Probabilistic Models of Evolutionary Biology
CIRM, Marseille Luminy, May 25 - May 292009

Trees under attack: a genealogy in Feller's branching with logistic drift

Anton Wakolbinger
Institut für Mathematik, Universität Frankfurt
Joint work with Etienne Pardoux

Two beautiful genealogical structures behind Feller's branching diffusion:
a) the subordinator representation
b) the Ray-Knight theorem
(Neveu, Pitman, Yor, Le Gall ...)
$d Z_{t}^{x}=\sqrt{Z_{t}^{x}} d W_{t}^{x}, \quad Z_{0}^{x}=x$
a) $\quad Z_{t}^{x} \stackrel{d}{=} \sum_{(a, \zeta): a \leq x} \zeta_{t}, \quad t>0$,
where $((a, \zeta))$ is a Poisson point process on $\mathbb{R}_{+} \times \mathcal{E}$ with intensity measure $\lambda \otimes Q$
and Q is a measure on the space \mathcal{E} of excursions from 0 :

$$
Q(.)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \mathbf{P}_{\varepsilon}(Z \in(\cdot))
$$

b) $\quad\left(Z_{t}^{x}\right)_{t \geq 0} \stackrel{d}{=}\left(L_{S_{x}}(H, t)_{t \geq 0}\right.$
where H is a Brownian motion reflected at 0 ,
$L_{s}(H, t)$ is its local time up to s at height t,
$S_{x}:=\inf \left\{s>0: L_{s}(H, 0)=x\right\}$.

Intuitive explanation: Every single "mass excursion" ζ is the width profile of a (continuum) tree, which is coded by its exploration path.

The (mass) excursion measure Q is the image of the Itô excursion measure under the mapping $e \mapsto\left(L_{\infty}(e, t)\right)_{t>0}$

Extensions:

1. Supercritical branching:
$d Z_{t}=K Z_{t} d t+\sqrt{Z_{t}} d W_{t}, \quad K>0$.
J.F. Delmas 06, Height process for super-critical CSBP:

The exploration excursions have an upward drift and thus not necessarily return to 0 .

Way out: Cutting the forest at $t_{0}>0$ induces a reflection of the exploration process at height t_{0}, and gives a projective system indexed by t_{0}.
2. Critical branching with time-dependent branching rate:
$d Z_{t}=\sqrt{Z_{t}} \sigma_{t}^{2} d W_{t}$
A. Greven, L. Popovic, A. Winter 09, Genealogy of catalytic branching models:

The exploration process has generator $A f(h):=\left(\frac{2}{\sigma^{2}} f^{\prime}\right)^{\prime}(h)$ with reflection at $h=0$.
3. Feller branching with logistic drift:
$d Z_{t}=\left(K Z_{t}-\gamma Z_{t}^{2}\right) d t+\sqrt{Z_{t}} \sigma d W_{t}$

The quadratic drift term $-\gamma Z_{t}^{2}$ destroys the independence of the branching.

Microscopic picture: Individuals attack each other (pairwise)

3. Feller branching with logistic drift:
$d Z_{t}=\left(K Z_{t}-\gamma Z_{t}^{2}\right) d t+\sqrt{Z_{t}} \sigma d W_{t}$

To introduce an order, let us distribute the death rate asymmetrically upon the individuals:

3. Feller branching with logistic drift:
$d Z_{t}=\left(K Z_{t}-\gamma Z_{t}^{2}\right) d t+\sqrt{Z_{t}} \sigma d W_{t}$

To introduce an order, let us distribute the death rate asymmetrically upon the individuals:

3. Feller branching with logistic drift:
$d Z_{t}=\left(K Z_{t}-\gamma Z_{t}^{2}\right) d t+\sqrt{Z_{t}} \sigma d W_{t}$

Motto: those to the left attack those to the right
(this is of course not meant politically!)

