Genealogy of catalytic branching models

Anita Winter, Erlangen

(with Andreas Greven & Lea Popovic)

Marseille, 25.Mai 2009

Motivation

Branching Models - encoding the evolution of a population:

- − > population size
- -> family forest (genealogy/ancestral relationships)

Scaling Limits

- many individuals, each of small mass, rapid branching

Invariance Principles - general classes of models with same limit:

- -> population continuous state branching processes (CSBP)
- -> genealogy continuum random trees (CRTs)

Example: Independent Branching

critical Galton-Watson processes whose offspring distribution ...

• ... has finite variance:

population ⇒ Feller diffusion

Feller '51

– genealogy ⇒ Aldous's CRT

Aldous '93

• ... is in the domain of attraction of an α -stable distribution:

- population $\Rightarrow \alpha$ -stable CSBP

Lamperti '67

- genealogy $\Rightarrow \alpha$ -stable CRT

Duquesne-LeGall '02

Our model: catalytic branching

- -> the catalyst $(\eta_t)_{t\geq 0}$ is a critical binary GW with constant branching rate =1
- -> the **reactant** $(\xi_t)_{t\geq 0}$ is a critical binary GW with time-inhomogeneous branching rate **depending on** the current population size of the **catalyst**.

... and the scaling limit

In the $n^{\rm th}$ -rescaling step $(\tilde{\eta}^n, \tilde{\xi}^n)$ is a continuous time MC with $(\tilde{\eta}^n_0, \tilde{\xi}^n_0) = (1,1)$ and

$$(\tilde{\eta}^n, \tilde{\xi}^n) \mapsto \begin{cases} (\tilde{\eta}^n \pm \frac{1}{n}, \tilde{\xi}^n), & \text{at rate } \frac{1}{2}n^2\tilde{\eta}^n, \\ (\tilde{\eta}^n, \tilde{\xi}^n \pm \frac{1}{n}), & \text{at rate } \frac{1}{2}n^2\tilde{\eta}^n\tilde{\xi}^n. \end{cases}$$

Fact. Greven, Klenke & Wakolbinger '99

$$\left(\tilde{\eta}^{n}, \tilde{\xi}^{n}\right) \Rightarrow (X, Y)$$
 where

$$dX_t = \sqrt{2X_t} dW_t^X$$
$$dY_t = \sqrt{2X_tY_t} dW_t^Y$$

A remark on extinction times

$$dX_t = \sqrt{2X_t} dW_t^X$$
$$dY_t = \sqrt{2X_tY_t} dW_t^Y$$

and

$$\rho^0 := \inf \{ t \ge 0 : X_t = 0 \}, \qquad \tau^0 := \inf \{ t \ge 0 : Y_t = 0 \}.$$

Basic Facts.

- $\rho^0 < \infty$, almost surely.
- The reactant gets absorbed in Y_{ρ^0} at time ρ^0 .
- Penssel '03

$$\mathbb{P}\{\rho^0 < \tau^0\} = \frac{1}{\sqrt{5}} \in (0,1).$$

Problems we would like to answer ...

- from a quenched view (given the catalyst mass process):
 - establish existence of a limit reactant genealogy
 - analytic characterizations of the limit
- from an annealed view:
 - joint convergence of catalyst and reactant genealogies
 - differences in catalyst forest from Aldous's CRF

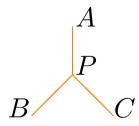
Existence of limit reactant genealogies

Rooted real trees

Dress (1984), Dress & Terhalle (1996)

A rooted real tree (T, r, ρ) is a

- metric space (T, r),
- path-connected,
- 0-hyperbolic, i.e. $\forall A, B, C \in T \ \exists \ P \in [A, B]$ with $P \in [B, C] \cap [A, C]$



• with the **root** $\rho \in T$ distinguished.

