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ABSTRACT

We present a formalism for unifying the inference of population size from genetic sequences and
mathematical models of infectious disease in populations. Virus phylogenies have been used in many
recent studies to infer properties of epidemics. These approaches rely on coalescent models that may not
be appropriate for infectious diseases. We account for phylogenetic patterns of viruses in susceptible–
infected (SI), susceptible–infected–susceptible (SIS), and susceptible–infected–recovered (SIR) models of
infectious disease, and our approach may be a viable alternative to demographic models used to
reconstruct epidemic dynamics. The method allows epidemiological parameters, such as the reproductive
number, to be estimated directly from viral sequence data. We also describe patterns of phylogenetic
clustering that are often construed as arising from a short chain of transmissions. Our model reproduces
the moments of the distribution of phylogenetic cluster sizes and may therefore serve as a null hypothesis
for cluster sizes under simple epidemiological models. We examine a small cross-sectional sample of
human immunodeficiency (HIV)-1 sequences collected in the United States and compare our results to
standard estimates of effective population size. Estimated prevalence is consistent with estimates of
effective population size and the known history of the HIV epidemic. While our model accurately
estimates prevalence during exponential growth, we find that periods of decline are harder to identify.

COALESCENT theory has found wide applications
for inference of viral phylogenies (Nee et al. 1996;

Rosenberg and Nordborg 2002; Drummond et al.
2005) and estimation of epidemic prevalence (Yusim

et al. 2001; Robbins et al. 2003; Wilson et al. 2005), yet
there have been few attempts to formally integrate
coalescent theory with standard epidemiological models
(Pybus et al. 2001; Goodreau 2006). While epidemi-
ological models such as susceptible–infected–recovered
(SIR) consider the dynamics of an entire population
going forward in time, the coalescent theory operates
on a small sample of an infected subpopulation and
models the merging of lineages backward in time until
a common ancestor has been reached. The original
coalescent theory was based on a population of con-
stant size with discrete generations (Kingman 1982a,b).
Numerous extensions have been made for populations
with overlapping generations in continuous time, expo-
nential or logistic growth (Griffiths and Tavare 1994),
and stochastically varying size (Kaj and Krone 2003).
However, infectious disease epidemics are a special case

of a variable size population, often characterized by
early explosive growth followed by decline that leads to
extinction or an endemic steady state.

If superinfection is rare and if mutation is fast relative
to epidemic growth, each lineage in a phylogenetic tree
corresponds to a single infected individual with its
own unique viral population. An infection event viewed
in reverse time is equivalent to the coalescence of two
lineages and every transmission of the virus between
hosts can generate a new branch in the phylogeny of
consensus viral isolates from infected individuals. Re-
cently diverged sequences should represent transmis-
sions in the recent past, and branches close to the root
of a tree should represent transmissions from long ago.
Consequently, branching patterns provide information
about the frequency of transmissions over time (Wilson

et al. 2005). The correspondence between transmission
and phylogenetic branching is easiest to detect for
viruses such as human immunodeficiency virus (HIV)
and hepatitis C virus that have a high mutation rate
relative to dispersal. Underlying SIR dynamics also apply
to other pathogens, although in some cases it may be
more difficult to reconstruct the transmission history.

We examined the properties of viral phylogenies
generated by the most common epidemiological mod-
els based on ordinary differential equations (ODEs).
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We are able to fit epidemiological models to a recon-
structed phylogeny for sampled viral sequence data and
make inferences regarding the size of the correspond-
ing infected population. Our solution takes the form of
an ODE analogous to those used to track epidemic
prevalence and thereby provides a convenient link be-
tween commonly used epidemiological models and
phylodynamics. Virtually all coalescent theory to date
has been expressed in terms of integer-valued stochastic
processes. Our motivation for using differential equa-
tions to describe the coalescent process is a desire to
formalize a link with standard epidemiological models
that are also expressed in terms of differential equations.

We use our method to calculate the distribution of
coalescent times for samples of viral sequences, fit
SIR models to a viral phylogeny, and calculate median
time to the most recent common ancestor (MRCA) of
the sample. Our method also provides equations that
describe the time evolution of the cluster size distribu-
tion (CSD)—the distribution of the number of descend-
ants of a lineage over time. Clusters of related virus
are often interpreted as epidemiologically linked. For
example, clusters of acute HIV infections may represent
short transmission chains between high-risk individuals
(Yerly et al. 2001; Hue et al. 2005; Pao et al. 2005;
Goodreau 2006; Brenner et al. 2007; Drumright and
Frost 2008; Lewis et al. 2008). Because our model
reproduces the moments of the cluster size distribution,
it can be used to predict the level of clustering as a
function of epidemiological conditions. The moments
could be directly compared to empirical values or they
could be used to reconstruct the entire CSD, where-
upon standard statistical tests could be used for com-
paring distributions.

Although our equations describe the macroscopic
properties of the population distribution of cluster sizes,
we generalize our method to the case of a small cross-
sectional sample of sequences. This allows us to develop
a likelihood-based approach to fitting SIR models to
observed sequences.

By considering variable degrees of incidence and the
size of the infected population, our solution sheds light
on the relationship between coalescent rates and epi-
demic dynamics. Coalescent rates are low near peak
prevalence, but higher when there is a large ratio of
incidence to prevalence. This can occur early on, when
the epidemic is entering its expansion phase, as well as
late if the epidemic has multiple periods of growth.

METHODS

Consider a population of size N comprising suscepti-
ble ðSÞ, infected ðIÞ, and recovered ðRÞ individuals.
The deterministic limiting behavior of S ¼ jSj=N ,
I ¼ jIj=N , and R ¼ jRj=N as N /‘ and with all
variables ?1=N is described by a set of coupled ordinary
differential equations, with time-dependent rates of

change from state X to state Y denoted as fXY(t). For
instance, the classical mass-action SIR model

_S ¼ �bSI ; _I ¼ bSI � gI ; _R ¼ gI ð1Þ

(Kermack and McKendrick 1927; Bailey 1975;
Anderson and May 1991) is obtained by setting
fSI(t) ¼ bS(t)I(t), fIR(t) ¼ gI(t), and all other rates to 0.
We omit the explicit dependence of terms on time when
it is unambiguous.

