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Motivation

Branching Models - encoding the evolution of a population:
— > population size

— > family forest (genealogy/ancestral relationships)

Scaling Limits
- many individuals, each of small mass, rapid branching

Invariance Principles - general classes of models with same limit:
— > population - continuous state branching processes (CSBP)

— > genealogy - continuum random trees (CRTs)
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Example: Independent Branching

critical Galton-Watson processes whose offspring distribution ...

e ... has finite variance:
— population = Feller diffusion Feller 51
— genealogy = Aldous’s CRT Aldous 93

e ... is in the domain of attraction of an «-stable distribution:
— population = «-stable CSBP Lamperti '67
— genealogy = «-stable CRT Duquesne-LeGall '02
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Our model: catalytic branching

— > the catalyst (7);),>0 is a critical binary GW with constant
branching rate =1

— > the reactant (&;);>¢ is a critical binary GW with time-
Inhomogeneous branching rate depending on the current
population size of the catalyst.
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.. and the scaling limit

In the n'"-rescaling step (7", £") is a continuous time MC with

(715, &) = (1,1) and

- (7" + L,&m), atrate in%i",
(77 ’5 )|_> ~n ¢n 1 2-nen
(7", 6" £+ =), trateﬁnnf.
Fact. Greven, Klenke & Wakolbinger '99
(7",€") = (X,Y) where

dX, = /2X, dW*

dY, = /2X, Y, dW,}
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A remark on extinction times

dX, =+/2X, dWX

dY, = /2X, Y, dW,}

and

pozzinf{tZO:Xt:O}, 70 ::inf{tZO:Yt:O}.

Basic Facts.
o Y < 0o, almost surely.
e The reactant gets absorbed in Yo at time p°.

e Penssel '03

P{p’ <7’} =L €(0,1).

%\
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Problems we would like to answer ...

e from a quenched view (given the catalyst mass process):
— establish existence of a limit reactant genealogy

— analytic characterizations of the limit

e from an annealed view:
— joint convergence Of catalyst and reactant genealogies

— differences in catalyst forest from Aldous’s CRF
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Rooted real trees

Dress (1984), Dress & Terhalle (1996)

A rooted real tree (T, 7, p) is a
e metric space (7,r),
e path-connected,

e (-hyperbolic,i.e. VA, B,C €T 3 P € [A, B] with
P e [B,CINn[A,C]

A
A
B C

e with the root p € T' distinguished.

T := (root invariant) isometry classes of compact rooted R-trees
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Coding finite forest as rooted R-trees

T = U all individuals alive time ¢
t€[0,height]

d(¢,.") := generation of(+) + generation of(:") — 2 - generation of (v’ A +)

p := glueing together all the trees’ ancestors

Jo L

Rule. At the height where the catalyst dies cut off the reactant forest
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Hausdorff distance

Let (X, d) be a metric space.

Hausdorff distance:

For Ala AZ gclosed X:

dH(Al,AQ) = inf{s > 0 Al C Ag and AQ C Ai},

where A° is the -neighborhood of A.
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Gromov strong topology

(TN7 dN7 pN) — (Ta r, 10)

N—c

iff {(Tv,dn); N € N} and (T, d) can be embedded via isometries
{on; N € N} and ¢, resp., in one and the same compact metric
space (Z,dz) on which

eN(TN) — ©(T),  on(pon) — ©(p)

N—c N—c

in the Hausdorff topology on (Z.,d).
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Existence of reactant limit forest

o let (7form gformy pbe the pairs of R-trees corresponding to the
catalyst and reactant population in the nt"-approximation step

(+;-) := conditional law of reactant given a realization of the catalyst

Proposition. Assume that sup,r |7 — X;| — 0 a.s. Then the
family {(¢©""; 77); n € N} is relatively compact.
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Main example: Tree “below” an excursion

0 € C([0,L(p)]), L) € (0,00), @] 15 1y =05 @l (010 > O

For u,u’ € [0, L(¢)] put u =, u’ iff no minima in between them.

T, :={lul;uel0,L(p)]}, pp:=10],
do([u], [W]) == (u) +@(u) =2  inf  o(s).

s€[unu’ , uVu'l

Fact. T\SO is compact real tree.

Example. Aldous’s CRT = tree “below” Brownian excursion
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From trees to forests

several trees in a forest = several aligned excursions

A\

# trees = # excursions = # of zeros — 1.
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Planar embedding and linear order

Planar embedding requires a linear ordering which
e extends the partial order, and

o if x,y, 2,y arest. z<myand z Ay <z’ Az and
Ay <y Ay then z/ <linyf,

Example.

(112)

(111)__L (122)
| 1) (21) (22)

(21)
(2)

| 0 + lexicographic order

e.g., z = (111), y = (122), 2/ = (112) and ¥ = (12)
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The contour process of finite trees

(T, p) : finite (linearly ordered) forest
o : speed of traversal

C(T,o): records height of the depth-first search around the forest

(112) (112)

(111)__L (122)
| 1) (a21) -

(21)
(2)

Lemma. In continuous time binary GW with given branching rate,
C(T,o) is a linear interpolation of an alternating random walk.
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Re-scaling the contour

e Speeding up branching by n = rescaling by a factor -,

e a GW-trees has height of order O(n) with probability O(-+)

1
= if we start initially with n-trees yields a of trees
each having height O(n)

e given a GW-tree has height of order O(n) its IS
of order

Since edges are of length O(+), we choose in the
n'™ -approximation step
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The catalyst contour

Obvious. [Brownian rescaling]

If |5| is reflected Brownian motion, £(|3|) its local time process,
l.e.,

8D = lim e [ dursl, 0.
and ¢(|3])! its inverse, i.e.,
(18)) 7 (s) == inf {t > 0+ (]3] = 5},

then
C(ﬁfor’n3 n) — 2 ‘6‘./\661(1)°

n—oo
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Random evolution and stochastic averaging (Kurtz '92)

o> 0,
Tom ::inf{tZO: ﬁfgé}.
Lemma.

