. This fact is easily seen
when there is a sudden change in the propagation of the epidemic, like the begin-
ning of the lockdown that several countries established during the recent COVID
epidemic. The authors who use an ODE model change the infection rate gradually,
starting with the beginning of the lockdown, while in reality the change of the
infection rate was very sudden. This is a way to compensate the lack of memory of
ODE models. We believe that the fact that the varying infectivity SIR model takes
more time than the ODE SIR model to forget its past explains why it takes more
time to go extinct. The varying infectivity SIR model is more complex than the
more classical ODE SIR model, and this probably explains why most authors who
quote the seminal 1927 paper of Kermack and McKendrick [11] refer only to the
very particular case of constant coefficients, studied in section 3.2 of that paper. Of
course, it is very tempting and sometimes preferable to use simple models, which
allow to draw more conclusions. However, it is crucial to understand the biases
a simplified model introduces, compared to more realistic models. In this paper,
we have identified one of those biases, namely the shortening of the final phase of
the epidemic. In future work, we intend to do similar computations with various
classes of varying infectivity models in order to confirm these first conclusions.

Appendix A. Approximation of the distribution function
of the extinction time

We define a sequence of functions {Fn : n ≥ 1} which will allow us to approach
the solution of equation (3.2). To this end, for each k ∈ Z+, we set

Fn

(
k

n

)
= E

[
1η≤ k

n
exp

{
k∑

ℓ=1

(
Fn

(
k − ℓ

n

)
− 1
)∫ ℓ

n

ℓ−1
n

λ(u) du
}]

, (A.1)
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and for each t ∈
[

k
n ,

k+1
n

)
,

Fn(t) = E

[
1η≤t exp

{
k−1∑
ℓ=1

(
Fn

(
k − ℓ

n

)
− 1
)∫ ℓ

n

ℓ−1
n

λ(u) du−
∫ t

k−1
n

λ(u) du
}]

.

(A.2)
The goal of this appendix is to prove that as n → +∞, {Fn(t) : t > 0} → {F (t) :
t > 0} in D([0,+∞)), where F is the unique solution of (3.2).

We first check the following.

Lemma A.1. For any k ∈ Z+, we have

Fn

(
k

n

)
≤ F

(
k

n

)
≤ 1.

Proof. Let k ∈ Z+. We first note that F (t) ≤ 1 (since F is a distribution function).
To prove the next assertion, we will proceed by recurrence on k. It is clear that
Fn(0) = 0. Let us now suppose that Fn

(
ℓ
n

)
≤ F

(
ℓ
n

)
for all 1 ≤ ℓ ≤ k − 1. Now

let us show that Fn

(
k
n

)
≤ F

(
k
n

)
. We have

F

(
k

n

)
= E

[
1η≤ k

n
exp

{∫ k
n

0

(
F

(
k

n
− u

)
− 1
)
λ(u) du

}]

≥ E

[
1η≤ k

n
exp

{
k∑

ℓ=1

∫ ℓ
n

ℓ−1
n

(
F

(
k − ℓ

n

)
− 1
)
λ(u) du

}]

≥ E

[
1η≤ k

n
exp

{
k∑

ℓ=1

(
Fn

(
k − ℓ

n

)
− 1
)∫ ℓ

n

ℓ−1
n

λ(u) du
}]

= Fn

(
k

n

)
,

where we have used the fact that F is non-decreasing and the recurrence assump-
tion. □

The previous result extends to all t.

Lemma A.2. For any t ≥ 0, we have

Fn (t) ≤ F (t) ≤ 1.

Proof. We first note that∫ t

0
(1 − F (t− u))λ(u) du ≤

[nt]∑
ℓ=1

∫ ℓ
n

ℓ−1
n

(1 − F (t− u))λ(u) du+
∫ t

[nt]
n

λ(u) du.

From the fact that F is non-decreasing and [nt]
n ≤ t, we deduce that∫ t

0
(1 − F (t− u)) du ≤

⌈nt⌉∑
ℓ=1

∫ ℓ
n

ℓ−1
n

(
1 − F

(
[nt] − ℓ

n

))
λ(u) du+

∫ t

[nt]
n

λ(u) du,
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∫ t

0
(F (t− u) − 1) du ≥

[nt]∑
ℓ=1

(
Fn

(
⌈nt⌉ − ℓ

n

)
− 1
)∫ ℓ

n

ℓ−1
n

λ(u) du−
∫ t

[nt]
n

λ(u) du,

where we have used Lemma A.1 for the last inequality. The desired result follows
by combining the last inequality with (A.2). □

We have the following result.