Classical coalescent inference operates on a small
subsample of the larger evolving population, taken at a
single time point, and infers properties of the popula-
tion at an earlier time point; e.g., What is the expected
number of lineages at a given time t? Here, we denote
the time of sampling by T and consider the evolution
of the population backward in time toward time t ¼ 0.
While this differs from the conventional temporal nota-
tion for coalescent theory (where the sampling, or pre-
sent, time is denoted 0, and as we move backward t
denotes the number of years before the present), it allows
us to develop a system of equations that link coalescent
inference with standard epidemiological models.

We apply the coalescent model to the population of
infecteds ðIÞ and draw upon the dynamical system to
provide parameters such as the rate of lineage coa-
lescence. The practical questions that we seek to address
include the following:

If n individuals are sampled at time T, how many
lineages exist at time t # T ?

How many lineages extant at time t have surviving
progeny at time T ? We define progeny of a viral lineage
extant from time t # T as those individuals infected
at time T whose virus can be traced back to that viral
lineage at time t. For instance, in Figure 1, from t¼ t1
the progeny of lineage 6 has four individuals (5, 6, 8,
and 9), but from t ¼ t2 the progeny of lineage 6
consists of only 5 and 6.

Can we describe the distribution of the number of
progeny from time t (a time t cluster), X(t), using its
distributional moments? For instance, in Figure 1, at
time t ¼ t2 this distribution is given by (2, 2, 2), while
for t ¼ t1 the distribution is (4, 2).

Note that a transmission does not always result in an
observable coalescent event depending on which line-
ages expire due to recovery or are not sampled (e.g., the
transmission from 7 to 10 in Figure 1), and a transmission
to an individual that recovers may still correspond to a
coalescent event if that person transmits prior to re-
covering (e.g., the transmission from 6 to 7 in Figure 1).

Coalescent model for SIR epidemics: In an SIR
epidemic, a branch in the tree corresponds to a trans-
mission event, and as a lineage is traced backward in
time, it traverses multiple infected hosts. A recovery
event before the sample time T does not alter the
number of lineages with progeny because no progeny
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of this individual can be sampled at a later time. In a
standard coalescent model, n lineages merge in reverse
time at a rate proportional to n

2

� �
. Given that a coalescent

event occurs among the individuals in I , the probability
of observing it among the n observed lineages is

n
2

� ��
jI j
2

� �
¼ nðn � 1Þ
jIj ðjI j � 1Þ :

We introduce the dimensionless variable A(t; T),
which is the fraction of the population at t with sampled
progeny extant at T. A(t; T) is proportional to the
number of ancestors of a sample of sequences and is
analogous to the integer-valued ancestor function used
in standard coalescent theory (Griffiths and Tavare

1994). We consider how A evolves as t moves into the
past, with T fixed.

If a fraction f of the infected population is sampled at
time T, then we observe a number n ¼ fjIðT Þj lineages.
Initially, t ¼ T, and A(T; T ) ¼ fI (the ancestor of each
sequence is itself). The sample fraction f is not always
known, but if f¼ 1, our solution will describe the evolution
of the fraction of extant lineages for the entire population.

Using the definition of A and assuming A?1=N , the
probability of a transmission event causing a coalescent
event to be observed in our sample is

pcðt; T Þ ¼ lim
N /‘

Aðt; T ÞN
2

� �
NI ðtÞ

2

� � ¼ Aðt; T Þ
I ðtÞ

� �2

:

The rate of coalescence for a sample of sequences is
analogous to the rate of change of the ancestor
function, A. We can write the coalescence rate for the

sample of sequences as the product of the number of
transmissions per unit time, fSI(t) and the probability
pc that a transmission results in a coalescence being
observed in our sample. The ancestor function A(t; T)
can be found by integrating the following backward
ordinary differential equation from time T:

� dA

dt
:¼ A

��
¼ �fSI pc ¼ �fSI

A

I

� �2

: ð2Þ

This equation works even when f ¼ 1, in which case A
represents the number of ancestors of the entire
population of infecteds observed at time T.

Cluster size distribution: Let X1(t ; T) denote the
number of progeny at T of a random infected host from
time t # T, given that such progeny exist. We denote the
expected value of X1 by x1(t; T) and interpret it as the
mean cluster size from time t. X2(t; T) [and x2¼ E(X2)] is a
random variable that describes the size of the cluster if it
is selected with probability proportional to the cluster’s
size. This is the same distribution of cluster sizes as if we
select an infected at time T and determine the size of
the cluster to which that infected belongs.

Below, we show that x1 and x2 can be found by inte-
grating the ordinary differential equations

x1
��ðt; T Þ ¼ fSI ðtÞI ðT Þ=I ðtÞ2; ð3Þ

x2
�� ¼ 2x1

�� ð4Þ

backward in time from T with initial prevalence I(T)
taken from the epidemic model. Also, initially (at t¼T),
all cluster sizes are unity, and x1(T; T) ¼ x2(T; T) ¼ 1.

The set of infecteds IðT Þ is distributed across a
number A(t; T)N clusters, and for any 0 # t # T, the

Figure 1.—An example of a phylogeny that
could be generated by an epidemic process.
The number of lineages at time t for a population
observed at time T is plotted below. A branch in
the tree corresponds to a transmission event, and
as a lineage is traced backward in time, it tra-
verses multiple infected hosts.
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average number of infecteds per time-t cluster is I(T)/
A(t; T). This implies

Aðt; T Þ ¼ I ðT Þ=x1ðt; T Þ: ð5Þ

Evaluating the backward derivative at t yields

A
�� ¼ �x1

��I ðT Þ=x2
1 : ð6Þ

Using Equation 6 in conjunction with Equations 2 and 5
yields Equation 3.

Dynamics of x2 can be found by directly quantifying the
mean field behavior of X2. Consider the size of a cluster
to which a focal individual, a sampled infected at time T,
belongs. As before, pc 3 fSI gives the rate of coalescence.
Two clusters merge at each coalescent event, so there is a
probability proportional to 2/A that a focal individual
belongs to a cluster that takes part in the event. And given
that the individual’s cluster coalesces, the average amount
by which the cluster increases is x1. Multiplying these
factors and probabilities together yields

x2
�� ¼ pcfSI

2

A
x1 ¼ 2x1

��
: ð7Þ

As with x1, this can be solved by integrating in reverse
time with initial conditions x2(T; T ) ¼ 1.