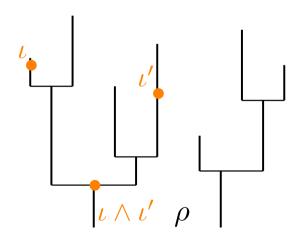
 $\mathbb{T} :=$ (root invariant) isometry classes of **compact** rooted \mathbb{R} -trees

Coding finite forest as rooted \mathbb{R} -trees

$$T:=\bigcup_{t\in[0,\mathrm{height}]} \text{all individuals alive time } t$$

$$d(\iota,\iota'):=\text{generation of}(\iota)+\text{generation of}(\iota')-2\cdot\text{generation of}(\iota'\wedge\iota)$$

$$\rho:=\text{glueing together all the trees' ancestors}$$



Rule. At the height where the catalyst dies cut off the reactant forest

Hausdorff distance

Let (X, d) be a metric space.

Hausdorff distance:

For $A_1, A_2 \subseteq_{\text{closed}} X$,

$$d_{\mathrm{H}}(A_1, A_2) := \inf\{\varepsilon > 0 : A_1 \subseteq A_2^{\varepsilon} \text{ and } A_2 \subseteq A_1^{\varepsilon}\},$$

where A^{ε} is the ε -neighborhood of A.

Gromov strong topology

$$(\mathbf{T}_{\mathbf{N}}, \mathbf{d}_{\mathbf{N}}, \rho_{\mathbf{N}}) \underset{\mathbf{N} \to \infty}{\longrightarrow} (\mathbf{T}, \mathbf{r}, \rho)$$

iff $\{(T_N, d_N); N \in \mathbb{N}\}$ and (T, d) can be embedded via isometries $\{\varphi_N; N \in \mathbb{N}\}$ and φ , resp., in one and the same compact metric space $(\mathbf{Z}, \mathbf{d_Z})$ on which

$$\varphi_{\mathbf{N}}(\mathbf{T}_{\mathbf{N}}) \underset{\mathbf{N} \to \infty}{\longrightarrow} \varphi(\mathbf{T}), \qquad \varphi_{\mathbf{N}}(\rho_{\mathbf{N}}) \underset{\mathbf{N} \to \infty}{\longrightarrow} \varphi(\rho)$$

in the Hausdorff topology on (\mathbf{Z}, \mathbf{d}) .

Existence of reactant limit forest

• let $(\tilde{\eta}^{\text{for},n}, \tilde{\xi}^{\text{for},n})$ be the pairs of \mathbb{R} -trees corresponding to the catalyst and reactant population in the n^{th} -approximation step

 $(\cdot;\cdot)$:= conditional law of reactant given a realization of the catalyst

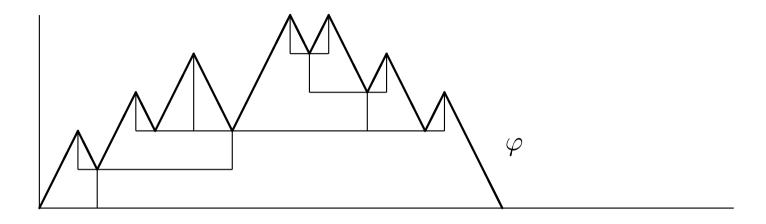
Proposition. Assume that $\sup_{t \leq T} \left| \tilde{\eta}^n_t - X_t \right| \to 0$ a.s. Then the family $\{(\tilde{\xi}^{\text{for},n}; \tilde{\eta}^n); n \in \mathbb{N}\}$ is relatively compact.

Characterization via excursions

Main example: Tree "below" an excursion

$$\varphi \in C([0, L(\varphi)]), L(\varphi) \in (0, \infty), \varphi|_{\{0, L(\varphi)\}} \equiv 0, \varphi|_{(0, L(\varphi))} > 0$$

For $u, u' \in [0, L(\varphi)]$ put $\mathbf{u} \equiv_{\varphi} \mathbf{u}'$ iff no minima in between them.



$$\mathbf{T}_{\varphi} := \{[u]; u \in [0, L(\varphi)]\}, \quad \rho_{\varphi} := [0],$$