For the sum of two populations:

Quadratic killing rate:
$-(z+y)^{2}$

For the sum of two populations:

Quadratic killing rate:
$-(z+y)^{2}=-z^{2}-2 z y-y^{2}$

Fact: For $x>0$ let Z^{x} be a solution of

$$
d Z_{t}=Z_{t}\left(K-\gamma Z_{t}\right) d t+\sqrt{Z_{t}} \sigma d W_{t}^{(0, x)}, \quad Z_{0}=x
$$

and for a given path $z=\left(z_{t}\right)$, and $\varepsilon>0$,
let $Y^{\varepsilon}(z)$ be a solution of
$d Y_{t}=Y_{t}\left(K-\gamma\left(Y_{t}+2 z_{t}\right)\right) d t+\sqrt{Y_{t}} \sigma d W_{t}^{(x, x+\varepsilon)}, \quad Y_{0}=\varepsilon$
Then $Z^{x+\varepsilon}:=Z^{x}+Y^{\varepsilon}\left(Z^{x}\right)$ solves

$$
d Z_{t}=Z_{t}\left(K-\gamma Z_{t}\right) d t+\sqrt{Z_{t}} \sigma d W_{t}^{(0, x+\varepsilon)}, \quad Z_{0}=x+\varepsilon
$$

Corollary: $\left(Z^{x}\right)_{x>0}$ is a (path-valued) jump process with generator

$$
\begin{gathered}
\mathcal{L} f(z):=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \mathbf{E}\left[f\left(z+Y^{\varepsilon}(z)\right)-f(z)\right] \\
=: \int(f(z+y)-f(z)) Q(z, d y)
\end{gathered}
$$

For $f(z)=\exp (-\langle z, \varphi\rangle)$,

$$
\mathcal{L} f(z)=\exp (-\langle z, \varphi\rangle) \int(\exp (-\langle y, \varphi\rangle)-1) Q(z, d y)
$$

So far this was on the level of "masses", decomposed with respect to the ancestry from time 0 .

Can we again understand the mass excursions as width profiles of continuum trees?

Let's look at the limit of rescaled binary branching processes (with particles of mass $\frac{1}{N}$ in the N-th rescaling).

The growth of the forest in the N-th rescaling:

Along any branch:
Birth clock rings at rate $N \sigma^{2} / 2+K$
Death clock rings at rate $N \sigma^{2} / 2+\gamma 2 \wedge_{t}(i) / N$, where
$\Lambda_{t}(i)$ is the number of individuals to the left of individual i

The growth of the forest in the N-th rescaling:

Along any branch:
Birth clock rings at rate $N \sigma^{2} / 2+K$
Death clock rings at rate $N \sigma^{2} / 2+\gamma 2 \wedge_{t}(i) / N$, where
$\Lambda_{t}(i)$ is the number of individuals to the left of individual i

$$
\sum_{i=1}^{N Z_{t}^{N}} \gamma 2 \wedge_{t}(i) / N=\gamma N Z_{t}^{N}\left(N Z_{t}^{N}-1\right) / N \sim N \gamma \cdot\left(Z_{t}^{N}\right)^{2}
$$

is the jump rate from Z_{t}^{N} to $Z_{t}^{N}-1 / N$ induced by the killing

The exploration process in the N-th rescaling:

Exploration paths H^{N} have slope $\pm 2 N$.
An individual $\left(s, H^{N}(s)\right)$ is visited at exploration time s and lives at real time $t=H^{N}(s)$.

Birth point of a branch \leftrightarrow local minimum of H^{N}
Death point of a branch \leftrightarrow local maximum of H^{N}
$L_{s}\left(H^{N}, t\right):=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \int_{0}^{s} 1_{\left\{t \leq H_{u}^{N}<t+\varepsilon\right\}} d u$
$N L_{s}\left(H^{N}, H_{s}^{N}\right) \sim \#$ of individuals to the left of $\left(s, H^{N}(s)\right)$

The dynamics of the exploration process

 in the N-th rescaling:Multiplying the (real time) branch birth and death rates by $2 N$ gives the slope change rates in the exploration time s :

Slope $-2 N$ changes to $+2 N$ at rate $N^{2} \sigma^{2}+2 N K$ Slope $+2 N$ changes to $-2 N$ at rate $N^{2} \sigma^{2}+4 \gamma N \ell$
where $h:=H_{s}^{N}, \quad \ell:=L_{s}^{N}:=L_{s}\left(H^{N}, H_{s}^{N}\right)$.