The variance of X1 can be found by noting that

EðX2
1Þ ¼

X
i

i2PrfX1 ¼ ig

¼
X

i

i PrfX1 ¼ ig
 ! P

i i2PrfX1 ¼ igP
i i PrfX1 ¼ ig

� �
: ð8Þ

Recall that X2 is the size of a cluster selected with
probability proportional to size, so

PrfX2 ¼ ig ¼ i PrfX1 ¼ ig=
X

j

j PrfX1 ¼ jg:

Combining the last two expressions with the definition
of x1 ¼

P
i i PrfX1 ¼ ig gives

EðX2
1Þ ¼ x1x2:

Then, the variance in cluster size is

VarðX1Þ ¼ EðX2
1Þ � ðEðX1ÞÞ2 ¼ x1x2 � x2

1 : ð9Þ

Higher moments can also be derived recursively from
earlier moments. We now show that the nth moment of
the CSD, Mn, can be found by solving the following
differential equation with initial conditions Mn(T ) ¼ 1,

Mn
�� ¼ fSI

A

I 2

Xn�1

i¼0

�
n
i

�
MiMn�i ; ð10Þ

where we define M0 :¼ 1 for convenience. Equations 3
and 4 could be derived using Equation 10 as a starting
point.

Equation 10 is obtained by multiplying the rate at
which a cluster merges with other clusters ( fSIA/I 2) and
the expected change in the nth moment when two

clusters merge. When a cluster of size i merges with a
cluster of size j, the nth moment to be considered will
change from that for a cluster of size i to that for a cluster
of size (i 1 j). To find the expected change in the nth
moment when two clusters merge, we sum over all
possible combinations of clusters of sizes i and j:

X
i

X
j

PrfX1 ¼ igPrfX1 ¼ jgði 1 jÞn � in

¼ �Mn 1
X

i

PrfX1 ¼ ig
X

j

PrfX1 ¼ jg
Xn

m¼0

�
n

m

�
in�mjm

¼ �Mn 1
X

i

PrfX1 ¼ ig
Xn

m¼0

�
n

m

�
in�m

X
j

PrfX1 ¼ jgjm

¼ �Mn 1
X

i

PrfX1 ¼ ig
Xn

m¼0

�
n

m

�
in�mMm

¼ �Mn 1
Xn

m¼0

�
n

m

�
Mn�mMm

¼
Xn�1

m¼0

�
n

m

�
Mn�mMm :

The product of the coalescent rate fSIA
2/I 2 and the

factor 1/A that accounts for the probability that a focal
lineage takes part in a coalescent event, along with the
expected size function, yields Equation 10. In support-
ing information, Figure S1, we compare solutions of this
equation to the second through fifth moments from
simulations.

Fitting epidemic models to sequence data: If we
know the branching times t1, t2, � � � , tn�1 for a phylogeny
constructed from n sequences, we can use Equation 2
to fit an SIR model. In practice, there is considerable
uncertainty about the exact genealogy and branching
times given a sample of sequences. The theory de-
veloped here is based on a fixed genealogy with no
uncertainty about branch lengths, but it should be
straightforward to generalize these results to cope with
error in the ti (Drummond et al. 2005).

The total number of coalescent events observed be-
tween times t and T is proportional to A(T; T) – A(t; T),
and at some time t , t , T, the fraction of the coalescent
events that have occurred is

F ðtÞ ¼ AðT ; T Þ � Aðt; T Þ
AðT ; T Þ � Aðt; T Þ : ð11Þ

This provides a cumulative distribution function for the
distribution of coalescent times. Differentiating with
respect to t yields the density

�A
��
=ðAðT ; T Þ � Aðt; T ÞÞ:

We make the approximation that when two lineages
coalesce, the rates at which other lineages coalesce
remain unchanged. Then each coalescent time will be
an i.i.d. random variable with the distribution (11). The
probability of observing a particular sequence of
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branching times will be proportional to the product of
the density evaluated at each branching time. Conse-
quently, we can construct the log-likelihood function
out of an A-trajectory

Lðt1; � � � ; tn�1 j uÞ

¼
Xn�1

i¼1

logð�A
��
ðtiÞ=ðAðT Þ � AðtÞÞÞ

¼ �ðn � 1ÞlogðAðT ; T Þ � Aðt; T ÞÞ1
Xn�1

i¼1

logð� A
��
ðti ; T ÞÞ;

ð12Þ
where u denotes the parameters of the SIR model, such
as transmission and recovery rates. In File S1 we also
present a fitting criterion based on the Kolmogorov–
Smirnov statistic for comparing distributions.

RESULTS

Equation 3 indicates some simple relationships that
govern coalescent rates in epidemics. Coalescent rates
are proportional to epidemic incidence ( fSI) and in-
versely proportional to square prevalence (I�2). Rates
will be highest when prevalence is low and incidence is
high, such as at the beginning of an epidemic, during the
expansion phase, or following a trough in prevalence.

Equation 9 implies that variance of the CSD asymp-
totically approaches the mean squared (Figure S4). This
is similar to what is seen in the offspring distribution of
forward time branching processes, such as the Galton–
Watson process (Athreya and Ney 2004).

The point in time where the ancestor function (5)
crosses the value 1/N is the point at which the phylogeny
of the virus has collapsed to a single lineage—the MRCA
of the sequences. Therefore, if we collect a sample of size
n at time T, and solve Equation 2 to time zero, with A(T )¼
n/N, the time t that satisfies A(t)¼ 1/N corresponds to
the time to the most recent common ancestor of the

sample. Although our differential equations should not
serve as an adequate description of the discrete valued
processes for values close to 1/N, we find that this
approximation works quite well. A demonstration with
comparison to simulations is provided in Figure S11.

Simulations: To assess the performance of our model,
we carried out stochastic simulations of SIR epidemics.
Simulations were individual based and in continuous time.
Transmission events and recovery events were queued us-
ing exponentially distributed lag times, similar to the Gil-
lespie algorithm. Each transmission event was recorded,
which allowed us to simulate viral phylogenies under
controlled conditions and to test the accuracy of Equations
3 and 9. The transmission data were then converted into
phylogenetic trees with known branching times.

Simulation code was independently written by S. D.
Frost and E. M. Volz in Python and C. Results from both
models were compared to ensure accuracy.

To assess the accuracy of the equations we have
derived, we developed a simulation experiment with
103 (1%) initially infected agents out of a population of
total size N ¼ 105 otherwise identical agents. Trans-
mission and recovery rates were such that R0 ¼ 10/3.
Figure 2 shows Equations 3 and 9 (lines) and the 90%
confidence intervals from simulations at 10 thresholds
(t values). The exact values of t and T are reported in
File S1. Each trajectory corresponds to a cross-sectional
census of the infected population at four time points (T
values) corresponding to maximum prevalence, as well
as 86, 68, and 22% of maximum prevalence after the
peak. As we go backward in time, all moments of the
CSD increase, until the entire census of infecteds falls
into a single cluster. Many of the trajectories intersect,
which demonstrates that the CSD is a complex function
of both t and T and could therefore not be reduced to a
simple forward-looking model.

