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Two beautiful genealogical structures
behind Feller’s branching diffusion:

a) the subordinator representation

b) the Ray-Knight theorem

(Neveu, Pitman, Yor, Le Gall ...)

2



dZx
t =

√

Zx
t dWx

t , Zx
0 = x

a) Zx
t

d
=

∑

(a,ζ):a≤x
ζt, t > 0,

where ((a, ζ)) is a Poisson point process on R+ × E

with intensity measure λ⊗ Q

and Q is a measure on the space E of excursions from 0:

Q(.) = lim
ε→0

1

ε
Pε(Z ∈ (·))
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b) (Zx
t )t≥0

d
=

(

LSx(H, t
)

t≥0

where H is a Brownian motion reflected at 0,
Ls(H, t) is its local time up to s at height t,
Sx := inf{s > 0 : Ls(H,0) = x}.
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Intuitive explanation: Every single “mass excursion” ζ
is the width profile of a (continuum) tree,
which is coded by its exploration path.

ζ e

x

tt

s

The (mass) excursion measure Q is the image of the
Itô excursion measure under the mapping e '→ (L∞(e, t))t>0
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Extensions:

1. Supercritical branching:
dZt = KZtdt +

√
Zt dWt, K > 0.

J.F. Delmas 06, Height process for super-critical CSBP:

The exploration excursions have an upward drift
and thus not necessarily return to 0.

Way out: Cutting the forest at t0 > 0 induces a reflection
of the exploration process at height t0,
and gives a projective system indexed by t0.
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2. Critical branching with time-dependent branching rate:
dZt =

√
Zt σ2

t dWt

A. Greven, L. Popovic, A. Winter 09, Genealogy of catalytic

branching models:

The exploration process has generator Af(h) := (
2

σ2
f ′)′(h)

with reflection at h = 0.

10



3. Feller branching with logistic drift:

dZt = (KZt − γZ2
t )dt +

√
Zt σdWt

The quadratic drift term −γZ2
t destroys the independence

of the branching.

Microscopic picture: Individuals attack each other (pairwise)

z
11



3. Feller branching with logistic drift:

dZt = (KZt − γZ2
t )dt +

√
Zt σdWt

The quadratic drift term −γZ2
t destroys the independence

of the branching.
To introduce an order, let us distribute the death rate
asymmetrically upon the individuals:

z
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3. Feller branching with logistic drift:

dZt = (KZt − γZ2
t )dt +

√
Zt σdWt

The quadratic drift term −γZ2
t destroys the independence

of the branching.
Motto: those to the left attack those to the right
(this is of course not meant politically!)

z
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For the sum of two populations:

yz

Quadratic killing rate:

−(z + y)2
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For the sum of two populations:

yz

Quadratic killing rate:

−(z + y)2 = −z2 − 2zy − y2
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Fact: For x > 0 let Zx be a solution of

dZt = Zt(K − γZt)dt +
√

Zt σ dW (0,x)
t , Z0 = x,

and for a given path z = (zt), and ε > 0,
let Y ε(z) be a solution of

dYt = Yt

(

.

.
K − γ(Yt + 2zt)

)

dt +
√

Yt σ dW (x,x+ε)
t , Y0 = ε

Then Zx+ε := Zx + Y ε(Zx) solves

dZt = Zt(K − γZt)dt +
√

Zt σdW (0,x+ε)
t , Z0 = x + ε.
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Corollary: (Zx)x>0 is a (path-valued) jump process
with generator

Lf(z) := lim
ε→0

1

ε
E[f(z + Y ε(z)) − f(z)]

=:
∫

(f(z + y) − f(z))Q(z, dy).

For f(z) = exp(−〈z, ϕ〉),

Lf(z) = exp(−〈z, ϕ〉)
∫

(exp(−〈y, ϕ〉) − 1)Q(z, dy).
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So far this was on the level of “masses”, decomposed
with respect to the ancestry from time 0.

Can we again understand the mass excursions
as width profiles of continuum trees?

Let’s look at the limit of rescaled binary branching processes
(with particles of mass 1

N in the N -th rescaling).