Theorem (with proof under construction)
As $N \rightarrow \infty$, the sequence of exploration processes
of the rescaled forests of the "trees under attack"
converge as $N \rightarrow \infty$ to the unique weak solution of

$$
(*) \quad d H_{s}=\frac{2}{\sigma} d B_{s}+\frac{2}{\sigma^{2}}\left(K-2 \gamma L_{s}\left(H, H_{s}\right)\right) d s
$$

starting in $H_{0}=0$, reflected at $h=0$ and stopped at
$S_{x}:=\inf \left\{s>0: L_{s}(H, 0)=x\right\}$.
Here, B is a standard Brownian motion and $L_{s}(H, h)$ is the local time of H at height h up to time s.

Elements of the proof:

Tightness issues
plus
identification of the limiting dynamics of H^{N} as $N \rightarrow \infty$

How to compensate $f\left(H_{s}^{N}\right)$ in order to get a martingale?
Perturbed test function method:
Consider the pair $\left(H_{s}^{N}, V_{s}^{N}\right)$ with $\frac{d H_{s}^{N}}{d s}=2 N V_{s}^{N}$, $V_{s}^{N}= \pm 1$.

Instead of $f\left(H_{s}^{N}\right)$ compensate $f^{N}\left(H_{s}^{N}, V_{s}^{N}\right)$, where
$f_{N}(h, v)=f(h)+\frac{v}{N \sigma_{h}^{2}} f^{\prime}(h)$
(In reminiscence of Anita Winter's talk
we allow here σ to depend on h.)

Expected rate of change of $f^{N}\left(H_{s}^{N}, V_{s}^{N}\right)$, given $\left(H_{s}^{N}, V_{s}^{N}, L_{s}^{N}\right)=(h, v, l)$:
$2 N v f^{\prime}(h)+2 N v \frac{v}{N}\left(\frac{f^{\prime}}{\sigma^{2}}\right)^{\prime}(h)$

$$
\begin{aligned}
& +\left(1_{\{v=-1\}}\left(2 N^{2} \sigma_{h}^{2}+4 K N\right)\right. \\
& \left.\quad+1_{\{v=+1\}}\left(-2 N^{2} \sigma_{h}^{2}-8 \gamma N \ell\right)\right) \frac{1}{N \sigma_{h}^{2}} f^{\prime}(h)
\end{aligned}
$$

Expected rate of change of $f^{N}\left(H_{s}^{N}, V_{s}^{N}\right)$, given $\left(H_{s}^{N}, V_{s}^{N}, L_{s}^{N}\right)=(h, v, l)$:
$2 N v f^{\prime}(h)+2 N v \frac{v}{N}\left(\frac{f^{\prime}}{\sigma^{2}}\right)^{\prime}(h)$

$$
\begin{aligned}
& +\left(1_{\{v=-1\}}\left(2 N^{2} \sigma_{h}^{2}+4 K N\right)\right. \\
& \left.\quad+1_{\{v=+1\}}\left(-2 N^{2} \sigma_{h}^{2}-8 \gamma N \ell\right)\right) \frac{1}{N \sigma_{h}^{2}} f^{\prime}(h)
\end{aligned}
$$

Expected rate of change of $f^{N}\left(H_{s}^{N}, V_{s}^{N}\right)$, given $\left(H_{s}^{N}, V_{s}^{N}, L_{s}^{N}\right)=(h, v, l)$:

$$
\left.\begin{array}{c}
2 N v \frac{v}{N}\left(\frac{f^{\prime}}{\sigma^{2}}\right)^{\prime}(h) \\
+\left(1_{\{v=-1\}}\right. \\
+1_{\{v=+1\}}
\end{array} \quad 4 K N, ~-8 \gamma N \ell\right) \frac{1}{N \sigma_{h}^{2}} f^{\prime}(h) .
$$

