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Motivation

Branching Models - encoding the evolution of a population:

− > population size

− > family forest (genealogy/ancestral relationships)

Scaling Limits
- many individuals, each of small mass, rapid branching

Invariance Principles - general classes of models with same limit:

− > population - continuous state branching processes (CSBP)

− > genealogy - continuum random trees (CRTs)
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Example: Independent Branching

critical Galton-Watson processes whose offspring distribution ...

• ... has finite variance:

– population ⇒ Feller diffusion Feller ’51

– genealogy ⇒ Aldous’s CRT Aldous ’93

• ... is in the domain of attraction of an α -stable distribution:

– population ⇒ α -stable CSBP Lamperti ’67

– genealogy ⇒ α -stable CRT Duquesne-LeGall ’02
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Our model: catalytic branching

− > the catalyst (ηt)t≥0 is a critical binary GW with constant
branching rate = 1

− > the reactant (ξt)t≥0 is a critical binary GW with time-
inhomogeneous branching rate depending on the current
population size of the catalyst.
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... and the scaling limit

In the nth -rescaling step (η̃n, ξ̃n) is a continuous time MC with
(η̃n

0 , ξ̃n
0 ) = (1, 1) and

(η̃n, ξ̃n) 7→




(η̃n ± 1
n , ξ̃n), at rate 1

2n2η̃n,

(η̃n, ξ̃n ± 1
n ), at rate 1

2n2η̃nξ̃n.

Fact. Greven, Klenke & Wakolbinger ’99
(
η̃n, ξ̃n

) ⇒ (X,Y ) where

dXt =
√

2Xt dWX
t

dYt =
√

2XtYt dWY
t
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A remark on extinction times

dXt =
√

2Xt dWX
t

dYt =
√

2XtYt dWY
t

and

ρ0 := inf
{
t ≥ 0 : Xt = 0

}
, τ0 := inf

{
t ≥ 0 : Yt = 0

}
.

Basic Facts.

• ρ0 < ∞ , almost surely.

• The reactant gets absorbed in Yρ0 at time ρ0 .

• Penssel ’03
P
{
ρ0 < τ0

}
= 1√

5
∈ (0, 1).
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Problems we would like to answer ...

• from a quenched view (given the catalyst mass process):

– establish existence of a limit reactant genealogy

– analytic characterizations of the limit

• from an annealed view:

– joint convergence of catalyst and reactant genealogies

– differences in catalyst forest from Aldous’s CRF
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Existence of limit reactant
genealogies
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Rooted real trees

Dress (1984), Dress & Terhalle (1996)

A rooted real tree (T, r, ρ) is a

• metric space (T, r) ,

• path-connected,

• 0 -hyperbolic, i.e. ∀A,B,C ∈ T ∃ P ∈ [A,B] with
P ∈ [B,C] ∩ [A,C]

A

P

CB
¡¡ @@

• with the root ρ ∈ T distinguished.

T := (root invariant) isometry classes of compact rooted R -trees
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Coding finite forest as rooted R-trees

T :=
⋃

t∈[0,height]

all individuals alive time t

d(ι, ι′) := generation of(ι) + generation of(ι′)− 2 · generation of(ι′ ∧ ι)

ρ := glueing together all the trees’ ancestors

ρ

•ι
•ι
′

•
ι ∧ ι′

Rule. At the height where the catalyst dies cut off the reactant forest
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Hausdorff distance

Let (X, d) be a metric space.

Hausdorff distance:

For A1, A2 ⊆closed X ,

dH(A1, A2) := inf{ε > 0 : A1 ⊆ Aε
2 and A2 ⊆ Aε

1},

where Aε is the ε -neighborhood of A .
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Gromov strong topology

(TN,dN, ρN) −→
N→∞

(T, r, ρ)

iff {(TN , dN ); N ∈ N} and (T, d) can be embedded via isometries

{ϕN ; N ∈ N} and ϕ , resp., in one and the same compact metric

space (Z,dZ) on which

ϕN(TN) −→
N→∞

ϕ(T), ϕN(ρN) −→
N→∞

ϕ(ρ)

in the Hausdorff topology on (Z,d) .
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Existence of reactant limit forest

• let (η̃for,n, ξ̃for,n) be the pairs of R -trees corresponding to the
catalyst and reactant population in the nth -approximation step

•
(·; ·) := conditional law of reactant given a realization of the catalyst

Proposition. Assume that supt≤T

∣∣η̃n
t −Xt

∣∣ → 0 a.s. Then the
family {(ξ̃for,n; η̃n); n ∈ N} is relatively compact.
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Characterization via excursions
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Main example: Tree “below” an excursion

ϕ ∈ C([0, L(ϕ)]) , L(ϕ) ∈ (0,∞) , ϕ
∣∣
{0,L(ϕ)} ≡ 0 , ϕ

∣∣
(0,L(ϕ))

> 0

For u, u′ ∈ [0, L(ϕ)] put u ≡ϕ u′ iff no minima in between them.