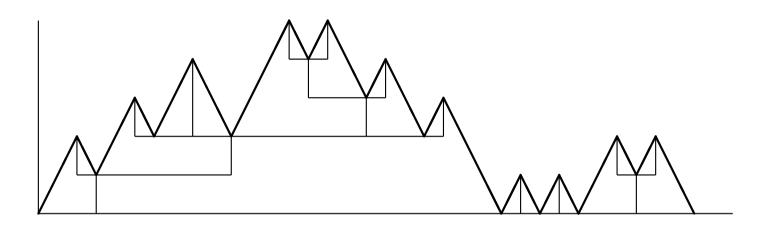
$$\mathbf{d}_{\varphi}([u], [u']) := \varphi(u) + \varphi(u') - 2 \inf_{s \in [u \wedge u', u \vee u']} \varphi(s).$$

Fact. $T|_{\varphi}$ is compact real tree.

Example. Aldous's CRT = tree "below" Brownian excursion

From trees to forests

several trees in a forest = several aligned excursions



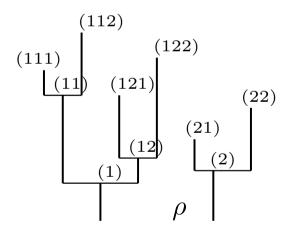
trees = # excursions = # of zeros -1.

Planar embedding and linear order

Planar embedding requires a linear ordering which

- extends the partial order, and
- if x, y, x', y' are s.t. $x \leq^{\text{lin}} y$ and $x \wedge y \leq x' \wedge x$ and $x \wedge y \leq y' \wedge y$ then $x' \leq^{\text{lin}} y'$.

Example.



+ lexicographic order

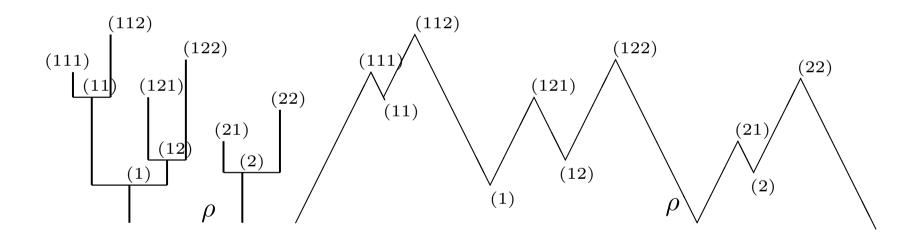
e.g.,
$$x = (111)$$
, $y = (122)$, $x' = (112)$ and $y' = (12)$

The contour process of finite trees

 (\mathbf{T}, ρ) : finite (linearly ordered) forest

 σ : speed of traversal

 $\mathcal{C}(T,\sigma)$: records height of the depth-first search around the forest



Lemma. In continuous time binary GW with given branching rate, $C(T, \sigma)$ is a linear interpolation of an alternating random walk.

Re-scaling the contour

- Speeding up branching by n = rescaling edges by a factor $\frac{1}{n}$,
- a GW-trees has height of order $\mathcal{O}(n)$ with probability $\mathcal{O}(\frac{1}{n})$
- \Rightarrow if we start initially with n-trees yields a Poisson number of trees each having height $\mathcal{O}(n)$
 - given a GW-tree has height of order $\mathcal{O}(n)$ its number of edges is of order $\mathcal{O}(\mathbf{n}^2)$

Since edges are of length $\mathcal{O}(\frac{1}{n})$, we choose in the n^{th} -approximation step

$$\sigma := \mathbf{n}$$
.

The catalyst contour

Obvious. [Brownian rescaling]

If $|\beta|$ is reflected Brownian motion, $\ell(|\beta|)$ its local time process, i.e.,

$$\ell(|\beta|)_t := \lim_{\varepsilon \to 0} \varepsilon^{-1} \int_0^t du \mathbf{1}\{|\beta|_u \in [0, \varepsilon]\},$$

and $\ell(|\beta|)^{-1}$ its inverse, i.e.,

$$\ell(|\beta|)^{-1}(s) := \inf \{ t \ge 0 : \ell(|\beta|)_t = s \},$$

then

$$\mathcal{C}(\tilde{\eta}^{\mathrm{for},\mathbf{n}};\mathbf{n}) \Longrightarrow_{\mathbf{n} \to \infty} \mathbf{2} \cdot |\beta|_{\boldsymbol{\cdot} \wedge \ell_{\mathbf{0}}^{-1}(\mathbf{1})}.$$

Random evolution and stochastic averaging (Kurtz '92)

$$\delta > 0$$
,

$$\tilde{T}^{\delta,n} := \inf \{ t \ge 0 : \tilde{\eta}_t^n \le \delta \}.$$

Lemma.