Expected rate of change of $f^{N}\left(H_{s}^{N}, V_{s}^{N}\right)$, given $\left(H_{s}^{N}, V_{s}^{N}, L_{s}^{N}\right)=(h, v, l)$:

$$
\begin{aligned}
& 2 N v \frac{v}{N}\left(\frac{f^{\prime}}{\sigma^{2}}\right)^{\prime}(h) \\
& +\left(1_{\{v=-1\}} \quad 4 K N\right. \\
& \left.+1_{\{v=+1\}} \quad-8 \gamma N \ell\right) \frac{1}{N \sigma_{h}^{2}} f^{\prime}(h)
\end{aligned}
$$

Expected rate of change of $f^{N}\left(H_{s}^{N}, V_{s}^{N}\right)$, given $\left(H_{s}^{N}, V_{s}^{N}, L_{s}^{N}\right)=(h, v, l)$:

$$
\begin{array}{cc}
2 & \left(\frac{f^{\prime}}{\sigma^{2}}\right)^{\prime}(h) \\
+\left(1_{\{v=-1\}}\right. & 4 K N \\
+1_{\{v=+1\}} & -8 \gamma N \ell) \frac{1}{N \sigma_{h}^{2}} f^{\prime}(h)
\end{array}
$$

Expected rate of change of $f^{N}\left(H_{s}^{N}, V_{s}^{N}\right)$, given $\left(H_{s}^{N}, V_{s}^{N}, L_{s}^{N}\right)=(h, v, l)$:

$$
\begin{array}{cc}
2 & \left(\frac{f^{\prime}}{\sigma^{2}}\right)^{\prime}(h) \\
+\left(1_{\{v=-1\}}\right. & 4 K N \\
+1_{\{v=+1\}} & -8 \gamma N \ell) \frac{1}{N \sigma_{h}^{2}} f^{\prime}(h)
\end{array}
$$

Expected rate of change of $f^{N}\left(H_{s}^{N}, V_{s}^{N}\right)$, given $\left(H_{s}^{N}, V_{s}^{N}, L_{s}^{N}\right)=(h, v, l)$:

$$
\begin{aligned}
& 2 \quad\left(\frac{f^{\prime}}{\sigma^{2}}\right)^{\prime}(h) \\
& +\left(1_{\{v=-1\}}\right. \\
& +1_{\{v=+1\}} \quad 4 K \\
&
\end{aligned}
$$

Expected rate of change of $f^{N}\left(H_{s}^{N}, V_{s}^{N}\right)$,
given $\left(H_{s}^{N}, V_{s}^{N}, L_{s}^{N}\right)=(h, v, l)$:

$$
\begin{gathered}
2\left(\frac{f^{\prime}}{\sigma^{2}}\right)^{\prime}(h) \\
+\left(1_{\{v=-1\}} 4 K-1_{\{v=+1\}} 8 \gamma \ell\right) \frac{1}{\sigma_{h}^{2}} f^{\prime}(h)
\end{gathered}
$$

In the limit $N \rightarrow \infty, V_{s}^{N}$ is uniform on $\{-1,+1\}$, leading to
$2\left(\frac{f^{\prime}}{\sigma^{2}}\right)^{\prime}+\frac{2}{\sigma^{2}}(K-2 \gamma \ell) f^{\prime}$

Corollary (Ray-Knight representation

 of Feller's branching with logistic growth)Let H be the solution of

$$
d H_{s}=\frac{2}{\sigma} d B_{s}+\frac{2}{\sigma^{2}}\left(K-2 \gamma L_{s}\left(H, H_{s}\right)\right) d s
$$

starting in $H_{0}=0$, reflected at $h=0$ and stopped at
$S_{x}:=\inf \left\{s>0: L_{s}(H, 0)=x\right\}$.
Then $L_{S_{x}}(H, t), t \geq 0$ solves
$d Z_{t}=\left(K Z_{t}-\gamma Z_{t}^{2}\right) d t+\sqrt{Z_{t}} \sigma d W_{t}$,
$Z_{0}=x$.