20



0

t

21



The growth of the forest in the N -th rescaling:

Along any branch:
Birth clock rings at rate Nσ2/2 + K

Death clock rings at rate Nσ2/2 + γ2Λt(i)/N , where
Λt(i) is the number of individuals to the left of individual i
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The growth of the forest in the N -th rescaling:

Along any branch:
Birth clock rings at rate Nσ2/2 + K

Death clock rings at rate Nσ2/2 + γ2Λt(i)/N , where
Λt(i) is the number of individuals to the left of individual i

NZN
t

∑

i=1
γ2Λt(i)/N = γNZN

t (NZN
t − 1)/N ∼ Nγ · (ZN

t )2

is the jump rate from ZN
t to ZN

t − 1/N induced by the killing
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The exploration process in the N -th rescaling:

Exploration paths HN have slope ±2N .

An individual (s, HN(s)) is visited at exploration time s

and lives at real time t = HN(s).

Birth point of a branch↔ local minimum of HN

Death point of a branch↔ local maximum of HN

Ls(H
N, t) := lim

ε→0

1

ε

∫ s

0
1{t≤HN

u <t+ε} du

N Ls(HN, HN
s ) ∼ # of individuals to the left of (s, HN(s))
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The dynamics of the exploration process
in the N -th rescaling:

Multiplying the (real time) branch birth and death rates by 2N

gives the slope change rates in the exploration time s:

Slope −2N changes to+2N at rate N2σ2 + 2NK

Slope+2N changes to −2N at rate N2σ2 + 4γN'

where h := HN
s , ' := LN

s := Ls(HN, HN
s ).
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slope changes at rate N2σ2 + 4γ · 0

slope changes at rate N2σ2 + 4γ · 1

slope changes at rate N2σ2 + 4γ · 2
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Theorem (with proof under construction)
As N → ∞, the sequence of exploration processes
of the rescaled forests of the “trees under attack”
converge as N → ∞ to the unique weak solution of

(∗) dHs =
2

σ
dBs +

2

σ2
(K − 2γLs(H, Hs)) ds

starting in H0 = 0, reflected at h = 0 and stopped at
Sx := inf{s > 0 : Ls(H,0) = x}.
Here, B is a standard Brownian motion and Ls(H, h) is the
local time of H at height h up to time s.
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Elements of the proof:

Tightness issues
plus
identification of the limiting dynamics of HN as N → ∞
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How to compensate f(HN
s ) in order to get a martingale?

Perturbed test function method:

Consider the pair (HN
s , V N

s ) with dHN
s

ds
= 2NV N

s ,
V N

s = ±1.

Instead of f(HN
s ) compensate fN(HN

s , V N
s ), where

fN(h, v) = f(h) +
v

Nσ2
h
f ′(h)

(In reminiscence of Anita Winter’s talk
we allow here σ to depend on h.)
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Expected rate of change of fN(HN
s , V N

s ),
given (HN

s , V N
s , LN

s ) = (h, v, l):

2Nvf ′(h) + 2Nv v
N

(

f ′

σ2

)′
(h)

+(1{v=−1}(2N2σ2
h + 4KN)

+1{v=+1}(−2N2σ2
h − 8γN')) 1

Nσ2
h
f ′(h)
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Expected rate of change of fN(HN
s , V N

s ),
given (HN

s , V N
s , LN

s ) = (h, v, l):

2Nvf ′(h) + 2Nv v
N

(

f ′

σ2

)′
(h)

+(1{v=−1}(2N2σ2
h + 4KN)

+1{v=+1}(−2N2σ2
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Nσ2
h
f ′(h)
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Expected rate of change of fN(HN
s , V N

s ),
given (HN

s , V N
s , LN

s ) = (h, v, l):

2Nvf ′(h)+2
(

f ′

σ2

)′
(h)

+
(

1{v=−1}4K − 1{v=+1}8γ'
)

1
σ2

h
f ′(h)

In the limit N → ∞, V N
s is uniform on {−1,+1},

leading to
2

(

f ′

σ2

)′
+ 2

σ2(K − 2γ')f ′
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Corollary (Ray-Knight representation
of Feller’s branching with logistic growth)

Let H be the solution of

dHs =
2

σ
dBs +

2

σ2
(K − 2γLs(H, Hs)) ds

starting in H0 = 0, reflected at h = 0 and stopped at
Sx := inf{s > 0 : Ls(H,0) = x}.

Then LSx(H, t), t ≥ 0 solves

dZt = (KZt − γZ2
t )dt +

√
Zt σdWt,

Z0 = x.
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