Comparison with the generalized skyline: Further
simulations were developed to test the suitability of the

Figure 2.—The moments of the cluster size distribution over time as calculated by Equations 3 and 9 (lines, log scale). Four
trajectories of the cluster size moments were generated for 4 sample times T. And for each trajectory, simulated moments were
calculated for 10 threshold times t. Error bars show the 90% interval for 100 agent-based simulations [N¼ 105 and I(0)¼ 1%]. The
SIR model is _S ¼ �bSI ; _I ¼ bSI � gI ; _R ¼ gI . Epidemic prevalence (dotted line) is shown on the right axis. Transmission rate
b ¼ 1, and recovery rate m ¼ 0.3.
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model for estimating epidemiological parameters.
When the number of infecteds is small, epidemic
dynamics will be subject to large stochastic fluctuations.
To determine if Equation 12 can be used to fit SIR
models when the population size is small, we conducted
a set of simulations with only a single initial infected in a
population of 10,000 agents (Figure S5).

The simulations were also designed to determine if
SIR models that are fit via likelihood Equation 12 can
provide advantages beyond methods that are commonly
used to estimate effective population size (Ne). For
purposes of comparison, we used the generalized sky-
line model (Opgen-Rhein et al. 2005) (ape library in R)
and compared the estimated effective population size to
the best-fit SIR models and the known epidemic
prevalence from simulations. Details of the simulations
are provided in File S1.

We found that the accuracy of the best-fit SIR
models exceeded that of the generalized skyline by
8–30% as measured by the root mean square error
(RMSE) of estimated prevalence. It may seem surpris-
ing that the SIR model based on ODEs outperforms
the generalized skyline even in the presence of
stochasticity at small population sizes. This is due to
the fact that population dynamics converge to the
deterministic SIR model as the infected population
increases in size. Fluctuating incidence due to sto-

chastic effects when the number of infecteds is small
has the effect of shifting the distribution of coales-
cence times to the left or the right, but does not
fundamentally change the shape of the distribution.
This is easily accounted for by including a parameter
that varies the fraction initially infected in the de-
terministic SIR model.

Figure 3 shows the distribution of RMSE over 300
simulations. The mode of RMSE for the SIR model is
zero for all experiments, whereas the skyline is slightly
biased. Increasing sample size decreases RMSE for both
SIR and skyline. Taking the sample at a later time
(corresponding to 20% of peak prevalence) decreases
the accuracy of both SIR and skyline, although in
general the SIR models cope better with late sample
times than does the skyline. In Figure S10, we show
several representative SIR and skyline fits. It is usually
the case that the generalized skyline fails to detect a
decrease in prevalence and overestimates in the latter
stages of the epidemic.

The SIR models also provide a quite accurate estimate
of R0 [R0 ¼ 2, R̂0 ¼ 1:95 (95%: 1.71–2.17)].

The effect of a sample fraction: In the Kingman
coalescent, the fraction of the population that is
sampled is assumed to be small, such that the probability
that more than two individuals have the same parent in
the preceding generation is negligible. For example,

Figure 3.—Root mean square error of SIR and generalized skyline estimates of epidemic prevalence. Data are based on 300
simulated epidemics (R0 ¼ 2). RMSE is averaged over 100 time points.
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Kingman showed that the probability that n sampled
sequences will not have a common ancestor in the
preceding generation isY

i,n

ð1� i=N Þ

¼ 1�
X
i,n

i

N
1 OðN �2Þ ¼ 1�

�
n

2

�
=N 1 OðN �2Þ:

Kingman then made the approximation that the O(N�2)
terms are zero, which yields a minimum requirement
that n ,

ffiffiffiffiffiffiffi
2N
p

.
Analytical work has been carried out to investigate the

effect on coalescent processes of violating the assump-
tion of a small sample fraction (see, for example, Fu

2006), using discrete mathematics similar to the original
Kingman model. Such work has indicated that the
Kingman coalescent can be a surprisingly good approx-
imation even when the sample fraction is large.

Nevertheless, our model is not an approximation and
takes the sample fraction into account. This gives some
insight into how the fraction of the infected population
sampled affects the distribution of coalescent times and
thus the shape of the reconstructed phylogeny of viral
sequences.

Figure 4 shows the empirical distribution of coales-
cence times for 150 simulations (R0 ¼ 2) with samples
taken at peak prevalence. The sample fraction was varied
from 5 to 40%. When the sample fraction is small (5%),
the distribution is skewed left, meaning the phylogeny is
starlike, which is in agreement with conventional notions
for an exponentially growing population. However, as the
sample fraction is increased to 10, 20, and 40%, the shape
of the distribution changes until it is skewed right, which
means that most of the branches occur close to the tips.
These qualitatively antipodal distributions are generated
by the same underlying population dynamics, with only
the sample fraction being varied. This observation is of
practical as well as theoretical interest, since many
serological surveys for HIV may reach .20% of infected
individuals within a given locality (Lewis et al. 2008).

Equation 11 gives the analytical distribution of co-
alescence times and is shown in red in Figure 4. It also
provides some simple intuition for why most coales-
cence events will happen close to the sample time (T)
when the sample fraction is large. We use the initial
conditions A(T)¼ n/N, so that when n is large, the term
(A(T)/I(T))2 is also large, which is the probability that
two individuals in a transmission event represent sample
lineages. Conversely, if n and (A(T)/I(T))2 are small,
fewer coalescent events will occur until I converges to A,
which will occur early in the epidemic.

Estimating HIV prevalence: Equation 2 gives the rate
of coalescence at any time prior to the sample time (T)
and, by extension, the distribution of coalescence times.
This allowed us to derive the likelihood function (12),
which we used to fit a simple mass-action SIR model to
55 HIV-1 sequences of the pol gene collected as part of
the ACTG241 clinical trial (D’Aquila et al. 1996; Leigh

Brown et al. 1999). All sequences were collected from
men who have sex with men (MSM) over a short period
of time (May to July, 1993) within the United States.
Because the sequences were collected within a short
window of time, it is valid to make the approximation
that all sequences were sampled simultaneously. To
estimate a phylogeny, we used a general-time-reversible
model of nucleotide substitution (Tavare 1986) with
gamma-distributed variation in site-to-site substitution
rates. The root giving the most clocklike rates was
determined by maximum likelihood and the null hy-
pothesis of a molecular clock could not be rejected at
the 5% significance level.