Let $V_u := \frac{1}{2} \operatorname{slope}(C_u)$ then $(C_u, V_u)_{u \geq 0}$ is a random evolution with

$$\tilde{\mathbf{A}}^{\delta,\mathbf{n}}\mathbf{f}(\mathbf{c},\mathbf{v}) = \mathbf{n}\mathbf{v}\frac{\partial}{\partial\mathbf{c}}\mathbf{f}(\mathbf{c},\mathbf{v}) + \mathbf{n}^2\tilde{\boldsymbol{\eta}}_\mathbf{c}^\mathbf{n}\big[\mathbf{f}(\mathbf{c},-\mathbf{v}) - \mathbf{f}(\mathbf{c},\mathbf{v})\big]$$

and domain

$$\mathcal{D}(\mathbf{ ilde{A}}^{\delta,\mathbf{n}}) = ig\{\mathbf{f} \in \mathbf{C^{1,0}}(\mathbf{0}, \mathbf{ ilde{T}}^{\delta,\mathbf{n}} imes \{-1,1\}): \left. \partial_{\mathbf{c}} \mathbf{f}
ight|_{\{\mathbf{0},\mathbf{ ilde{T}}^{\delta,\mathbf{n}}\} imes \{\mathbf{0},\mathbf{1}\}} \equiv \mathbf{0} ig\}.$$

Limiting contour process

For $\delta > 0$, let $\tilde{\xi}^{for,\delta,\mathbf{n}} := \text{reactant tree cut off in height } \tilde{T}^{\delta,n}$ and

$$A^{\delta} f(c) := 2\left(\frac{1}{X_c}f'\right)'(c)$$

on the domain

$$\mathcal{D}(A^{\delta}) := \Big\{ f \in \mathcal{C}^{2}([0, \tau^{\delta}]) : \frac{1}{X_{\cdot}} f' \in \mathcal{C}^{1}([0, \tau^{\delta}]), f' \big|_{\{0, \tau^{\delta}\}} = 0 \Big\}.$$

Theorem The $(A^\delta,\mathcal{D}(A^\delta))$ -martingale problem is well-posed. If ζ^δ is the solution of the $(A^\delta,\mathcal{D}(A^\delta))$ -martingale problem, then

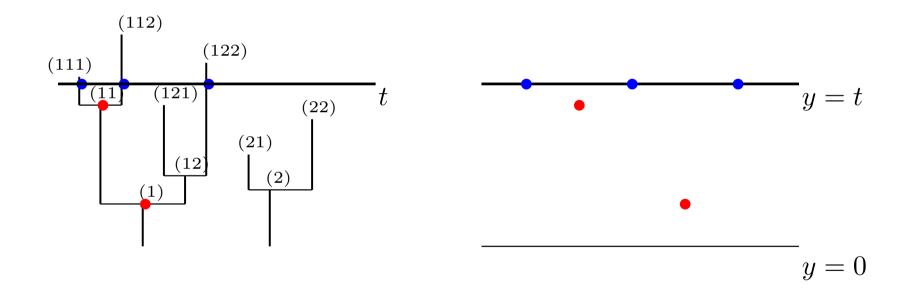
$$\left(\mathcal{C}(\tilde{\xi}^{\mathrm{for},\delta,n});\tilde{\eta}^n\right) \underset{n\to\infty}{\Longrightarrow} \left(\zeta^{\delta};X\right).$$

.... but what if $\delta \downarrow 0$?