ϕ

¢
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Tϕ := {[u]; u ∈ [0, L(ϕ)]}, ρϕ := [0],

dϕ([u], [u′]) := ϕ(u) + ϕ(u′)− 2 inf
s∈[u∧u′,u∨u′]

ϕ(s).

Fact. T
∣∣
ϕ

is compact real tree.

Example. Aldous’s CRT = tree “below” Brownian excursion
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From trees to forests

several trees in a forest = several aligned excursions
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# trees = # excursions = # of zeros − 1.
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Planar embedding and linear order

Planar embedding requires a linear ordering which

• extends the partial order, and

• if x, y, x′, y′ are s.t. x ≤lin y and x ∧ y ≤ x′ ∧ x and
x ∧ y ≤ y′ ∧ y then x′ ≤lin y′ .

Example.

(111)

(11)

(112)

(1)

(121)

(12)

(122)

ρ

(21)

(2)

(22)

+ lexicographic order

e.g., x = (111) , y = (122) , x′ = (112) and y′ = (12)
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The contour process of finite trees

(T, ρ) : finite (linearly ordered) forest

σ : speed of traversal

C(T, σ) : records height of the depth-first search around the forest

(111)

(11)

(112)

(1)

(121)

(12)

(122)

ρ

(21)

(2)

(22)

¢
¢
¢
¢
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(111)

(11)

(112)

(1)

(121)

(12)

(122)

ρ

(21)

(2)

(22)

Lemma. In continuous time binary GW with given branching rate,

C(T, σ) is a linear interpolation of an alternating random walk.
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Re-scaling the contour

• Speeding up branching by n = rescaling edges by a factor 1
n ,

• a GW-trees has height of order O(n) with probability O( 1
n )

⇒ if we start initially with n-trees yields a Poisson number of trees
each having height O(n)

• given a GW-tree has height of order O(n) its number of edges is
of order O(n2)

Since edges are of length O( 1
n) , we choose in the

nth -approximation step

σ := n.
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The catalyst contour

Obvious. [Brownian rescaling]

If |β| is reflected Brownian motion, `(|β|) its local time process,
i.e.,

`(|β|)t := lim
ε→0

ε−1

∫ t

0

du1{|β|u ∈ [0, ε]},

and `(|β|)−1 its inverse, i.e.,

`(|β|)−1(s) := inf
{
t ≥ 0 : `(|β|)t = s

}
,

then

C(η̃for,n;n) =⇒
n→∞

2 · |β|·∧`−1
0 (1).
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Random evolution and stochastic averaging (Kurtz ’92)

δ > 0 ,
T̃ δ,n := inf

{
t ≥ 0 : η̃n

t ≤ δ
}
.

Lemma.

Let Vu := 1
2slope(Cu) then (Cu, Vu)u≥0 is a random evolution with

Ãδ,nf(c,v) = nv
∂

∂c
f(c,v) + n2η̃n

c

[
f(c,−v)− f(c,v)

]

and domain

D(Ãδ,n) =
{
f ∈ C1,0(0, T̃δ,n × {−1,1}) : ∂cf

∣∣
{0,T̃δ,n}×{0,1} ≡ 0

}
.
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Limiting contour process

For δ > 0 , let ξ̃for,δ,n := reactant tree cut off in height T̃ δ,n and

Aδf(c) := 2
( 1

Xc
f ′

)′
(c)

on the domain

D(Aδ) :=
{

f ∈ C2([0, τ δ]) :
1
X·

f ′ ∈ C1([0, τ δ]), f ′
∣∣
{0,τδ} = 0

}
.

Theorem The (Aδ,D(Aδ))-martingale problem is well-posed. If ζδ is
the solution of the (Aδ,D(Aδ)) -martingale problem, then

(
C(ξ̃for,δ,n); η̃n

)
=⇒
n→∞

(
ζδ; X

)
.