The epidemiology of HIV has several factors that are
important to include in a model. Upon infection,
individuals progress through an acute phase lasting 1–
3 months and then progress to a chronic phase lasting
many years. The transmission probability per act is
much greater during the acute phase. Furthermore,
since we wish to model the epidemic over a period of
25 years, we must consider natural mortality and immi-
gration into the susceptible pool. All of these factors are
considered in the following model:

Figure 4.—The empirical distribution of coalescence times based on 150 simulated SIR epidemics. Transmission rate ¼ 2, re-
covery rate ¼ 1. The expected distribution based on Equation 11 is shown in red.
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_S ¼ �Saðb1I1 � b2I2Þ1 m� mS ð13Þ

_I1 ¼ Saðb1I1 1 b2I2Þ � g1I1 � mI1 ð14Þ

_I2 ¼ g1I1 � g2I2 � mI2: ð15Þ

I1 and I2 respectively represent the fractions of the
population that are at the acute and the chronic stages
of infection. Parameters we wish to estimate include the
following:

b1: The transmission rate of acute infecteds.
b2: The transmission rate of chronic infecteds.
m: The immigration rate into the susceptible population

and the natural mortality rate. We consider immigra-
tion to balance natural mortality.

a: A parameter that controls how incidence scales with
cumulative incidence.

e: The fraction of the population infected at the TMRCA
of the sample.

Many more parameters could be included in a model
for HIV among MSM, but since our purpose is to fit a
model to only 55 sequences, we choose to keep the
number of free parameters to a minimum. In addition,
we assumed an acute phase that lasts 2 months on
average (g1 ¼ 1/60) and a chronic phase that lasts 10
years on average [g2 ¼ 1/(10 3 365)].

Prior distributions are given in File S1.
Given n ¼ 55 sequences, we use the initial conditions

A(T ) ¼ 55/N, I1(0) ¼ e, and S(0) ¼ 1 – e. Since we are
including equations for two types of infecteds, we must
keep track of ancestor functions for both types. A1 and
A2 are the fractions of the population that are re-
spectively acute and chronic infected and that have
sampled progeny at time T. We have

A2
�� ¼ �g1I1ðA2=I2Þ1 b2I2SaðA1=I1ÞððI2 � A2Þ=I2Þ ð16Þ

A1
�� ¼ g1I1ðA2=I2Þ � b1I1SaðA1=I1Þ2 � b2I2SaðA1=I1Þ:

ð17Þ

For purposes of fitting the SIR model, we use A¼ A1 1 A2

and A
�� ¼ A1

��
1 A2
��

. A derivation is provided in File S1.

Fitting the model proceeded in two steps. First, we fit
a model using Equation 12 as described above. The
second step made use of sero-surveillance data of MSM
in the United States (Hall et al. 2008). These data
provided estimates of HIV incidence based on back
calculation for the period 1977–2006. To ameliorate
error from uncertainty in the chronological values of
phylogenetic branch lengths, we adjusted the timescale of
the epidemic and rescaled estimated rates to gain the
greatest fit with incidence data by a least-squares criterion.

Figure 5 shows the best-fit SIR model. The median
posterior estimates were as follows: acute transmission
rate, b̂1 ¼ 1 transmission per 47 days; chronic trans-
mission rate, b̂2 ¼: 1 transmission per 1207 days; immi-
gration rate to susceptible state, m̂ ¼ 1 per 19.5 years;
and incidence scaling parameter, â ¼ 9:77. Together,
these parameters imply an R0 value of 2.24 (see File S1).
They also imply that 41% of transmissions occur during
the acute stage.

For comparison with our SIR model, effective pop-
ulation size (Ne) was calculated using the skyline plot
(Pybus et al. 2000). Ne was rescaled so that min(Ne) ¼
min(I). Figure 5 shows the rescaled skyline and an SIR
trajectory that was integrated with parameters from the
median of the posterior distribution. Confidence inter-
vals are also given, which show the upper and lower
bounds within which 95% of posterior epidemic prev-
alence falls. Figure 5 also compares the best-fit SIR
model with the estimated cumulative incidence among
MSM in the United States based on sero-surveillance
data. The SIR model is in broad agreement with the data
from public health sources regarding the early rate of
growth and saturation in the early 1990s. The skyline
also reproduces the growth rate during the expansion
phase and the tapering of epidemic growth in the early
1990s. However, the skyline predicts a rise in Ne between
1980 and 1993, which probably overestimates the true
prevalence.

We have also compared the CSD mean and variance
from our best-fit SIR model to the empirical values from
the ACTG241 data (Figure 6). The SIR model success-
fully reproduces the mean cluster size throughout the

Figure 5.—Left: Estimated ep-
idemic prevalence (logarithmic
scale) of HIV among MSM in
the United States. A solution to
Equation 16 is compared to the
skyline plot, rescaled such that
minimum effective population
size equals minimum prevalence.
The thin lines show 95% confi-
dence intervals. Right: Estimated
cumulative incidence of HIV
among MSM vs. time (years prior
to 1993). A solution to Equation
16 is compared to estimates based
on sero-surveillance data (Hall

et al. 2008).
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course of the epidemic. However, there is substantial
deviation between the actual and the predicted variance
of cluster sizes. As the clustering threshold is increased,
all sampled infecteds eventually fall within a single
cluster, and in a finite population, variance converges
to zero (not shown).

DISCUSSION

The distribution of cluster sizes is a function of the
time T at which we observe a population, such as by
taking a sample of sequences, and t , T, which is a
clustering threshold (if the MRCA of two sequences
occurs after t, then those sequences are clustered). We
have derived differential equations that describe how
the moments of the CSD change as the threshold t
moves into the past. This could be used to calculate the
distribution of cluster sizes to arbitrary precision at any
time. It is straightforward to use the model to calculate
the probability that an infected host will have viral
progeny at a later time point and, conversely, the
expected number of ancestor lineages of a sample taken
at T. The model promises to serve as a null hypothesis
for clustering of infecteds under various epidemiolog-
ical scenarios and could possibly be used to detect
effects that may distort the CSD such as selection and
population structure.