Proposition A.3. Let T > 0. Then there exists a constant C such that, for all
n ≥ 1 and 0 < s < t < T ,

−C

n
− C(t− s) ≤ Fn(t) − Fn(s) ≤ C(t− s) + ϕ(t) − ϕ(s) + C

n
,

where ϕ(t) = P(η ≤ t) is the distribution function of η.

For the proof of this proposition, we will need several technical lemmas. In order
to simplify the notations below we let

an(k) =
[
Fn

(
k + 1
n

)
− Fn

(
k

n

)]−

,

bn(k) =
[
Fn

(
k + 1
n

)
− Fn

(
k

n

)]+
.

(A.3)

Let us define, for all n ≥ 1, k ∈ Z+,

Λn(k) =
k∑

ℓ=1

(
Fn

(
k − ℓ

n

)
− 1
)∫ ℓ

n

ℓ−1
n

λ(u) du ≤ 0 (A.4)

(see Lemma A.1), and let us rewrite (A.1) in the form

Fn

(
k

n

)
= E

[
1η≤ k

n
exp(Λn(k))

]
. (A.5)

Lemma A.4. For any n ≥ 1, k ∈ Z+, we have

A1(n, k) ≤ Fn

(
k + 1
n

)
− Fn

(
k

n

)
≤ A2(n, k)

with

A1(n, k) = exp
{

− λ∗

n

[
k−1∑
ℓ=0

an(ℓ) + 1
]}

− 1 (A.6)

and

A2(n, k) = exp
{
λ∗

n

k−1∑
ℓ=0

bn(ℓ)
}

− 1 + P
(
k

n
< η ≤ k + 1

n

)
. (A.7)
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Proof. Recalling (A.4) and (A.5), we first note that

Λn(k + 1) − Λn(k) =
k∑

ℓ=1

(
Fn

(
k + 1 − ℓ

n

)
− Fn

(
k − ℓ

n

))∫ ℓ
n

ℓ−1
n

λ(u) du

−
∫ k+1

n

k
n

λ(u) du.

It follows that

−
(

Λn(k + 1) − Λn(k)
)−

≥ −
k∑

ℓ=1

(
Fn

(
k + 1 − ℓ

n

)
− Fn

(
k − ℓ

n

))− ∫ ℓ
n

ℓ−1
n

λ(u) du

−
∫ k+1

n

k
n

λ(u) du

and(
Λn(k + 1) − Λn(k)

)+
≤

k∑
ℓ=1

(
Fn

(
k + 1 − ℓ

n

)
− Fn

(
k − ℓ

n

))+ ∫ ℓ
n

ℓ−1
n

λ(u) du.

Thus, we have

Fn

(
k + 1
n

)
− Fn

(
k

n

)
= E

[
1η≤ k+1

n
exp(Λn(k + 1)) − 1η≤ k

n
exp(Λn(k))

]
= E

[ (
1η≤ k+1

n
− 1η≤ k

n

)
exp(Λn(k + 1))

+ 1η≤ k
n

(exp(Λn(k + 1)) − exp(Λn(k)))
]

≤ E
[
1η≤ k+1

n
− 1η≤ k

n

+ 1η≤ k
n

exp(Λn(k)) (exp(Λn(k + 1) − Λn(k)) − 1)
]

≤ P
(
k

n
< η ≤ k + 1

n

)
+ E

(
exp

[
(Λn(k + 1) − Λn(k))+

]
− 1
)

≤ E

[
exp

{
k∑

ℓ=1

(
Fn

(
k + 1 − ℓ

n

)
− Fn

(
k − ℓ

n

))+ ∫ ℓ
n

ℓ−1
n

λ(u) du
}]

− 1 + P
(
k

n
< η ≤ k + 1

n

)
≤ A2(n, k),

where we have used (A.3) and (A.7) in the last inequality. We also have

Fn

(
k + 1
n

)
− Fn

(
k

n

)
= E

[
1η≤ k+1

n
exp(Λn(k + 1)) − 1η≤ k

n
exp(Λn(k))

]
≥ E

[
1η≤ k

n
exp(Λn(k))

(
exp(Λn(k + 1) − Λn(k)) − 1

)]
≥ E

[
1η≤ k

n
exp(Λn(k))

(
exp(−(Λn(k + 1) − Λn(k))−) − 1

)]
≥ E

[
exp(−(Λn(k + 1) − Λn(k))−) − 1

]
.
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Combining the above arguments with (A.3) and (A.6), we deduce that

Fn

(
k + 1
n

)
− Fn

(
k

n

)
≥ A1(n, k). □

Recall (A.3). We have the following lemma.