.... but what if δ ↓ 0?
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Yet another useful representation
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Genealogical point process (Popovic ’04)

P(T, ζ) = {πt}t≥0 : collection of processes indexed by t ; each
giving the ancestry of the population alive at time t

(111)

(11)

(112)

(1)

(121)

(12)

(122)

(21)

(2)

(22)

• • ••

•

t y = t

y = 0

• • ••

•

ζ := spacing
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Distribution of the point process

πt are points of maximal depths of i.i.d. excursions below t

πt

• • •
•

•
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(111)

(11)

(112)

(1)

(121)

(12)

(122)

(21)

(2)

(22)

Lemma. For all t > 0 , given a medium η , πt is a simple
point-process, {τi}i=0,...,(ξt−1) are i.i.d. with

P(τi ∈ dh) =
ηh

(1 +
∫ t

h
ηsds)2

1 +
∫ t

0
ηsds∫ t

0
ηsds

, h ∈ (0, t)
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Rescaling the point process

Since after the rescaling of edge lengths we find at any height t > 0
a Poisson number of trees each having family size of order O(n) , we
choose in the nth -approximation step

ζ := 1
n .
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Limit of the reactant genealogical point-process

Theorem. For any t > 0 ,

(Pt(ξ̃for,n;
1
n

); η̃n
) ⇒ (

πζ,t;X
)
,

where for given path of X the point process πζ,t consists of:

• Poisson point process on R+ × R+ whose intensity measure is

ℵζ,t
[
d`× dh

]
= 1[0,Yt](`)d`⊗ 1(0,t∧τ0∧ρ0)(h)

Xh

(
∫ t

h
Xsds)2

dh.

• rate
( ∫ t

0
Xsds

)−1 Poisson point process at height 0 whose
points separate distinct trees in the forest.

Remark. Result is δ -free!!!!
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Properties of the Reactant Forest

Comparison with the constant rate branching forest:

− > differences in tree structure due to inhomogeneity of the
random environment (evolving branching rates)

- stretching of the tree metric

− > behavior of the forest Y for at time τ0 of extinction of the
random environment (in the event the catalyst dies first)

- infinite `2 -length of the tree tips!
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Differences in the reactant forest due to inhomogeneous rates

Stretching Lemma.

Let (Zfor, dZfor , ρ) be the Brownian CRF and Y for the reactant forest,
and let X : [0, τ0) → R+ be a given continuous function. For a fixed
t > 0 define an increasing function sX

t : [0, t] → [0,
∫ t

0
Xsds] by

sX
t (h) :=

∫ t

t−h

Xsds,

and let (sX
t )−1 : [0,

∫ t

0
Xsds] → [0, t] be its inverse. Then

((
∂Qt(Y for), dY for , ρ

)
;X

)
d=

(
∂QsX

t (t)(Z
for), 2(sX

t )−1(
1
2
dZfor), ρ

)
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Application of the stretching lemma

Theorem. [Comparing the probability to belong to different families]

Let Y for be the reactant CRF and Zfor be Brownian CRF with the
same expected number of trees of a given height t > 0 . If µt,Y and µt,Z

are the “uniform” distributions on ∂Qt(Y for) and ∂Qt(Zfor) ,
respectively, then

E
[ ∫

(∂Qt(Y for))2

(
µt,Y

)⊗2(du,du′)1
{
dY for

(
u, u′

)
= 2t

}]

≤ E
[ ∫

(∂Qt(Zfor))2

(
µt,Z

)⊗2(du, du′)1
{
dZfor

(
u, u′

)
= 2t

}]
;
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Differences due to vanishing catalyst

Case. ρ0 < τ0 , i.e., reactant dies first

Proposition.
lim
δ↓0
〈ζδ, ζδ〉`−1(ζδ)(1) = ∞, P-a.s.

Note. With positive probability there does not exist a limiting diffusion

ζ0 describing the contour of the full forest Y for including its highest

tips.
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Many thanks
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Compact sets

Lemma. Evans, Pitman, W. ’06

A set T is pre-compact in Troot iff for all ε > 0 there is n(ε) < ∞
such that each T ∈ T has an ε -net with at most n(ε) points.

Example.

At
t−ε(T, ρ) := ancestors of the time t population a time ε back

• ε -net. ε > 0 , (T, ρ) ∈ Troot , m0 = b− log2 (ε)c

N(ε) :=
⋃

k∈N
Ak·2−(m0+1)

(k−1)·2−(m0+1)(T, ρ)

• Compact set. {Lm; m ∈ N} positive integers

T :=
⋂

m∈N

{
(T, ρ) ∈ Troot :

∑

k≥1

#Ak·2−(m+1)

(k−1)·2−(m+1)(T, ρ) ≤ Lm

}
.
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