Yet another useful representation

Genealogical point process (Popovic '04)

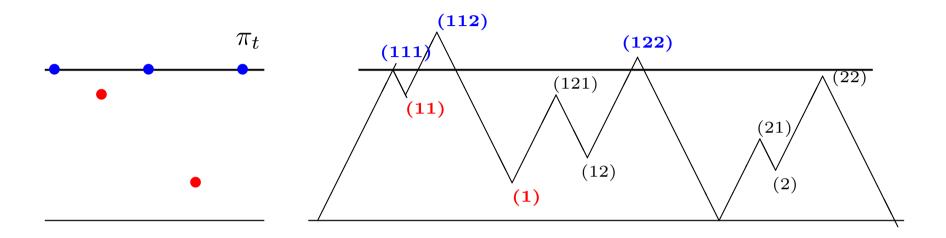
 $\mathcal{P}(\mathbf{T},\zeta) = \{\pi_{\mathbf{t}}\}_{\mathbf{t} \geq \mathbf{0}}$: collection of processes indexed by t; each giving the ancestry of the population alive at time t



 $\zeta := \text{spacing}$

Distribution of the point process

 π_t are points of maximal depths of i.i.d. excursions below t



Lemma. For all t>0, given a medium η , π_t is a simple point-process, $\{\tau_i\}_{i=0,...,(\xi_t-1)}$ are i.i.d. with

$$\mathbf{P}(\tau_{\mathbf{i}} \in d\mathbf{h}) = \frac{\eta_{\mathbf{h}}}{(1 + \int_{\mathbf{h}}^{\mathbf{t}} \eta_{\mathbf{s}} d\mathbf{s})^{2}} \frac{1 + \int_{\mathbf{0}}^{\mathbf{t}} \eta_{\mathbf{s}} d\mathbf{s}}{\int_{\mathbf{0}}^{\mathbf{t}} \eta_{\mathbf{s}} d\mathbf{s}}, \quad \mathbf{h} \in (\mathbf{0}, \mathbf{t})$$

Rescaling the point process

Since after the rescaling of edge lengths we find at any height t > 0 a **Poisson number** of trees **each** having family size of order $\mathcal{O}(\mathbf{n})$, we choose in the n^{th} -approximation step

$$\zeta := \frac{1}{n}$$
.

Limit of the reactant genealogical point-process

Theorem. For any t > 0,

$$\left(\mathcal{P}^{\mathbf{t}}(\tilde{\xi}^{\mathrm{for},\mathbf{n}};\frac{1}{\mathbf{n}});\tilde{\eta}^{\mathbf{n}}\right)\Rightarrow\left(\pi^{\zeta,\mathbf{t}};\mathbf{X}\right),$$

where for given path of X the point process $\pi^{\zeta,t}$ consists of:

• Poisson point process on $\mathbb{R}^+ \times \mathbb{R}^+$ whose intensity measure is

$$\aleph^{\zeta,\mathbf{t}} \big[\mathrm{d}\ell \times \mathrm{d}\mathbf{h} \big] = \mathbf{1}_{[\mathbf{0},\mathbf{Y_t}]}(\ell) \mathrm{d}\ell \otimes \mathbf{1}_{(\mathbf{0},\mathbf{t}\wedge\tau^{\mathbf{0}}\wedge\rho^{\mathbf{0}})}(\mathbf{h}) \frac{\mathbf{X_h}}{(\int_{\mathbf{h}}^{\mathbf{t}} \mathbf{X_s} \mathrm{d}\mathbf{s})^2} \mathrm{d}\mathbf{h}.$$

• rate $(\int_0^t \mathbf{X_s} ds)^{-1}$ Poisson point process at height 0 whose points separate distinct trees in the forest.

Remark. Result is δ -free!!!!

Properties of the Reactant Forest

Comparison with the constant rate branching forest:

- differences in tree structure due to inhomogeneity of the random environment (evolving branching rates)
 - stretching of the tree metric
- -> behavior of the forest $Y^{\rm for}$ at time τ^0 of extinction of the random environment (in the event the catalyst dies first)
 - infinite ℓ^2 -length of the tree tips!