Let V,, := islope(C,) then (C,, V,).>0 is @ random evolution with

A% f(c,v) = nv%f(c, v) + n?i2 [f(c, —v) — f(c, V)]

and domain

Aony _ 1,0 T,n . —
D(A*™) = {f € C™°(0,T°" x {-1,1}): acf]{O,Té,n}x{O,l} =0}.
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Limiting contour process

For & > 0, let £for9n .— reactant tree cut off in height 79" and

1

A f(e) = 2(-1) ©

on the domain

D(A?) = {1 € C3(0,77]) : 51" € CHIO. 7). F'| g ey = 0}

Theorem The (A%, D(A%))-martingale problem is well-posed. If ¢° is
the solution of the (A4°, D(A°))-martingale problem, then

(C(éfor’5’”);ﬁ”) = (65;X)-

n— o0

... butwhatif § | 07
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Genealogical point process (Popovic '04)

P(T,C) ={m}t>0: collection of processes indexed by ¢; each
giving the ancestry of the population alive at time ¢

(112)
(122)

(111)

(121) !

(22)
L (21)
(12
(2)

1)

( = spacing
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Distribution of the point process

m; are points of maximal depths of i.i.d. excursions below ¢

(112)
T (122)
- . a1\ )

(121) (22)

(11)
(21)

(12) (2)

Lemma. Forall ¢t > 0, given a medium n, m; is a simple
point-process, {7i}i—o,...,(¢,—1) are i.i.d. with

°)

t
Th 1+ fo 77st

P(Ti c dh) = t t
(1'+Lﬁ1nsds)2 Lﬂ)nsds

, he(0,t)
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Rescaling the point process

Since after the rescaling of edge lengths we find at any height t > 0
a Poisson number of trees each having family size of order ©O(n), we
choose in the n'™-approximation step

(=1
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Limit of the reactant genealogical point-process

Theorem. Forany ¢t > 0,
]‘ ~1
(PE(ER™; 2);77) = (7% X),

where for given path of X the point process 7¢'* consists of:

e Poisson point process on R™ x Rt whose intensity measure is

X
RSl x dh] = 119.v,)(£)dl @ 1 taron,0)(h) °___dh.

(fﬁ Xsds)?

e rate (f; Xsds)_1 Poisson point process at height 0 whose
points separate distinct trees in the forest.

Remark. Result is ¢ -freellll
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Properties of the Reactant Forest

Comparison with the constant rate branching forest:

— > differences in tree structure due to inhomogeneity of the
random environment (evolving branching rates)
- stretching of the tree metric

— > behavior of the forest Y at time 7° of extinction of the
random environment (in the event the catalyst dies first)
- infinite ¢2-length of the tree tips!
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Differences in the reactant forest due to inhomogeneous rates

Stretching Lemma.

Let (Z'°F,d rr, p) be the Brownian CRF and YT the reactant forest,
and let X : [0,7°) — R, be a given continuous function. For a fixed
t > 0 define an increasing function s;* : [0,] — [0, fo X,ds] by

t
= / Xds,
t—h

and let (s)~": [0, [§ X,ds] — [0,1] be its inverse. Then

((0QuY™), dyio, p): X ) £ (0Qux (2, 2(55) " (5 d0). )
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Application of the stretching lemma

Theorem. [Comparing the probability to belong to different families]

Let Y'r be the reactant CRF and Z™* be Brownian CRF with the
same expected number of trees of a given height ¢ > 0. If u»¥ and y»?
are the “uniform” distributions on 9Q;(Yr) and 0Q;(Z"),
respectively, then

E| / (1) (du, ) L dy o (. ) = 21} ]
(8Qt(yf0r))2

< E{/ (,ut’Z)®2(du, du’) 1{d geor (u, ') = 2t}};
(0Q¢(Ztor))?

Genealogy of catalytic branching models



Differences due to vanishing catalyst

Case. p < 79, i.e., reactant dies first

Proposition.

Y RV
1(51%@ , (%) e-1(¢9)(1) = 00, P-a.s.

Note. With positive probability there does not exist a limiting diffusion
¢° describing the contour of the full forest Y including its highest
tips.
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Many thanks
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Compact sets

Lemma. Evans, Pitman, W. 06

A set T is pre-compact in T*°°t iff for all ¢ > 0 there is n(e) < oo
such that each 7' € 7 has an e-net with at most n(e) points.

Example.

Al _(T,p) := ancestors of the time ¢ population a time ¢ back

e c-net. e>0, (T,p) € T, mg=|—log, (¢)]

o—(mo+1)
N(g) = U Al(glf_l).zo—(mo-l-l) (Ta p)
keN

e Compact set. {L,,; m € N} positive integers

T = () {(Tp) T Y #ALZ i) (T,p) < L}

meN k>1
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