Lemma A.5. Let T > 0. Then there exists a constant C such that, for all n ≥ 1
and 0 ≤ k

n < T ,
k∑

ℓ=0
an(ℓ) ≤ C and

k∑
ℓ=0

bn(ℓ) ≤ C.

Proof. Let us show the first assertion. For this, we first prove that

an(k) ≤ r (1 + r)k−1 with r = λ∗

n
.

According to Lemma A.4, we have

an(k) ≤ −A1(n, k) = 1 − exp
{

− r

[
k−1∑
ℓ=0

an(ℓ) + 1
]}

≤ r

(
k−1∑
ℓ=0

an(ℓ) + 1
)
.

However, it is not hard to see that an(0) = 0 and an(1) ≤ r. Let us suppose
an(ℓ) ≤ r (1 + r)ℓ−1 for all 1 ≤ ℓ ≤ k − 1. Thus, it is easy to see that

an(k) ≤ r
(
1 + r + r(1 + r) + . . . + r(r + 1)k−2)

= r

(
1 + r

k−1∑
i=1

(1 + r)i−1

)
= r(1 + r)k−1.

Consequently, since k
n ≤ T , we have

k∑
ℓ=0

an(ℓ) =
k∑

ℓ=1
an(ℓ) ≤

k∑
ℓ=1

r(1 + r)ℓ−1 = (1 + r)k − 1 ≤ erk ≤ eλ∗T ≤ CT .

We now show the second assertion. We first have bn(0) = Fn

( 1
n

)
. Then we have

k∑
ℓ=0

bn(ℓ) = Fn

(
1
n

)
+

k∑
ℓ=1

(
Fn

(
ℓ+ 1
n

)
− Fn

(
ℓ

n

))
+

k∑
ℓ=1

an(ℓ)

= Fn

(
k + 1
n

)
+

k∑
ℓ=1

an(ℓ)

≤ 1 +
k∑

ℓ=1
an(ℓ),

where we have used Lemma A.1 in the last inequality. The desired result follows
by combining this with the first assertion. □
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Lemma A.6. Let T > 0. Then there exists a constant C such that, for all n ≥ 1
and 0 ≤ ℓ

n < k
n < T ,

−C
(
k − ℓ

n

)
≤ Fn

(
k

n

)
− Fn

(
ℓ

n

)
≤ C

(
k − ℓ

n

)
+ ϕ

(
k

n

)
− ϕ

(
ℓ

n

)
,

where ϕ(t) = P(η ≤ t) is the distribution function of the random variable η.

Proof. Recall (A.6) and (A.7). We have

−A1(n, k) = 1 − exp
{

− λ∗

n

[
k−1∑
ℓ=0

an(ℓ) + 1
]}

≤ λ∗

n

[
k−1∑
ℓ=0

an(ℓ) + 1
]

≤ C

n
,

where we have used Lemma A.5. However, we have

A2(n, k) = exp
{
λ∗

n

k−1∑
ℓ=0

bn(ℓ)
}

− 1 + P
(
k

n
< η ≤ k + 1

n

)
≤ C

λ∗

n
exp

{
C
λ∗

n

}
+ P

(
k

n
< η ≤ k + 1

n

)
≤ C

n
+ P

(
k

n
< η ≤ k + 1

n

)
,

where we have used the fact that ex − 1 ≤ xex for all x ≥ 0 and Lemma A.5. Now
combining the above arguments with Lemma A.4, we deduce that

−C

n
≤ Fn

(
k + 1
n

)
− Fn

(
k

n

)
≤ C

n
+ P

(
k

n
< η ≤ k + 1

n

)
.

However, we note that

Fn

(
k

n

)
− Fn

(
ℓ

n

)
=

k−1∑
j=ℓ

(
Fn

(
j + 1
n

)
− Fn

(
j

n

))
.