Differences in the reactant forest due to inhomogeneous rates

Stretching Lemma.

Let $(Z^{\mathrm{for}}, d_{Z^{\mathrm{for}}}, \rho)$ be the Brownian CRF and Y^{for} the reactant forest, and let $X:[0,\tau^0)\to\mathbb{R}_+$ be a given continuous function. For a fixed t>0 define an increasing function $s_t^X:[0,t]\to[0,\int_0^t X_s\mathrm{d}s]$ by

$$s_t^X(h) := \int_{t-h}^t X_s \mathrm{d}s,$$

and let $(s_t^X)^{-1}:[0,\int_0^t X_s\mathrm{d}s]\to [0,t]$ be its inverse. Then

$$\left(\left(\partial Q_t(Y^{\text{for}}), d_{Y^{\text{for}}}, \rho \right); X \right) \stackrel{d}{=} \left(\partial Q_{s_t^X(t)}(Z^{\text{for}}), 2(s_t^X)^{-1} \left(\frac{1}{2} d_{Z^{\text{for}}} \right), \rho \right)$$

Application of the stretching lemma

Theorem. [Comparing the probability to belong to different families]

Let Y^{for} be the reactant CRF and Z^{for} be Brownian CRF with the same expected number of trees of a given height t>0. If $\mu^{t,Y}$ and $\mu^{t,Z}$ are the "uniform" distributions on $\partial Q_t(Y^{\mathrm{for}})$ and $\partial Q_t(Z^{\mathrm{for}})$, respectively, then

$$\mathbb{E}\left[\int_{(\partial Q_t(Y^{\text{for}}))^2} (\mu^{t,Y})^{\otimes 2} (du, du') \mathbf{1} \{d_{Y^{\text{for}}}(u, u') = 2t\}\right]$$

$$\leq \mathbb{E}\left[\int_{(\partial Q_t(Z^{\text{for}}))^2} (\mu^{t,Z})^{\otimes 2} (du, du') \mathbf{1} \{d_{Z^{\text{for}}}(u, u') = 2t\}\right];$$

Differences due to vanishing catalyst

Case. $\rho^0 < \tau^0$, i.e., reactant dies first

Proposition.

$$\lim_{\delta \downarrow \mathbf{0}} \langle \zeta^{\delta}, \zeta^{\delta} \rangle_{\ell^{-1}(\zeta^{\delta})(\mathbf{1})} = \infty, \qquad \mathbb{P}\text{-a.s.}$$

Note. With positive probability there does not exist a limiting diffusion ζ^0 describing the contour of the full forest $Y^{\rm for}$ including its highest tips.

Many thanks

Compact sets

Lemma. Evans, Pitman, W. '06

A set \mathcal{T} is pre-compact in $\mathbb{T}^{\mathrm{root}}$ iff for all $\varepsilon > 0$ there is $n(\varepsilon) < \infty$ such that each $T \in \mathcal{T}$ has an ε -net with at most $n(\varepsilon)$ points.

Example.

 $A_{t-\varepsilon}^t(T,\rho):=$ ancestors of the time t population a time ε back

$$\bullet \quad \varepsilon\text{-net.} \quad \varepsilon>0 \,, \ (T,\rho)\in \mathbb{T}^{\mathrm{root}} \,, \ m_0=\lfloor -\log_2\left(\varepsilon\right)\rfloor$$

$$N(\varepsilon):=\bigcup_{k\in \mathbb{N}}A^{k\cdot 2^{-(m_0+1)}}_{(k-1)\cdot 2^{-(m_0+1)}}(T,\rho)$$

• Compact set. $\{L_m; m \in \mathbb{N}\}$ positive integers

$$\mathcal{T} := \bigcap_{m \in \mathbb{N}} \left\{ (T, \rho) \in \mathbb{T}^{\text{root}} : \sum_{k \ge 1} \# A_{(k-1) \cdot 2^{-(m+1)}}^{k \cdot 2^{-(m+1)}} (T, \rho) \le L_m \right\}.$$