The CSD is sensitive to details of the underlying
population dynamics. Most coalescent approaches take
into account only variable population size, such as
epidemic prevalence, but not variable birth rates, anal-
ogous to epidemic incidence. Such approaches can give
misleading results for epidemics. For example, in both
susceptible–infected (SI) models (no recovery) and

susceptible–infected–susceptible (SIS) models (recov-
ery into the susceptible state), prevalence rapidly
approaches an equilibrium. However, a naive coalescent
model based on constant population size would erro-
neously predict identical coalescent patterns in these
two cases. In fact, the SIS case is very similar to a standard
constant-population size coalescent, but the lineages in
an SI epidemic coalesce only during exponential
growth, not at equilibrium (Figure S2 and Figure S3).

We observed drastically less precision when estimat-
ing recovery rates than when estimating transmission
rates. Consequently, decline in prevalence is much
harder to detect than growth. This has been observed
previously (Lavery et al. 1996) in other biological
systems due to differences in the timescale of popula-
tion change and genetic variation. We nevertheless
found that our estimation procedure is robust to
misspecification of priors that include zero recovery,
and it is feasible to distinguish SI from SIR dynamics
(Figure S6, Figure S7, Figure S8, and Figure S9).

In conclusion, coalescent-based estimates of effective
population size, such as the generalized skyline, have
wide applicability and require minimal consideration of
underlying population dynamics. However, in the case
that the epidemic dynamics are well understood, the
potential is raised for a population genetic model that
takes into account the precise effects of transmission
and recovery, thereby predicting population dynamics
with greater accuracy. We have developed a model that
provides a step toward the formal integration of phylo-
dynamics and epidemiology and that can be used to
estimate epidemiological and demographic parameters
directly from viral sequence data.

Fitting population models to data requires biological
simplifications to make the model tractable, which
presents the danger of making the model useless for
real systems (Wilson et al. 2005). Pathogens require
successful reproduction both within and between hosts,
whereas we have focused entirely on transmission of
lineages to uninfected and immunologically naive hosts.
We have not considered biological nuances such as
superinfection and recombination or the possibility that
different strains will have different epidemiological
characteristics. Consequently, there are many ways that
our model could be extended and improved.

We have calculated coalescent rates and CSD mo-
ments only for the most simple mass-action SIR models.
But modern mathematical epidemiology has pro-
gressed in the direction of incorporating variable host
susceptibility, pathogen virulence, geographical hetero-
geneity, and host contact network structure. Reproduc-
ing our derivations for such models would be a difficult
but worthy enterprise.

While we have focused on variable population size in
epidemics, a second pillar of phylodynamics concerns
the effects of immune selection on viral phylogenies
(Grenfell et al. 2004). A major limitation of our

Figure 6.—The mean cluster size (dashes) and variance of
cluster sizes (dotted line) are calculated from the empirical
observations from the ACTG241 sequences (dashed lines)
and compared to our best-fit SIR model (solid lines). The hor-
izontal axis gives the clustering threshold as the year of the
MRCA of a cluster.
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approach is that we adopt the standard assumption of
selective neutrality. It is unknown how our method
would perform for genes under strong immune selec-
tion, such as influenza virus hemagglutinin.

We have made a first attempt at a method for fitting
arbitrary SIR models to cross-sectional samples of viral
sequences. Many challenges remain for increasing the
utility of the method. It may be possible to improve
estimation of model parameters when historical preva-
lence data are available. However, it is not known how
to discriminate between competing models when only
sequence data are available. The estimation theory
developed here is based on a fixed genealogy of virus
with no uncertainty about branch lengths; in reality
there can be a great deal of uncertainty about the
structure of the genealogy, and it should be straightfor-
ward to generalize the method to account for this
(Drummond et al. 2005). Finally, it should also be
possible to extend our solutions to heterochronous
samples—sequence data collected at multiple time
points over the course of an epidemic.

Irene Hall provided estimates of HIV incidence in MSM. The
authors acknowledge support from the National Institutes of Health
(T32 AI07384, R01 AI47745). S.D.W.F. is supported by a Royal Society
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FIGURE S1.—Four trajectories of the 2nd through 5th moments of the cluster size distribution over

time. Each trajectory corresponds to a cross-sectional census of the infected population at four time-points
(T values). The SIR model is Ṡ = −βSI, İ = βSI − γI, Ṙ = γI. Transmission rate β = 1, and recovery
rate γ = 0.3. And for each trajectory, simulated moments were calculated for ten threshold times t. The
median outcome from one hundred agent-based simulations (N = 105 and I(0) = 1%) is shown with points.
Epidemic prevalence (dotted line) is shown on right axis.
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FIGURE S2.—The mean cluster size (x1) starting from t = 10, 40, and 60 (solid line, left axis), is shown
with epidemic prevalence (dots, right axis) and A (dashes). The left panel shows an SIS epidemic (R0 = 5)
and the right panel shows an SI epidemic.
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FIGURE S3.—A comparison of standard estimates of the expected time to the m’th coalescent, and
the variable A from our model. The model is SIS with R0 = 5.
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FIGURE S4.—The mean of the CSD (red, left axis) starting from four times over the course of the
epidemic, corresponding to prevalence (dots, right axis) of 100%, 86%, 68% and 22% of the maximum. Also
shown is the variance of the CSD over mean (solid lines, left axis). Dots (left axis) show the median of
simulations.
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FIGURE S5.—Prevalence over time in 288 solutions to the SIR model. Each replicate is based on a set
of parameters drawn independantly from the joint distribution described in Table 1 of the main text.
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FIGURE S6.—Top: The estimated transmission rate, estimated final prevalence, and estimated recovery
rates are shown versus the actual values in 288 replicates. Bottom: Histograms of residuals are shown for
transmission rates, final prevalence, and recovery rates.
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FIGURE S7.—The estimated transmission rate, estimated final prevalence, and estimated recovery rates
are shown versus the actual values in 60 replicates. The prior distribution was chosen to have a small R0 in
the range 1-3.
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FIGURE S8.—The estimated transmission rate, estimated final prevalence, and estimated recovery rates
are shown versus the actual values in 60 replicates. The prior distribution was chosen to have a small R0 in
the range 1-3. When estimating γ, the prior distribution was intentionally mis-specified.
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the generalized skyline. This instance is typical of many other simulations insofar as the generalized skyline
usually fails to detect a drop in prevalence until long after it has occured.
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FIGURE S11.—The empirical distribution of the TMRCA of a sample of size 50 in an SIR epidemic.
Theoretical and emprical estimates of the median TMRCA are shown as vertical lines.
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FILE S1

1 Higher moments and simulations

Figure S1 shows four solutions to
−·

Mn = fSI

A

I2

n−1
∑

i=0

(

n

i

)

MiMn−i. (1)

The epidemic model is the same as used in the text, with initial T values corresponding to 100% of peak

prevalence, and 50% and 85% of peak prevalence before the peak, as well as 50% of peak prevalence after

the peak.