The desired result follows by combining this with the previous inequalities. □

Let us define, for all n ≥ 1, t > 0 with k = ⌈nt⌉,

Λn(t) =
k−1∑
ℓ=1

(
Fn

(
k − ℓ

n

)
− 1
)∫ ℓ

n

ℓ−1
n

λ(u) du−
∫ t

k−1
n

λ(u) du (A.8)

(see Lemma A.1) and let us rewrite (A.2) in the form

Fn(t) = E
[
1η≤t exp(Λn(t))

]
. (A.9)
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Lemma A.7. Let T > 0. Then there exists a constant C such that, for all n ≥ 1
and 0 < ℓ−1

n < s < ℓ
n < k

n < t < k+1
n < T ,

(Λn(t) − Λn(k))+ = 0, (Λn(t) − Λn(k))− ≤ C

(
t− k

n

)
,

(Λn(ℓ) − Λn(s))+ ≤ C

n
and (Λn(ℓ) − Λn(s))− ≤ C

n
+ C

(
ℓ

n
− s

)
,

where Λn(·) is as defined in (A.4).

Proof. From (A.4) and (A.8), we have

−λ∗
(
t− k

n

)
≤ Λn(t) − Λn(k) = −

∫ t

k
n

λ(u) du ≤ 0.

Thus, we obtain the first two assertions. In the same way, from (A.4) and (A.8)
we have

Λn(ℓ) − Λn(s) =
ℓ−2∑
j=1

(
Fn

(
ℓ− j

n

)
− Fn

(
ℓ− 1 − j

n

))∫ j
n

j−1
n

λ(u) du−
∫ ℓ

n

ℓ−1
n

λ(u) du

+
(
Fn

(
1
n

)
− 1
)∫ ℓ−1

n

ℓ−2
n

λ(u) du+
∫ s

ℓ−2
n

λ(u) du

=
ℓ−2∑
j=1

(
Fn

(
ℓ− j

n

)
− Fn

(
ℓ− 1 − j

n

))∫ j
n

j−1
n

λ(u) du

+ Fn

(
1
n

)∫ ℓ−1
n

ℓ−2
n

λ(u) du−
∫ ℓ

n

s

λ(u) du.

Combining this with Lemmas A.1, A.5 and (A.3), we deduce that

(Λn(ℓ) − Λn(ℓ− 1, s))+ ≤ C

n
and (Λn(ℓ) − Λn(ℓ− 1, s))− ≤ C

n
+ C

(
ℓ

n
− s

)
.

□

Lemma A.8. Let T > 0. Then there exists a constant C such that, for all n ≥ 1
and 0 < ℓ−1

n < s < ℓ
n < k

n < t < k+1
n < T ,

−C

n
− C

(
ℓ

n
− s

)
≤ Fn

(
ℓ

n

)
− Fn(s) ≤ C

n
+ ϕ

(
ℓ

n

)
− ϕ (s)

and

−C
(
t− k

n

)
≤ Fn (t) − Fn

(
k

n

)
≤ C

(
t− k

n

)
+ ϕ (t) − ϕ

(
k

n

)
,

where ϕ(t) = P(η ≤ t) is the distribution function of η.
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Proof. Recall (A.5) and (A.9). From an easy adaptation of the argument of the
proof of Lemma A.4 and from Lemma A.7, we have

E
(
e[Λn(ℓ)−Λn(ℓ−1,s)]−

− 1
)

≤ Fn

(
ℓ

n

)
− Fn(s)

≤ P
(
s < η ≤ ℓ

n

)
+ E

(
e[Λn(ℓ)−Λn(ℓ−1,s)]+

− 1
)
,

−E
(
[Λn(ℓ) − Λn(ℓ− 1, s)]−

)
≤ Fn

(
ℓ

n

)
− Fn(s)

≤ ϕ

(
ℓ

n

)
− ϕ (s) + CE

(
[Λn(ℓ) − Λn(ℓ− 1, s)]+

)
,

−C

n
− C

(
ℓ

n
− s

)
≤ Fn

(
ℓ

n

)
− Fn(s) ≤ C

n
+ ϕ

(
ℓ

n

)
− ϕ (s) .

In the same way, we get the other assertion. □

We can now turn to proving A.3.

Proof of Proposition A.3. By combining Lemmas A.6 and A.8 and the fact that

Fn(t) − Fn(s) = Fn(t) − Fn

(
k

n

)
+ Fn

(
k

n

)
− Fn

(
ℓ

n

)
+ Fn

(
ℓ

n

)
− Fn(s),

we deduce that

−C

n
− C(t− s) ≤ Fn(t) − Fn(s) ≤ C

(
t− ℓ

n

)
+ ϕ(t) − ϕ(s) + C

n
.