2 SIS and SI dynamics

Equations 2, 4 and 5 in the main text correctly predict CSD moments in SI and SIS epidemics as well as the

SIR model presented in the main text.

In figure S2 we compare prediction and theory for an SIS model with a recovery rate = 20% and a

transmission rate of unity. The model has

fSI = βSI, Ṡ = −fSI + γI, İ = fSI − γI.

We also examine an SI model with a recovery rate of 20%, described by

fSI = βSI, Ṡ = −fSI , İ = fSI .

The population is observed at three time points: 10, 40 and 60 sec. Prevalence and A (fraction of the

population coalesced) are on the right axis. Mean cluster size is on the left axis.

In the SI model, coalescent events do not happen in tail of the epidemic, after all transmissions have

occurred. Consequently, the A and MCS curves for T = 40 and T = 60 coincide.

In the SIS model, the population coalesces even in the tail of the epidemic (at equlibrium), since trans-

missions are still occurring. The limiting value of x1 (at t = 0) in both cases is 104, which is 1 / the fraction

initially infected. The equations thereby predict the total population size assuming we infected one person

at random.

The limiting value of A (at t = 0) is 10−4, which is the fraction initially infected.
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Standard coalescent methods based on constant-size populations can be used for SIS dynamics at equi-

librium. In a Moran model (overlapping generations in a population of constant size), suppose the expected

generation time is 1/µ.The expected delay for i lineages to coalesce to i−1 is 1/(µ
(

i

2

)

). Let Ti be the expected

time of the i’th coalescent event among a sample of n lineages. We have

Tm =
∑

i<m

1/(µ

(

i

2

)

)

Suppose S∗ and I∗ are the fraction susceptible and infected at equilibrium in the SIS model, and N is the

size of the entire population. The number of transmissions is proportional to S∗× I∗×N and the probability

that a transmission corresponds to a coalescent event among n lineages is

pc =

(

n

2

)

/

(

NI∗

2

)

.

Then µ = (S∗ × I∗/(I∗(I∗ × N − 1))).

The quantity A from our model predicts the expected fraction of lineages in the population at any time,

and is related to the number of lineages in a coalescent.

A ≈ (n − m)/N,

with sample size n, population size N , and after m coalescent events have occured.

In figure S3, we have compared A with a plot of Tm versus (n − m)/N , with n = 1000 and N = 105.

These quantities coincide at equilibrium, but not during epidemic growth, when the population size is not

constant.

3 Variance and mean of the cluster size distribution

In the main text, we claimed that the variance of the CSD asymptotically approaches the mean squared.

Figure S4 demonstrates this by comparing the mean of the CSD to the variance over mean. Parameters are

the same as for Figure 2 in the main text.

4 Alternative fitting algorithms

In the paper we proposed a likelihood function for fitting compartmental models to a phylogeny. Alterna-

tively, we can compare the sequence of coalescent times to the predicted distribution of coalescent times.The
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Kolmogorov Smirnov test statistic

Dn = sup
t

|
1

n

n
∑

i=1

Iti≤t − FA(t)| (2)

gives the maximum difference between the theoretical distribution FA and the cumulative empirical distribu-

tion of coalescence times. Since FA is also a function of epidemic parameters θ, this motivates an alternative

fitting criterion, which is simply the p-value of the statistic Dn with n degrees of freedom.

5 Simulations: Efficiency of estimation algorithm

The procedure for estimating coverage and bias of our estimation algorithm is as follows:

1. 288 replicates were drawn from the joint-prior distribution for epidemic parameters (table 1 in main

text): transmission rate, recovery rate, time population observed, and population size.

2. An SIR model is integrated for each replicate, as well as the variable A in reverse-time. n = 55

coalescent times are drawn iid from the distribution of coalescent times with CDF FA(t).

3. The Bayesian importance sampling algorithm was applied to the sample of coalescent times, which

provided posterior estimates (mean of the posterior distribution) of transmission and recovery rates, as

well as the final prevalence at t1. Confidence intervals were also estimated.

4. Estimated values were compared to actual values, and coverage probabilities were calculated by com-

paring initial replicates from the prior distribution and the estimated confidence intervals.

The simulation prevalence trajectories are shown in figure S5. The results are shown in figure S6.

The estimated coverage probabilities are:

Parameter Coverage Probability

Recovery Rate 0.84

Transmission Rate 0.89

Final Prevalence 0.92

Our algorithm performs best for the transmission rate, but largely fails to predict the recovery rates.

5.1 Efficiency and recovery rate

A second set of experiments was conducted to see if estimation of recovery rate was more efficient for smaller

R0. 60 epidemics were generated using parameters drawn from the following priors:

• R0: Uniform(1.75, 2.25)
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• γ: Uniform(1.5, 1.75)

• T : Constant = 5

• N : Constant = 105

150 lineages were sampled and used to fit an SIR model using the likelihood function based on the KS statistic

(equation S2). Coverage values were similar to the 241 case.

• γ: 0.93

• β: 0.98

Figure S7 shows actual versus estimated transmission and recovery rates. As with the 241 data, we see our

method accurately estimates transmission rates (ρ = 0.92). However performance is poor for estimation of

the recovery rate (ρ = 0.40).

Although our estimate of γ is innaccurate, it is still robust against mis-specification of the prior dis-

tribution. Another set of simulations (figure S8) was conducted with parameters drawn from the same

distributions, but our estimation algorithm used a mis-specified prior for γ: Uniform(0, 1.75). The mis-

specification of γ throws off estimates of both β and final size, though our method correctly detects the

presence of recovery rates greater than zero, and most estimates are near the correct range 1.5-1.75. We have

ρ(β, β̂) = 0.92, and ρ(γ, γ̂) = 0.34. These results indicate that our estimation algorithm should at least be

able to distinguish between SI and SIR models.

Because of the difficuly of estimating recovery rates, informative priors for these parameters were used

for all results presented in the text. Fortunately, information on recovery and the natural history of a disease

is usually available for infectious diseases.

6 Comparison with the generalized skyline

The simulations were based on a sample of 50 or 500 sequences at one of two sample times:

1. The time of maximum prevalence

2. The time corresponding to 20% of maximum prevalence after the peak

Transmission and recovery rates were such that R0 = 2. Informative priors were used for the recovery rate and

the fraction of the population sampled (see below).RMSE was calculated by averaging the squared deviation

of estimated and true prevalence over 100 time points, from 0 to the sample time. When calculating RMSE,

we rescaled Ne from the generalized skyline using linear regression which minimizes the squared residuals
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with prevalence. The rescaled Ne provides the fairest possible comparison between effective population size

and the true prevalence.

The Metropolis-Hastings algorithm was used to fit the SIR model (MCMCpack in R). We began every

Markov chain out of equilibrium (r0 = 2.5, µ = 0.5), so as not to give the deterministic SIR dynamics an

unfair advantage over the skyline. To summarize, these experiments were conducted by the following steps:

1. simulate an SIR epidemic, take a standard random sample of agents at time T , and reconstruct the

genealogy of transmissions,

2. fit a generalized skyline model to the simulated genealogy,

3. fit an SIR model to the genealogy,

4. determine the goodness of fit of the skyline and SIR models to the actual epidemic prevalence over

time.

• transmission rate = 2

• recovery rate = 1

• N = 104

• one initial infected.

Fitting the SIR model was conducted using Metropolis-Hastings implemented in MCMCpack in R. The

simulations had the following parameters: The Markov chain was started out of equilibrium (transmission

rate = 2.5, recovery rate = .5). The Markov chain was iterated for 10000 steps, recording every fifth interval

and allowing a 5000 step burn-in. We used the following priors:

• Transmission rate ∼ Uniform(0-10)

• Recovery rate ∼ Normal(1, .5)

• Fraction initially infected ∼ Uniform(.25 × 10−4, 100 × 10−4)

• Fraction of the population sampled ∼ Normal(n × 10−4, (n/2) × 10−4)

The generalized skyline was computed using the mcmc.popsize function in the ape package of R. The

mcmc.popsize function also uses MCMC, and the Markov chain was iterated for 10000 steps with a 200 step

burn-in.
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Figure S10 shows the actual estimated prevalence from the skyline and SIR models. These trajectories

were picked randomly from the set of 300 simulations with n = 50 and the a sample time at 20% of maximum

prevalence.

It is usually the case that the generalized skyline fails to detect a decrease in prevalence and over-estimates

in the latter stages of the epidemic.

7 Time to most recent common ancestor

The point where A = 1/N represent the point where the genealogy of virus has collapsed to a single lineage–

the most recent common ancestor of the sample. Therefore, if we collect a sample of size n at time T , and

solve
−·

A = −fSI(A/I)2

to time zero, with A(T ) = n/N , the time τ which satisfies A(τ) = 1/N corresponds to the median time to

the most recent common ancestor of the sample.

A demonstration is illustrated in figure S11. The sample time T = 16.22 corresponds to 10% of peak

prevalence. The simulation parameters are

• N = 5 × 104

• I(0) = 1

• Transmission rate = 2

• Recovery rate = 1

• Sample size = 50

One thousand simualations were conducted, generating one thousand unique values of TMRCA. The empirical

distribution of these values is illustrated in figure S11. The median TMRCA is illustrated with black dots

and the time τ is shown as a red line.

The theory was also validated using simulations corresponding to samples at 100% and 50% of peak

prevalence.
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8 Model for HIV phylodynamics

In the text, we fit the following model to 55 HIV sequences:

Ṡ = −Sα(β1I1 − β2I2) + µ − µS (3)

İ1 = Sα(β1I1 + β2I2) − γ1I1 − µI1 (4)

İ2 = γ1I1 − γ2I2 − µI2. (5)

Note that this model implies that the reproduction number, R0, will be the expected number of transmis-

sions in the acute stage, plus the expected number of transmissions in the chronic stage, provided that the

population is susceptible except for a single infected (S ≈ 1). This is

R0 =
β1

γ1 + µ
+

β2

γ2 + µ
.

This model requires that we compartmentalize the ancestor function by the status (acute or chronic

infected) of the ancestor. A1 denotes the fraction of the population that is acute infected and which has

progeny extant at time T . A2 is the fraction of the population that is chronic infected and which has progeny

extant at time T . We now derive the following equations:

−·

A2 = −γ1I1(A2/I2) + β2I2S
α(A1/I1)((I2 − A2)/I2) (6)

−·

A1 = γ1I1(A2/I2) − β1I1S
α(A1/I1)

2 − β2I2S
α(A1/I1). (7)

• In forward time, Acute infecteds move to Chronic state at rate γ1. In reverse time, this flow is reversed.

– A number of chronics proportional to γ1A1 move to the Acute state.

– With probability A2/I2 the chronic is an ancestral lineage.

– Consequently, A1 increases at a partial rate γ1I1(A2/I2), and A2 decreases by the same partial

rate.

• A1 decreases at a partial rate β1I1S
α(A1/I1)

2 which has identical rationale as for A in the standard

SIR model.

• Chronic infecteds transmit to susceptibles at the rate β2I2S
α.

– With probability A1/I1, the new infected is an ancestral lineage.
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∗ If the transmitting Chronic is an ancestral lineage (with probability (A2/I2)), the lineage

represented by the Acute is coalesced into the Chronic.

∗ If the transmitting Chronic is not an ancestral lineage (with probability ((I2 − A2)/I2)), the

lineage moves to the Chronic state A2.

– Consequently, A1 decreases at a partial rate β2I2S
α(A1/I1). And, A2 increases at a partial rate

β2I2S
α(A1/I1)((I2 − A2)/I2).

Adding the partial rates yeilds equations S6.

The priors used for fitting ACTG are

• α ∼ Uniform(1, 30)

• β1 ∼ 1/Uniform(35,100)

• β2 ∼ 1/Uniform(350,1500)

• ǫ ∼ Uniform(1,20)/N

9 Sample and threshold times for simulations

In Figure 2 of the main text, four trajectories of the cluster size moments were generated for four sample

times T . And for each trajectory, simulated moments were calculated for ten threshold times t. The exact

values used are as follows:

T t t t t t t t t t t

7.96 5.27 0.96 2.68 0.1 6.13 6.99 3.54 7.86 4.41 1.82

9.77 4.35 0.1 9.67 5.42 3.29 1.16 8.61 6.48 2.22 7.54

11.22 4.99 0.1 6.22 1.32 8.67 3.77 9.89 7.44 11.12 2.54

16.06 3.62 5.38 0.1 7.15 1.86 8.91 10.67 12.44 14.20 15.96