Therefore,

−C

n
− C(t− s) ≤ Fn(t) − Fn(s) ≤ C(t− s) + ϕ(t) − ϕ(s) + C

n
.

The desired result follows. □

Recall that the goal of this appendix is to prove the convergence of the sequence
(Fn)n≥1 towards F , the unique solution of equation (3.2). For T > 0, we define
w′

T (x, ·), the modulus of continuity of x ∈ D([0,+∞)) on the interval [0, T ], by

w′
T (x, δ) = inf max

0≤i<m
sup

ti≤s<t≤ti+1

|x(t) − x(s)|,

where the infimum is taken over the set of all increasing sequences 0 = t0 < t1 <
· · · < tm = T with the property that inf0≤i<m |ti+1 − ti| ≥ δ. Let {xn : n ≥ 1} be a
sequence function in D([0,+∞)). The following result is a version of Theorem 12.3
from [2].
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Proposition A.9. Let T > 0. A necessary and sufficient condition for the se-
quence {xn : n ≥ 1} to be relatively compact in D([0,+∞)) is that the following
hold:

(i) sup
n≥1

sup
0≤t≤T

|xn(t)| < +∞,

(ii) lim
δ→0

lim sup
n→+∞

w′
T (xn, δ) = 0.

We now show that the sequence (Fn)n≥1 satisfies the assertions of the above
proposition.

Proposition A.10. The sequence (Fn)n≥1 is relatively compact in D([0,+∞)).

Proof. Condition (i) follows from Lemma A.2. Hence, it suffices to verify (ii). To
this end, let us define ψ(t) = ϕ(t)+Ct for all t > 0, where again ϕ is the distribution
function on η. It follows from Proposition A.3 that

|Fn(t) − Fn(s)| ≤ ψ(t) − ψ(s) + C

n
for all t > s > 0. (A.10)

It is easy to deduce from the definition of w′
T (·, ·) and (A.10) that

w′
T (Fn, δ) ≤ w′

T (ψ, δ) + C

n
.

Note that, since ψ ∈ D([0,+∞)), w′
T (ψ, δ) → 0 as δ → 0 (see [2, Sect. 12, p. 123]).

Thus, the desired result follows. □

We are now ready to state the main result of this appendix.

Proposition A.11. As n → +∞, {Fn(t) : t > 0} → {F (t) : t > 0} in D([0,+∞)),
where F is the unique solution of (3.2).

Proof. From Proposition A.10, we deduce that at least along a subsequence (but
we use the same notation for the subsequence as for the sequence), Fn converges
towards a limit denoted by J , where J is continuous on the right and admits a limit
on the left. In order to show that F = J , it suffices to prove that J is a solution
of equation (3.2) and then use Proposition 3.3. Indeed, let us rewrite (A.2) in the
form

Fn(t) = E

[
1η≤t exp

{∫ ⌊nt⌋−1
n

0

(
Fn

(
⌊nt⌋ − ⌈nu⌉

n

)
− 1
)
λ(u) du

}
−
∫ t

⌊nt⌋−1
n

λ(u) du
]
.

Thus, it only remains to show that

Fn(t) → J(t) = E

[
1η≤t exp

{∫ t

0

(
J(t− u) − 1

)
λ(u) du

}]
as n → +∞
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to obtain the desired result. To this end, we note that∫ t

0

∣∣∣∣Fn

(
⌊nt⌋ − ⌈nu⌉

n

)
− J(t− u)

∣∣∣∣λ(u) du

≤
∫ t

0

∣∣∣∣Fn

(
⌊nt⌋ − ⌈nu⌉

n

)
− Fn(t− u)

∣∣∣∣λ(u) du

+
∫ t

0
|Fn(t− u) − J(t− u)|λ(u) du

≤ λ∗
∫ t

0
ψ(t− u) − ψ

(
t− u− 2

n

)
du

+ C

n
λ∗t+ λ∗

∫ t

0
|Fn(t− u) − J(t− u)| du,

where we have used (A.10) in the last inequality. Since ψ is left-continuous and lo-
cally bounded, the first term tends to 0 as n → ∞, thanks to Lebesgue’s dominated
convergence theorem. The second term tends clearly to 0. From the convergence
in D for the Skorohod topology, Fn(t−u) → J(t−u) du a.e. Moreover, Lemma A.2
allows us to use Lebesgue’s dominated convergence theorem again, and the result
follows. □
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